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Abstract 

The presence of heteroscedasticity, multicollinearity and outliers are classical problems of data within 

the linear regression framework. This research is a proposal of new methods which can be a potential 

candidate for weighted robust wild bootstrap regression as well as the multicollinearity robust regression 

model with outliers’ pattern based on Latin root. This proposal arises as a logical combination of 

principles used in the Latin root, wild bootstrap sampling procedure of Wu and Liu. The weighted robust 

GM-estimator of Krasker and Welsch (1982) with initial MM-estimator of Yohai (1987) and S-estimator 

of Rousseeuw and Yohai (1984) together with two different weighting procedures of Hampel’s and 

Andrews sin weighted function are considered in the analysis. This paper investigates the nonresistance 

of weighted robust wild bootstrap (WRWBoot) regression and our proposed method for resistance to 

multicollinearity, outliers and heteroscedasticity error variance. The use of modified weighted robust 

wild bootstrap methods (WRWBoot) based on Latin root with multicollinearity and outlier diagnostic 

method yields more reliable trend estimations. From numerical example and simulation study, the 

resulting of the modified weighted robust wild bootstrap methods based on Latin root with 

multicollinearity and outlier diagnostic method (WRWBoot) is efficient than other estimators, using 

Standard Error (SE) and the Root Mean Squared Error criterion for numerical example and simulation 

study respectively for many combinations of error distribution and degree of multicollinearity. 

Keywords: multicollinearity; outliers; Latin root; robust GM-estimator and wild bootstrap 

 

Introduction 

In regression analysis, the ordinary least square is widely used to estimate the parameter of the models 

mostly because of tradition for optimal properties and ease of computation. Unfortunately, the 

mathematical elegance that makes the estimator so popular relayed on a number of fairly strong and 

many times unrealistic assumptions. Regression coefficients that involve tests of significance and 

confidence intervals are available in different popular statistical packages that researchers use 

regularly. But the results of tests statistics and the coverage probability of confidence intervals becomes 

valid depend largely to the extent in which these model's assumptions are met. However, if these 

assumptions are violated, the ordinary least square will no longer produced the best variance, resulting 

to the inefficiency in the parameter of the model. 

One of these assumptions is the assumption of constant variance. The assumption of constant 

variance is one of the basic requirements of regression model. Researchers encounter a situation in 

which the variance of the response variable is relate to the value of one or more regressor variables 

resulting in heteroscedasticity. A common reason for the violation of this assumption is for the response 

variable to follow a probability distribution in which the variance is functionally related to the mean. 

Heteroscedasticity is said to be present if this assumption is violated. In the presence of 

heteroscedasticity, the OLS estimator will remain unbiased. But the most harmful consequence of 

heteroscedasticity would be the parameter covariance matrix. The elements in the diagonal matrix that 

are used to estimate the standard error becomes biased and unreliable. On the other hand, if there is 

no exact linear relationship between the explanatory variables, this is called assumption  
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of multicollinearity. In the present of multicollinearity, the OLS estimator will results in producing infinite 

variance that will lead to misleading interpretation in the test statistics. In practice, the situation become 

worse when there are outliers in the data. Presence of outliers in the data will desterilized the parameter 

estimation in the model by inflating the test statistics which resulted in given wrong conclusions. 

However, most of the statistical data usually do not completely satisfy assumptions often made by the 

researchers which result in a dramatic effect on the quality of statistical analysis. 

A heteroscedasticity bootstrap technique was firstly introduced by Wu (1986) and Liu (1988). 

They proposed the wild bootstrap technique which gives a better performance for the parameter 

estimates of the regression coefficients when the model exhibits both the homoscedasticity and 

heteroscedasticity models. This type of weighted bootstraps is called the wild bootstrap in the literature.  

Wild bootstrap is a resampling procedure that is usually used to estimate bias, standard error and to 

construct the value of confidence interval of an estimator. The estimate of standard error and sampling 

distribution of the robust regression model can be evaluated from the drawn samples. Wu (1986) and 

Liu (1988) described the wild bootstrap as procedures for treating sample data from the population at 

which the repeated sample is being drawn. In regression analysis, wild bootstrap method is suitable 

because it relaxes the assumption about the error terms which stated that the error distribution must 

follow a normal distribution (Zahari et al., 2014).  

To handle the multicollinearity problems, latent root regression was introduced which is more 

precise than the OLS method in multicollinearity situation. The robust estimation is mainly used to 

overcome the problem of outliers by using a suitable weighted function of Hampel and Andrews sin psi 

function to down weight the effect of outliers. The robust estimator used in this research is GM-estimator 

of Krasker and Welsch (1982) with initial MM-estimator of Yohai (1987) and S-estimator of Rousseeuw 

and Yohai (1984) together with two different weighting procedures of Hampel’s and Andrews sin 

weighted function are considered in the analysis. We choose this weighted function also to improve the 

asymptotic relative efficiency of our estimator the GM-estimator. 

