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Abstract This research aims to study the basic approach of the mathematical model 

implemented on the spread of COVID-19 using the Susceptible-Exposed-Infected-

Recovered SEIR model. The equilibrium point considered in this study is the disease-free 

equilibrium point (DFEP), and its stability was investigated. The analysis of the model uses 

the Next-Generation Matrix method to obtain the basic reproduction number, R0 which acts 

as a threshold determining whether an infectious disease will die out quickly or lead to an 

epidemic. Lastly, the simulation of the SEIR model was carried out using MATLAB. The 

values of parameters were adjusted to see how it affects the outcome. 
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1 Introduction 
 

Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered 

coronavirus. COVID-19 is a highly transmittable and pathogenic viral infection caused by severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China and 

spread worldwide [1]. As of June 25, 2020, more than 9.46 million people in more than 188 

countries and territories tested positive for COVID-19, resulting in 483,247 deaths [2]. As of April 

17, 2020, there were 5,251 COVID-19 cases, including 86 deaths and 2,967 cases of recovery 

reported by the Ministry of Health (MOH) in Malaysia. Selangor had recorded the highest number 

of confirmed COVID-19 cases (1,338) to date (April 17, 2020) [2].  

 World Health Organization (WHO) declared a pandemic on March 11, which has spread 

worldwide [3]. The preliminary guidelines were published on the WHO website with public 

health care to deal with the pandemic. Countries that were significantly affected by this pandemic 

are Italy and the USA [4]. Almost all national governments forced people to stay at home and 

self-isolation. As a result, this disease is growing fast in many countries around the world. The 

most widely used strategy to control the pandemic is social distancing, self-quarantine, and 

wearing a facemask. COVID-19 symptoms usually manifest as fever, dry cough, and tiredness. 

People who are highly vulnerable to COVID-19 are the elderly, young children, pregnant women, 

and people with chronic diseases [2].  

 Due to the disease becoming more severe, understanding the dynamics transmission of 

COVID-19 disease can help prevent and control this epidemic’s spreading. Therefore, 

mathematical models play a significant role in understanding COVID-19 transmission 
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mechanisms, structures, and features [5]. Currently, COVID-19 is of great concern to researchers, 

governments, and all people because of the high infection rate and the significant number of 

deaths. The Susceptible–Infectious–Recovered (SIR) model is widely used to estimate disease 

transmission, recovery, deaths, and other significant parameters separately for various countries 

for different, specific regions of high to low reported cases COVID-19 [5]. In addition, 

mathematical modelling on the spread of COVID-19 has been carried out by [6], which using the 

Susceptible–Exposed-Infectious–Recovered (SEIR) model and vaccination as parameters in the 

model. The basic reproduction number, R0, will be calculated using the Next-Generation Matrix 

method. When R0 > 1, The epidemic increases exponentially, which means that one infected 

individual infects more than one individual on average. Meanwhile, when R0 < 1 shows that the 

disease will surely die out without affecting a large share of the population. Therefore, the 

research is done in the hope that the SEIR model can be used as a reference model for COVID-

19 spread. 

  

2 Formulation of the Model  
 

2.1 SEIR Model 

 

This section discussed the derivation of the extended SIR model for the pandemic of COVID-19. 

The extended SIR model is called as Suspected-Exposed-Infected-Recovered (SEIR). The SEIR 

model derivation and the stability analysis of the model will be carried out throughout this section. 

The SEIR model on the spread of COVID-19 is divided into four compartments, namely Suspected 

(S), Exposed (E), Infected (I), and Recovered (R). N is the total population size. Individuals in an 

infected class can cause other individuals to become infected. The SEIR model is presented 

schematically in Figure 1. The model is based on the work of Annas S. et al. [6]. 

 

 

Based on the schematic diagram in Figure 1, the rate of change in the number of people Suspected, 

Exposed, Infected, and Recovered over time in the SEIR mathematical model of the spread of 

COVID-19 can be interpreted as follows: 

 

 
( ) ,

dS
I v S

dt
  = − + +  (1) 

 
( ) ,

dE
IS E

dt
  = − +  (2) 

Figure 1: Schematic diagram of the SEIR model transmission for COVID-19. 
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Definition of parameters of SEIR model for COVID-19 is presented in Table 1. 