Several attempts have been made to use the procedure of Wu (1986) and Liu (1988) wild 

bootstrap techniques to remedy the problem of heteroscedasticity error variance. Zhu et al. (2007) 

proposed a promising robust wild bootstrap estimator based on brain morphology to detect association 

between brain structure and covariates in order to diagnose severity of disease, such as age, IQ and 

genotype. A similarly modified wild bootstrap for quantile regression estimators was proposed and the. 

Simulation study was conducted based on median regression to relate with a number of bootstrap 

methods. Using a simple finite correction, the result indicates that the wild bootstrap can account for 

general forms of heteroscedasticity in regression model with fixed design point Feng et al. (2011).   

Most recently, a modified weighted bootstrap estimation method based on LTS to handle outliers 

and heteroscedasticity was proposed. This method will identify the exact number of outliers in the data 

and form two groups of observation, where the bootstrap sample is performed on these groups. The 

Alarmgir redescending M-estimator (ALARM) weighted procedure is used to estimate the regression 

model of each bootstrap sample, the idea of this bootstrap method is to protect against excessive 

number of outliers and ensures efficient results Alamgir and Ali (2013). Rana et al. (2012) proposed the 

robust wild bootstrap based on Wu (1986) and Liu (1988). They disclosed that the problem of classical 

bootstrap is that the proportion of outliers involve in the bootstrap sample might be greater than that of 

the original data. Hence, the entire inferential procedure of bootstrap would be erroneous in the 

presence of outliers. They introduced robust wild bootstrap estimation based on MM-estimator 

introduced by Yohai (1987). This wild bootstrap procedure was to handle the problems of outlying 

observation and heteroscedasticity in the model. 

This study proposed alternative techniques that can handle problems of multicollinearity, 

heteroscedasticity and outliers in the model. We use a suitable combination of robust latent root       

regression with wild bootstrap techniques of Wu (1986) and Liu (1988). We proposed a slightly 

modification of robust wild bootstrap of MM-estimation, which is a combination of wild bootstrap and 

robust method. This study would examine the performance of the proposed method as an alternative 

to the existing methods for handling the multiple problems of multicollinearity, heteroscedasticity and 

outliers. 
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However, from the literature there is not much work devoted to this aspect of wild bootstrap 

method in a situation when multicollinearity, heteroscedasticity and outliers occur together. The vital 

role of wild bootstrap is to handle the problems of heteroscedasticity but not resistance to 

multicollinearity and outliers. We discussed the methodology of this research in section 2. In section 3, 

we introduce the newly proposed method and its performance are presented. Section 4 will contain the 

detailed of conclusion of the study. 

 

Methodology 

A simulation study was design to assess the performance of wild bootstrap Wu (1986) and Liu (1988) 

and the robust wild bootstrap of Wu (1986) and Liu (1988) with the proposed robust latent root with wild 

bootstrap of Wu (1986) and Liu (1988). We generate the covariance of 1 2 3
,x x and x

 using the multiple 

linear regression model based on the combination of different regression condition. Here, we follow a 

similar procedure used by Rana et al. (2012), The considered design for this experiment involved a 

regression model with intercept and covariance values. Suppose we consider the following linear model. 

Where  

 

0 1 1 2 2 3 3i i i i i t
y x x x     = + + + +

      (1) 

 

where 
1,2,...,i n=

, the covariance values 1 2 3
,x x and x

 were generated using the following equation   

 
2(1 )

ij ij ij
x sqrt z z = −  + 

             (2)  

 

where 
1,2,..., , 1,2,3i n j= =

 and the parameter ij
z

 are the standard normal random numbers 

generated by the normal distribution and residuals is drawn from normal distribution with mean zero 

and variance 1.When no outliers was considered and for all i  under heteroscedasticity  
1 =

. The data 

is generated using 0 1 2 3
1   = = = =

. Next, we start contamination of the data. Randomly we replace 

some good observations of i.i.d. normal errors
'

t
s

. Now our main interest is to obtain a regression 

design that includes multicollinearity, heteroscedasticity and outliers in the model. We study the 

performance of each estimator according to severity of multicollinearity by using different degree of 

correlation 


 between the regressor variables. At the same time, the performance of the estimators 

were observed by increase percentage of outliers and the considered percentage of outliers are 0%, 

10%, and 20% respectively. We form the heteroscedasticity generating procedure following Cribari-

Neto (2004), Rana et al. (2012) and Rasheed et al. (2015) effort, where  

 
2

1
exp(2.6 )

i i
x =

        (4)  

 

is used to generate the heteroscedasticity. Now the regression model of contaminated heteroscedastic 

is given as 

 

0 1 2 3 ( .)
1 2 3

i t Cont
y x x x i     = + + + +

         (5)   

 

 We first considered the sample size of n = 20 observations and apply the principal component 

analysis to estimate the component that contain all the information of the original data. In this design 

these components are then replicated five times to generate samples of n = 100, respectively. Here, 

we followed a similar procedure proposed by Rana et al. 2012 who utilized the replication of covariate 
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values to create large samples. For each simulated data set, with different sample size we fit the linear 

regression model. 

 

The Latent Root Regression (LRR) 

 

The latent root regression utilizes the latent roots and latent vectors of the correlation matrix of the 

dependent and independent variables, denoted as A. The latent roots, j  and latent vectors,j j of A’A 

are defined by: 

 

Kj

IAAandIAA jj

T

j

T

,..,.1,0

0)_(0|_|

=

=−=− 

 
Analysis of these latent roots and latent vectors enables one to: 

• Identify near singularities in X 

• Determine whether the near singularities have predictive value 

• Obtain the modified least squares estimates of parameters which adjust for non-predictive near 

singularities 

The OLS estimator in (2) can also be expressed in terms of these latent roots and latent vectors: 
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and the residual sum of squares given by:     
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Rana et al., 2012 suggested small latent roots and latent vectors in which 
3.0j and 

1.0|| oj
| 

which indicates the presence of non-predictive singularities. But later, they discovered that a tighter cut-

off value of 
2.0j and 

1.0|| oj
could improve the analysis.  

 

Suppose now that the latent vectors 
1.0,, 11 −po 

 correspond to non-predictive near 

singularities. The non-predictive multicollinearity is eliminated and only the predictive are retained. The 

above OLS estimator can be adjusted by setting 
.0... 110 ==== −p
 Then the modified least 

squares coefficients are: 
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 If all of the principal components for the correlation matrix of the dependent and independent 

variables are predictive, then none of the j a 's equal zero, the latent root estimator and the OLS 

estimator will be identical. It is well-known that the variance covariance matrix for the OLS estimator is 

given by 
12 )( −XX
and its trace (sum of diagonals) represents it unweight mean squared error:  
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12 )()ˆ( −= XXtrMSE 
   

 

or in terms of latent roots of X’X,  


=

−=
P

J

jeMSE
1

12)ˆ( 

 

je
 are the latent root of X’X and are ordered such that keee  ...21 . For a near multicollinearity 

situation, approaches 0 and (6) implies that 
)ˆ(MSE

approaches infinity, that is ˆb is subjected to very 

large variance. This inflation causes the estimation becomes less accurate and less precise, thus 

unstable. 

 

Wild Bootstrap Based on Wu’s 

 

This bootstrap procedure has been suggested by Wu (1986) and Beran (1986) for the situation when 

the additional assumption of 
E(ε | X ) = 0

i i  is appropriate. The bootstrapping procedure of classical OLS 

bootstrap is slightly modified to estimate t* value. This is performed by drawing a random sample with 

replacement from an auxiliary distribution that has mean zero and variance one and attached with the 

fitted values of the model to obtain a fixed X-bootstrap of (4). Another alternative for the Wu’s bootstrap 

procedure, the value of t* can be obtained with replacement using the following procedures. 

 

Step 1. Fit an OLS regression model to the original sample of observations to get 
̂

the fitted values of  

ˆˆ ( , )y f x
i i

=
        (6)          

Step 2. Use the fitted values to compute the residuals of   
ˆ

i i iy y = −
 of the fitted model. 

Step 3. Generate the random sample of t* with replacement from 

R

i
a

 observations. where  

ˆ ˆ

1 2ˆ ˆ( )

1

i ia
i n

n i i
i

 

 

−
=

− −
= ,       

 

i = 1, 2, 3… n.  and

1
ˆ ˆ

1

n
n ii

i
 

−
=
= .  

 

The regression model that has intercept term î  is usually approximately equals to zero Wu (1986).  

Step 4. Obtained a the random sample of t* from  aR    can be used to multiply it with 

-1

)
ˆ (1- )i iih

  to 

obtained a 
*b

ty
 and  iih T T -1

i i= x (x x) x
  is the i-th leverage where    

 

* * -1

)
ˆ ˆ( , ) (1- )b

t i ols i i iiy f x t h = +
      (7) 

 

*b

t
y

 is the new bootstrap response variable that can be used to obtained the first wild bootstrap 

coefficients and 
*̂
is the least squares estimate based on the resample, 

ˆ * T -1 T *
β = (x x) x y

                                                                                                                                                                 

Step 5. Regress the obtained bootstrapped values of 
*b

iy
 on the fixed x to obtain

*
β

. 
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Step 6. Repeat the procedures of Step 3 and Step 4 for k times to get 
ˆ ˆ*1 *k
β , ...,β

where K is the number 

of bootstrap replicates. This procedure is a nonparametric application of Wu’s bootstrap sampling 

scheme, since the resampling is performed from the empirical distribution function of the normalized 

residuals. This method is referring as Wu’s bootstrap sample and denote BootWu. 