 

Table 1: Definition of parameters 

 

 
 

 

 

 

 

 

3     Stability Analysis of SEIR Model 
 

3.1 Equilibrium Points 

 

The equilibrium points that will be considered in this study are the disease-free equilibrium point 

(DFEP) to produce R0 that will be used to determine the spread of pandemic COVID-19. Therefore, 

the endemic equilibrium point (EEP) is omitted in this work. To determine the equilibrium points, 

each equation in Equation (1)-(4) must be equal to zero.  

 

3.1.1 Disease-free equilibrium point (DFEP) 

 

The disease-free equilibrium point is where there is no spread of COVID-19 in which E = I = 0. 

Hence, the DFEP are as follow: 

0 0 0 0( , , , ) ,0,0,
( ) ( )

v
S E I R

v v



 

 
=  

+ + 
. 

 

3.2 Stability Analysis of the model at DFEP 

 

To determine the stability analysis of the equilibrium point at DFEP, the SEIR model needs to be 

linearized by using the Jacobian matrix. Based on Equation (1)-(4), the Jacobian matrix is given 

as: 

 

 ( )

( )

0 0

( ) 0

0 0

0

i

I v S

I S
J

v

  

   

   

 

− + + 
 

− + =
 − + +
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 (5) 

 

Parameters Definitions 

  The birth/death rate 

  The transfer rate between ( )S t and ( )E t  

  The transfer rate between ( )E t and ( )I t  

i  The disease-induced death rate 

  The recovery rate 

v  Vaccine of suspected population 
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The eigenvalues are determined, and the characteristic equation is as follows: 

 

 4 3 2( ) ( ( )( ) )

(( )( ) ( )) 0

A B C D AB A B C D CD E

A B CD E AB C D ABCD ABE

  



+ + + + + + + + + −

+ + − + + + − =
 (6) 

 

Where, ( ), ( ), ( ), iA B v C D      = = + = + = + +  and 
( )

E
v




=

+
. 

 

The number of possible negative real roots of Equation (6) depends on the signs of coefficients. 

To analyse this, we use the Descartes’ rule of signs [7] on the characteristic polynomial below: 

 

 
4 3 2

1 2 3 4 5( ) ,P L L L L L    = + + + +  (7) 

 

where,  

1

2

3

4

5

1,

,

( )( ) ,

( )( ) ( ),

.

L

L A B C D

L AB A B C D CD E

L A B CD E AB C D

L ABCD ABE

=

= + + +

= + + + + −

= + − + +

= −

 

 

 From the Descartes’ rule of signs, the number of negative real zeros of P(λ) is either equal 

to the number of changes in sign of P(-λ) or less than this by an even number. Therefore, the 

characteristic polynomial (7) is multiplied by -1: 
4 3 2

1 2 3 4 5( )P L L L L L    − = − + − +  

The number of variations in P(-λ) is four. Hence, the characteristic polynomial has four negative 

roots. The disease-free equilibrium point of the model is locally asymptotically stable whenever 

R0 < 1.  

 

3.3 Basic Reproduction Number, R0 

 

The R0 of the SEIR model is determined using the Next-Generation Matrix method [6]. The DFEP 

for the model is utilized to complete the calculation of R0. Matrix F represents the rate of 

appearance of new infections in different compartments, while matrix V represents the rate of 

transfer of individuals from one compartment to another. 

 First, we need to regroup the system of ODEs into disease classes and non-disease classes. 

However, only the disease class were used to find matrix F and V. Therefore, matrix F and V are 

computed as follow: 
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0

0 0

0

i

v





 

   

 
 +=
 
 
 

− − 
=  

− − − 

F

V

 

 

Next, finding the inverse of V. 

1

0
( )( )

1

( )( ) ( )

i
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−

− − − 
 + + +
 =
 − −
 

+ + + + + 

V  

 

Lastly, matrix FV-1 is computed. 

 

1 ( )( )( ) ( )( )

0 0

i iv v

 

         −

− − 
 + + + + + + +=
 
 
 

FV  

 

The basic reproduction number, R0, is the dominant eigenvalue of matrix FV-1 [6]. Therefore, 

 

0
( )( )( )i

R
v



     
=

+ + + +
. 