Following the idea of wild bootstrap of Wu (1986) and Beran (1986). Liu (1988) provide a suggestion 

by slightly modifying the procedure of generating the t* value. The t* is randomly selected from auxiliary 

distribution that has third central moment equal to one, In addition with zero mean and unit variance. 

She has shown that when this is the case, Wu.’s shares the usual second order asymptotic properties 

of the classical bootstrap. put differently, the addition of the restriction that the third central moment 

equal to one and Such kind of selection is used to correct the skewness term in the edge worth 

expansion of the sampling distribution of 
ˆI β
'

, where I  is an n-vector of ones. The procedure of Liu 

bootstrap (1988) can be performed by drawing a random sample of t* in the following ways. To generate 

the bootstrap sample, here we considered three construction of t* for the bootstrap regression model. 

If one assumes that t* put mass only on two-point distribution, then   

 

Step1. 

*
( ), 1, 2, ..., n, and S , , ...,

1 2
t S E S i S S

i i n
= − =

 are independently and identically distributed normal 

distribution having density of 

1
( ) [ /( 1)!]

( 0)
ax

g x x e I
z x

 
 

− −
= −

     and  

  =2 and   = 4. 

Step2. 

*
( ) ( ) 1, 2, ...,t N M E N E M i n

i i i i i
= − =

 where 
, , ...,

1 2
N N N

n  are independently and identically  

distributed normal distribution with mean (1/2)( 17/6)+ 1/6  and variance 1/ 2 . 
, , ...,

1 2
M M M

n  are 

also i.i.d. normally distribution with mean  (1/ 2)( 17/6) 1/6−  and has variance  1/ 2 .   
'N s

i  and  
'M s

i   

are independent.   

Step 3 

*
( / 2)( / 2)

1 ,1 2 ,2 1 2
t V V

i i
   = + + −

where the  
'

,
V s
i j

 are independent N(0,1)- distributed 

variables and where 

1/ 2
(3 / 4 17 /12)

1
 = +

and 

1/ 2
(3 / 4 17 /12)

2
 = −

 respectively. 

However, the three bootstrap procedures will generate the random sample of 

*
t
i  Liu (1988).  Both 

procedures will produce third central moment equals to one. Rana and Midi (2012) suggested the most 

popular choice for the distribution of 

*
t
i  is the second procedure as it always gives better results than 

the remaining one. Following Rana Rano [13], this research will make used of the second method for 

generating its bootstrap sample of

*
t
i . The bootstrap procedure is called liu bootstrap BootLiu. 

 

Robust Wild Bootstrap MM-Estimator 

They consider the idea of the classical bootstrap procedure based on Wu’s (1986), Liu (1988) and 

Beran (1986). Another alternative of modified wild bootstrap technique which is more robust was 

introduced to remedy the problem of heteroscedasticity and outliers Rana and Midi (2012). This 

bootstrap method was based on MM- estimator procedure. The quantity of t* is obtained from equation 

(6) that is a robust normalized residuals based on median and normalized median absolute deviation 

instead of mean and standard deviation. The bootstrap procedure of MM-estimator is summarized as 

follows                            
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 Step 1. Obtain the fitted model of i i i
y x = +

using MM-estimator of the sample data, to estimate 

the robust parameter coefficient of 
ˆ

MM
β

. 

Step 2. Estimate the residuals of the MM-estimator of
ˆMM

i i i
y y = −

. Assign the estimated weight to 

each MM- residuals, 

MM

i


 where the weight will equal to, 

 

1 /

/( / ) /

MMif cMMi
w

ii MM MMc if cMM MMi i

 

   




= 
 
  (8)                                                                   

 Where c is the turning point c is an arbitrary constant which is usually chosen between 2 and 3                           

Step 3. The estimate of the final weighted residuals for the robust MM-estimate of 

MM

i


 is obtained by 

multiplying the weight with the residuals of MM-estimator of step 2. 

Step 4. Obtain the bootstrap sample of

*
( , )y X

i ,  and 

*
* ˆ

(1 )

WMMti iy x
i MM hii


= +

−
           (9)   

                          

where the estimate of t* is the required random sample obtained from step 4. 

Step5. Apply the OLS estimation procedure on the bootstrap sample of

*( , )
i

y X
. This estimate is 

denoted by  

' ' *ˆR * -1
β = (X X) X y

               (10) 

Step 6. Repeat step 4 and 5 for B times, where B is the required number of bootstrap replicates. The 

bootstrap procedure obtained from these techniques is called Robust Wild Bootstrap MM-estimator 

based on Wu’s and Liu i.e (RBootWu) and (RBootLiu). 

 

 Robust Latent with Wild Bootstrap 

 

Robust latent root regression incorporates resistance in the ordinary latent root regression. This is done 

by imposing weight to the correlation matrix of the dependent and independent variables, A’A. The pair 

wise Pearson correlation coefficient for the two variables is defined as: 

 

 



=

=

−−

−−
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i

ii

n

i
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XXYY

XXYY
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1

22
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 where n

Y

Y

n

i

i
=

=
1

and n

X

X

n

i

i
=

=
1

 

 

 The correlation coefficient, r in given above is based on sample means X  andY , respectively, 

which are known to be very sensitive to the presence of outliers. As an alternative, a robust location 

estimates which are less affected by outliers are proposed to replace X  andY , in r. Following the 

idea of Mokhtar (1986), we propose using the weighted correlation coefficient between the dependent 

and the independent variables. We may use the weight from the final step of any robust estimators, but 

in this study the weight is confined to the final step of the robust M-estimation. The pair wise correlation 

coefficient in Eq. 9 is modified to obtain a weighted pair wise correlation coefficient, as follows.  
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 In this study, we have chosen the Hampel and Andrews sin psi function in the M estimation 

technique. The robust weighted correlation matrix for dependent and independent can be formulated. 

Based on this weighted correlation matrix, the latent roots and the latent vectors are computed, and the 

latent root routines are then incorporated to estimate the parameters of the model. We call this method 

the Latent Root- M based Regression (LRMB) because here we have employed the weight of the M-

estimator in the weighted correlation matrix. We then obtained the estimate the weighted residuals of 

GM-estimator with MM-estimator as initial estimator of the GM-estimator using the Latin variables.  

 However, other procedure of Rboot for both Wu’s and Liu will remain the same. In addition, 

because of the presence of heteroscedasticity in the data, we have now modified the bootstrap schemes 

that will produce an efficient estimate of the regression parameter for a situation when outliers, 

multicollinearity and heteroscedasticity error variance are presence in the data. This modified bootstrap 

method can also be used to obtain the standard error which is asymptotically corrected under 

heteroscedasticity of unknown form. The bootstrap procedure obtained from Wu’s procedure is called 

Hampel Robust Latent root with Wild Bootstrap GM -estimator based on Wu’s or HRWLTBootWuGM 

and bootstrap procedure obtained from Liu’s procedure is called Hampel Robust Latent root with Wild 

Bootstrap GM -estimator based on Liu’s or HRWLRBootLiuGM. This procedure is applied Andrews Psi 

function and the procedure in this case is called Andrews Robust Latent root with Wild Bootstrap GM -

estimator based on Wu’s or ARWLTBootWuGM and bootstrap procedure obtained from Liu’s procedure 

is called Andrews Robust Latent root with Wild Bootstrap GM -estimator based on Liu’s or 

ARWLRBootLiuGM. 

  

Evaluation of the Bootstrap Method 

To evaluate the performance of different robust wild bootstrap procedure used in this paper, we estimate 

the bias, RMSE and standard error. The best results from the estimate are the one that produced the 

smallest bias, RMSE and standard error. We estimate the bias, RMSE and standard error by employing 

the formulae of these estimates. The estimate of GM-estimator is used as the initial estimate for the 

estimation of these regression models. The procedures continue to further perform the bootstrap 

estimate of the bias, RMSE and standard error of the HRWLRBootWuGM, ARWLTBootWuGM, 

ARWLTBootLiuGM and HWLRBootLiuGM estimate. The numerical calculation of BootWu, BootLiu and 

the RBootWu and RBootLiu is to be Perform the same procedure.  

 

Example using Real Data Sets 

This section will discuss the application of the RWLRBootWu. and RLRBootLiuGM methods on real 

data by considering the numerical example that will show the advantages of the proposed method with 

respect to the other estimators, BootWu, BootLiu, RBootWu and RBootLiu estimator in the presence of 

outlier’s multicollinearity and heteroscedasticity error variance. The cigarette data is taken from Coultas 

et al. (1993).  The dataset contains measurements of weight and tar, nicotine, and carbon monoxide 

(CO) content for 25 brands of cigarettes. We checked whether the data set contain any outliers or not 
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using the LTS residuals. It was discovered that five observations (about 20% of the sample of size 25) 

identifies as outliers.  