 

The R₀ of the system (1)-(4) is locally asymptotically stable if R₀ < 1 and unstable if R₀ > 1. 

 

4          Numerical Simulation of SEIR Model 
 

The simulation of the SEIR model will be obtained using MATLAB. Several simulations are 

carried out by adjusting the parameters to understand the transmission dynamics of the COVID-

19 outbreak. The initial condition are assumed to be S(0) = 1000000, E(0) = 20000, I(0)= 10000, 

R(0) =15000 and initial parameter values of the model used in this simulation are presented in 

Table 2. These values are chosen randomly for the sake of example. 

 

Table 2: Parameter values of SEIR model 

 

  

 

 

 

 

 

Parameter Definition 
Estimated 

Value 
  The birth/death rate 0.00625 

  The infection rate 0.75 

  The transfer rate between E and I 0.333 

i  The disease-induced death rate 0.006 

  The recovery rate 0.125 
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 In this simulation, the vaccination program for all individuals will also be considered, 

which will be administered in phases. As a result, we would consider 30%, 50%, and 90% of the 

population in Malaysia to monitor the vaccine’s effectiveness. However, the initial value of v is 

regarded as zero because we assume there is no vaccination plan yet.  

 

4.1 Changes in   

 
The infection rate α will be changed to observe the spread of COVID-19 in a population. The 

infection rate varies from 0.75 to 0.55 and then rises to 0.85. Figures 2-5 display the curves for 

each class separately in each figure. The following results are analysed by comparing the curves 

to the base model. 

 In particular, we can see that as the infection rate increases, the graph flattens out 

earlier (refer to Figure 2) compared to the initial value of α=0.75. Thus, if the α value 

increases, the population of susceptible individuals will decrease over time. Based on 

Equation (2), we can see that the relation between the rate of change of exposed population 

and α is directly proportional. The curve in Figure 3 peaked at α=0.55 on day 18, while at 

α=0.85, the curve peaked earlier, which is at day 12. Next, from Figure 4, when the α value rises, 

so does the rate of change among those infected with the disease. For all α values, we can see a 

difference at the peak of the curves. Then I curve with a higher α value flattens earlier than the 

curve with a lower α value. Figure 5 showed when α increased, and then the Recovered population 

Figure 2: Variation in the number of S population Figure 3: Variation in the number of E population 

Figure 4: Variation in the number of I population Figure 5: Variation in the number of R population 
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curve increased faster. When the value of α is reduced, the population of recovered individuals 

curve grows a little slower.  

 

4.2 Changes in   

The rate at which individuals transition from the exposed to the infected classes, β increases from 

0.333 to 0.6 and decreases to 0.1. The result obtained is as in the following figures. Figures 6 - 

Figure 9 represent the population curve for each class. 

 In Figures 6, the S curves for β=0.6 flattens out earlier than the curve for β=0.333. Hence, 

the susceptible population is decreasing when β increases. All E curves in Figure 7 shows a 

different pattern that describes the changes. If the value of β rises (β=0.6), the curve peaks sooner, 

in 12 days, and fewer people are exposed to the disease. A higher β value helps to flatten the curve 

in as little as 25 days, while a lower β value takes 80 days to flatten the curve. All I curves showed 

significant variations when β was increased or decreased (refer to Figure 8). Increasing β would 

result in more people being infected in a shorter period. However, compared to the curve with a 

lower value of β, the graph flattens sooner. Next, when we look at all the curves in Figure 9, 

increasing the value of β causes major population changes. The population of recovered 

individuals grows steadily until it reaches a limit of more than 700000 individuals recovered at 

β=0.333.  

 

4.3 Changes in δ 

Figure 6: Variation in the number of S population Figure 7: Variation in the number of E population 

Figure 8: Variation in the number of I population Figure 9: Variation in the number of R population 
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The recovery rate, δ, will be varied to 0.0625, 0.125, and 0.18 to study the changes in the 

population for each class. Figures 10-13 display the curves for each class separately in each figure. 