 We apply variance inflation factor (VIF) to test for the presence of multicollinearity in the data. 

The results disclosed that there is high correlation between the covariates. On the other hand, the 

modified robust Goldfeld-Quadl test is used for heteroscedasticity test and the null hypothesis is 

rejected which indicated that there is heteroscedasticity in the data. The wild bootstrap, robust wild 

bootstrap and robust LRwith wild bootstrap methods were then applied to the data. The results obtain 

are based on 1000 bootstrap replicate and are presented in Table 1. The standard errors, bias and 

RMSE of the parameter estimates from wild bootstrap, robust wild bootstrap and robust latent root with 

wild bootstrap methods for both Wu’s and Liu are presented in Table 1. Based on the results, it is 

interesting to observed both the standard error bias and RMSE of the wild bootstrap method tend to be 

larger followed by robust wild bootstrap. The HRWLRBootWu and HRWLRBootLiu methods has the 

smallest standard errors with HRWLRBootLiu as the best. 

 

Table 1: The Parameter estimate, Standard error, Bias and RMSE of non-robust wild bootstrap, 

robust wild bootstrap and robust latent root with wild bootstrap of 25 collection of cigarette data 

 

 This cannot evidence up as our conclusion yet, only by investigating the results obtain from real 

data, but we can make a reasonable interpretation that the robust wild bootstrap and classical wild 

bootstrap are affected by multicollinearity and outliers.  

 

Examples using Simulated Data Sets 

The example of real data sets obtains in section 5 have shown that the RWLRBootWu. and 

RWLRBootLiu.  coefficient estimates are generally found to be the most stable robust bootstrap 

estimates with the smallest RMSE, bias and standard error. This section will further investigate the 

robustness of our proposed HRWLRBootWu, ARWLRBootWu, HRWLRBootLiu and ARWLRBootLiu 

methods by performing a simulation using a multiple linear regression model of three regressor 

variables. However, Table 2 presents simulation results of the bias, RMSE and standard error of the 

parameter estimates obtain from different degree of multicollinearity and percentage of outliers. As we 

can witness from the tables, the performance of BootWu and BootLiu estimator is poor since the 

standard error is large when compared with the BootWu, RBootLiu, RWLRBootWu. and  

 RWLRBootLiu at 10% level of contamination. The effect become very serious as the percentage 

of outliers is increases to 20%. The RBootWu and RBootLiu estimator without latent root techniques 

shows the worst performance since the standard error is larger than the proposed methods. On the 

other hand, incorporation of the Latent root techniques reduces the standard error of values of the 

HRWLRBootWu, ARWLRBootWu, HRWLRBootLiu and ARWLRBootLiu. estimators. It is worst to 

mention  when the sample size, percentage of outliers and the degree of multicollinearity is inreases to 

a sample size n = 100,  both the BootWu and BootLiu, RBootWu and RBootLiu estimator shows the 

Par.  
Estm.\ 

BootWu BootLiu RBootWu  RBootLiu  HRWLR 
BootWu.   

HRWLR 
BootLiu.  

ARWLR 
BootWu.   

ARWLR 
BootLiu.  

Estimate 11.87 11.874 12.952 12.952 3.1633 2.602 3.1863 2.625 

S.E 3.6877 3.5129 1.1587 0.8014 0.0077 0.0066 0.0307 0.0296 

Bias -4.1698 1.9157 -1.1885 -0.3058 -0.0045 -0.0013 0.0185 0.0217 

RMSE 5.5665 4.0013 1.6598 0.8578 0.0089 0.0067 0.0319 0.0297 

Estimate -15.933 -15.97 -17.075 -16.923 0.7602 0.9581 0.7832 0.9811 

S.E 0.2665 0.2469 0.1477 0.1290 0.0323 0.0322 0.0553 0.0552 

Bias 0.1418 -0.216 0.1847 0.0076 -0.0396 0.0040 -0.0166 0.027 

RMSE 0.3019 0.3281 0.2365 0.1292 0.0511 0.0324 0.0741 0.0554 

Estimate -10.786 -10.81 -4.1841 -4.1112 0.6411 -2.3441 0.6641 -2.3211 

S.E 4.3248 4.0302 1.7351 1.3688 0.0447 0.0390 0.0677 0.062 

Bias -0.7468 4.7028 -2.4218 0.2219 -0.0090 0.0170 0.014 0.04 

RMSE 4.3888 6.1935 2.9792 1.3867 0.0456 0.0425 0.0686 0.0655 

Estimate 11.7273 11.791 47.171 47.764 -0.8764 0.3854 -0.8534 0.4084 

S.E 4.1282 4.022 1.2220 0.8707 0.2360 0.2251 0.259 0.2481 

Bias 3.1917 -3.5044 1.4908 -0.0539 0.0297 -0.0366 0.0527 -0.0136 

RMSE 5.2181 5.3345 1.9277 0.8723 0.2379 0.2281 0.2609 0.2511 



Rasheed et al. (2020) Proc. Sci. Math. 1:75-86 

 84 

worst performance since the standard error is very high when compared with the proposed methods. 

Results from the table also describe the estimate of the bias and RMSE for both methods. The propose 

methods seems to be the most resistant estimator towards the presence of 10% outliers and 0.50 level 

of multicollinearity, by producing the smallest values of bias and RMSE as compared with the other 

methods. Furthermore, when the percentage of outliers is increases to 20% and the degree of 

multicollinearity is 0.99, it is reported that the HRWLRBootWu, 

 

Table 2: Bias, RMSE and standard error of n = 20 and n = 100 (bold) for 0% level of contaminated data 

based on non- robust wild bootstrap, robust wild bootstrap and robust latent root with wild bootstrap 

from normal distribution with 3 regressor variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ARWLRBootWu, HRWLRBootLiu and ARWLRBootLiu estimators becomes most superior, by 

producing the lowest values of bias and RMSE. The performance of each method is described in Table 

Coef.  

   Method 
0.2 =  0.5 =  0.99 =  

 Bias RMSE SE Bias RMSE SE Bias RMSE SE 

0  BootWu -1.297 3.236 2.965 -1.703 1.741 0.364 2.235 3.856 3.143 

  -1.113 1.646 1.213 -0.743 1.182 0.920 0.160 1.059 0.677 

 BootLiu 0.249 1.163 1.136 -0.004 0.214 0.214 0.277 0.788 0.737 

  -0.293 1.221 1.185 -0.188 1.751 1.741 -0.048 0.695 1.058 

 RBootWu -0.003 0.445 0.445 0.001 0.476 0.476 -0.461 0.713 0.543 

  0.276 0.350 0.216 0.037 0.165 0.161 0.286 0.379 0.250 

 RBootLiu -0.368 0.460 0.275 -0.014 0.299 0.299 -0.186 0.224 0.124 

  0.016 0.036 0.032 -0.026 0.060 0.055 -0.019 0.086 0.084 

 RWLRBootWu.  0.037 0.051 0.035 0.010 0.037 0.035 -0.007 0.048 0.048 

  -0.002 0.014 0.018 0.000 0.034 0.067 0.000 0.041 0.053 

 RWLRBootLiu.   0.004 0.016 0.015 0.009 0.018 0.016 -0.009 0.013 0.009 

  -0.002 0.018 0.014 -0.009 0.067 0.034 -0.001 0.053 0.041 

1  BootWu -3.193 4.501 3.173 -4.744 4.804 0.758 -3.352 10.848 10.317 

  -2.681 2.943 1.215 -1.580 1.791 0.844 1.318 9.955 3.271 

 BootLiu 2.354 2.583 1.062 0.339 0.402 0.216 -1.670 4.612 4.299 

  0.074 1.344 1.342 0.591 1.997 1.907 -8.126 3.527 5.750 

 RBootWu -0.096 0.532 0.523 -0.170 0.577 0.551 -1.335 2.574 2.200 

  0.370 0.413 0.185 0.023 0.111 0.108 -0.636 0.916 0.660 

 RBootLiu -0.584 0.644 0.270 -0.105 0.232 0.207 -1.457 1.565 0.572 

  0.002 0.030 0.030 -0.035 0.059 0.047 0.073 0.546 0.542 

 HRWLRBootWu.  -0.048 0.054 0.025 -0.002 0.030 0.030 0.002 0.011 0.011 

  0.000 0.003 0.003 0.000 0.001 0.002 0.000 0.002 0.000 

 HRWLRBootLi -0.003 0.011 0.011 -0.011 0.015 0.011 -0.002 0.005 0.004 

  -0.006 0.006 0.003 0.002 0.003 0.001 0.000 0.000 0.002 

 ARWLRBootWu. 0.360 0.056 0.109 0.105 0.076 0.100 0.100 0.081 0.401 

  0.038 0.078 0.080 0.076 0.068 0.080 0.081 0.073 0.079 

 ARWLRBootLiu. 0.065 0.076 0.080 0.079 0.069 0.080 0.079 0.099 0.115 

  0.038 0.090 0.090 0.078 0.071 0.081 0.077 0.065 0.083 

2  BootWu 5.602 6.269 2.815 9.237 9.258 0.628 12.603 25.104 21.712 

  -1.496 1.771 0.948 -0.714 1.031 0.743 -0.969 12.371 3.188 

 BootLiu -0.521 1.088 0.955 -0.210 0.291 0.201 9.688 10.327 3.577 

  1.052 1.579 1.178 2.090 2.788 1.845 10.859 3.332 5.927 

 RBootWu 0.021 0.206 0.205 -0.193 0.352 0.294 -1.602 3.429 3.031 

  -0.016 0.194 0.193 -0.028 0.141 0.138 1.832 2.081 0.988 