The following results are analysed by comparing the curves to the base model. 

 Figure 10 shows that as the recovery rate decreased (δ=0.0625), the S curve declined faster 

from a total population of 1000000. The number of susceptible populations continues to decline 

until there are no more individuals susceptible to infection. Meanwhile, from Figure 11, the E 

curve with δ=0.18 peaked later than the curve with δ=0.125 as an initial value. Therefore, the 

higher the value of δ, the lower the number of the exposed population. Next, Figure 12 shows that 

the maximum infected population reached when δ= 0.18 is just about 200000. Meanwhile, when 

δ= 0.0625, the maximum infected population is nearly 500000, significantly higher than the other 

δ values. Compared to a lower recovery rate, the curve for a higher recovery rate takes longer to 

flatten. In Figure 13, the pattern of the curves is almost similar. However, the R population curve 

at δ=0.18 increases faster than the R curve with a lower δ.  

 

 

Figure 10: Variation in the number of S population Figure 11: Variation in the number of E population 

Figure 12: Variation in the number of I population Figure 13: Variation in the number of R population 
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4.4  Vaccination Effectiveness 

 
The vaccination program will be included in this section. The vaccine will be implemented to 30%,  

 

 

 

 

 

 

 

 

 

 

 

 

50%, and 90% of the population to observe the impact of the vaccine for the Suspected and 

Recovered population. Figures 14 and Figure 15 display the curves for the Suspected and 

Recovered population, respectively. 

 According to Figure 14, the 30% population that has been vaccinated takes a long time to 

reduce the number of Suspected populations, and the number of people recovered from COVID-

19 is relatively small. The period is quite long, as shown in Figure 15. Then, if the vaccine is 50% 

effective, the number of suspected populations will be reduced in a short period of time, with the 

number of people recovered of COVID-19 being high, around 900000 people in a short period of 

time, as seen in Figure 15. Furthermore, suppose a 90% vaccine is administered. In that case, the 

number of suspected populations rapidly decreases, and the number of people recovering from 

COVID-19 exceeds nearly 1000000 in a very short period of time, as seen in Figure 15. It 

demonstrates that administering vaccines to the suspected community significantly impacts the 

overall population of recovered individuals. As a result, it is critical to provide vaccines 

administered to suspended COVID-19 individuals in Malaysia. 

 The basic reproduction number, R0 for the endemic cases of COVID-19 with 0% 

vaccination is R0 = 5.59. This mean that, if no vaccination given to the population, then the 

occurence of the disease will increase. Meanwhile, the value of R0 become less than 1 when the 

vaccine is administered in the population as shown in Table 3. 

 

Table 3: The value of R0. 

 

 

 

From Table 3, we can see that the value of R0 became less than 1 when the vaccine is given to the 

population. Hence, we can conclude that the numerical simulation above (Figure 14&15) shows 

the population converge to DFEP when R0 < 1. Therefore, the pandemic of COVID-19 will 

eventually die over time. 

 

 

Vaccination in a population Value of R0 

30% 0.11 

50% 0.07 

90% 0.04 

Figure 14: Variation in the number of S population for 

different v values. 
Figure 15: Variation in the number of R 

population for different v values. 
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5 Conclusion and Recommendations 
 

The study’s findings concluded that the SEIR model can be used as a reference model for COVID-

19 spread. Analysis of the model provides an overview of global stability in the spread of COVID-

19 and also provides information if Malaysia is in COVID-19 endemic status. The simulation 

results showed that vaccinations would speed up COVID-19 healing and give a predictive image 

of the number of COVID-19 cases in Malaysia. The findings can be used as a guide for early 

COVID-19 pandemic prevention in Malaysia. 

 In the future, further study of this model should be made to predict the cases according to 

different time and location and whether other decisions should be made for different states in 

Malaysia. However, reliable data is needed to enable all these possibilities to be incorporated in 

future models and dashboard. Other parameters such as the isolation period should be added into 

the model to achieve a more reliable approach to avoid the spread of COVID-19 that can be used 

in real-world situations. Therefore, more preventive measures can be suggested to prevent the 

transmission of COVID-19 outbreak, hence eliminating the infection from the population. 
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