 RBootLiu -0.154 0.284 0.239 -0.184 0.263 0.188 0.873 1.012 0.512 

  -0.011 0.016 0.012 0.000 0.023 0.023 0.419 0.502 0.277 

 HRWLRBootWu.  -0.017 0.036 0.032 0.003 0.027 0.027 0.008 0.328 0.328 

  0.005 0.007 0.003 -0.005 0.007 0.008 0.000 0.006 0.006 

 HWLRBootLiu.   0.003 0.007 0.006 -0.004 0.007 0.006 0.026 0.042 0.033 

  0.017 0.017 0.005 -0.002 0.008 0.004 -0.008 0.010 0.006 

 ARWLRBootWu.  0.051 0.087 0.254 0.274 0.138 -0.010 0.185 0.166 0.077 

  0.039 0.077 0.079 0.080 0.081 0.078 0.080 0.082 0.078 

 ARWLRBootLiu 0.051 0.086 0.084 0.088 0.097 0.089 0.099 0.086 0.075 

  0.043 0.075 0.075 0.082 0.080 0.077 0.082 0.080 0.082 

3  BootWu -2.894 5.058 4.148 -3.234 3.252 0.338 -6.539 15.868 14.459 

  -0.356 1.795 1.760 0.662 1.382 1.213 -1.017 6.315 4.539 

 BootLiu 2.423 2.811 1.425 0.561 0.641 0.310 -9.899 10.947 4.673 

  -0.897 1.897 1.672 -0.811 2.622 2.493 -1.483 4.651 6.138 

 RBootWu -0.102 0.456 0.445 -0.690 0.878 0.543 5.595 7.128 4.416 

  -0.219 0.257 0.135 0.041 0.142 0.136 -0.808 1.071 0.704 

 RBootLiu -0.476 0.598 0.362 -0.154 0.305 0.263 0.287 0.709 0.649 

  -0.032 0.036 0.016 0.013 0.022 0.018 -0.466 0.694 0.515 

 HRWLRBootWu.  -0.048 0.058 0.033 0.000 0.040 0.040 -0.009 0.341 0.341 

  0.002 0.012 0.014 -0.009 0.011 0.006 0.000 0.008 0.006 

 HRWLRBootLi 0.000 0.011 0.011 -0.002 0.015 0.015 0.081 0.127 0.098 

  0.000 0.014 0.012 0.000 0.006 0.006 0.000 0.006 0.008 

 ARWLRBootWu.  0.043 0.025 0.127 0.098 0.071 0.103 0.103 0.075 0.084 

  0.032 0.073 0.076 0.076 0.073 0.074 0.075 0.073 0.075 

 ARWLRBootL 0.036 0.070 0.084 0.084 0.062 0.088 0.084 0.071 0.078 

  0.034 0.067 0.079 0.076 0.075 0.076 0.074 0.073 0.073 
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2- Table 4, in which each method is evaluated based on the lowest bias, RMSE and Standard error 

values. Out of all methods, the HRWLRBootWu, ARWLRBootWu, HRWLRBootLiu and ARWLRBootLiu 

are the most robust and resistance toward the presence of multicollinearity and multiple outliers. 

 

Conclusion 

The presence of multicollinearity, outliers and heteroscedasticity error variance required a 

comprehensive and details investigation not only for usual regression analysis but also for principal 

component and wild bootstrap procedures. In the present paper, we have introduced a new wild 

bootstrap procedure based on Wu and Liu called HRWLRBootWu, ARWLRBootWu, HRWLRBootLiu 

and ARWLRBootLiu, for the regression analysis that will provide the enhancement protection against 

data with multiple problems in order to get numerically stable results. We present a numerical example 

and simulation studies to evaluate the performance of our proposed methods. The results obtain from 

the real data and simulated data disclosed that the HRWLRBootWu, ARWLRBootWu, HRWLRBootLiu 

and ARWLRBootLiu are better choice when compared with the BootWu, BootLiu, RBootWu and 

RBootLiu particularly, when the data contain multicollinearity, heteroscedasticity and outliers. The 

performance of our proposed robust latent root with wild bootstrap methods using the weighted function 

of Hampel and Andrews function are robust alternative to other wild bootstrap and robust wild bootstrap 

procedures. 
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