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Abstract  

 

We analyze a model of one-dimensional wave equation derived from a vibrating guitar string and 

investigate a plucked guitar string's transverse displacement and subsequent vibration motion. 

We used the finite difference methods to address the wave equation for a vibrating string and 

analyzed the waveforms for various values of the string variables. The findings reveal that the 

amplitude, pitch, or quality of the guitar wave of sound changes significantly depending on a string 

of tension, a string length, a linear string density, and soundboard material. However, is has some 

problems when strings it’s being plucked. This occurs due strumming the string too hard that 

will produce “fret buzz” where it is an annoying sound coming from the guitar’s strings. For 

solving the problem, the finite difference method will numerically solve the one-dimensional 

equation using Matlab software. By using central difference approximation will derive the wave 

equation to produce the final equation that is used for the value. As a result, we gain an 

understanding of how the one-dimensional wave equation pattern looks like in the strings of 

musical instruments. 
. 
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1 Introduction 

 

 A wave is “a distortion in a medium or substance in which the individual component of 

the substance only cycle back and forth or up and down while the wave itself travels through the 

material.” [1] Waves, such as electromagnetic waves, appear extensively in nature and in many 

different kinds of mechanical waves. Energy is transported via waves. The energy of a wave is 

seen in many ways. Earthquakes are caused by seismic waves, which carry a tremendous amount 

of energy and shake the ground. Electromagnetic waves transport information in several ways, 

allowing Internet connectivity, satellites, optical cables, and radios. In microwave ovens, the 

energy from microwaves is transformed into thermal energy. This research examines the 

mechanical waves generated by a guitar string mathematically. Wave energy is used in a variety 

of ways,  [2] including “electromagnetic and communication satellites, and light waves in optical 

fibers.” We might also mention that music is a kind of wave energy. The string is a substance 

composed of numerous twisted threads. A string is defined as a wire, nylon, and any other 

synthetic material that is thinner than its length and may be stretched between the two places in 
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this research. A string that vibrate is only a representation of the various vibrating items seen in 

nature. The majority of vibrations produce wave motion. Waves, as previously said, convey the 

energy that may be utilized for human use. Wave theory may be used to simulate a variety of 

phenomena that are helpful in daily life. Musical instruments, weather forecasting, tsunami, and 

earthquake warning equipment are just a few items on the list. Because the variables can be readily 

adjusted, a vibrating string is a better and more accessible starting point for studying waves. A 

typical example of a multidimensional system is the vibration of a string, which is time and space 

are dependent. [3]“Partial Differential Equations are commonly used to describe 

multidimensional physical phenomena that rely on time and space. Electromagnetic, acoustics, 

mass, and heat transmission are some of the technical applications of the partial differential 

equation.” For the sake of acoustics that have been listed on the PDE application, we will 

investigate a classical guitar string.  

 

2 The Guitar  

 

 A guitar is a kind of stringed instrument. It is shaped like a violin with a long and dense 

neck, and there are segments called "fret" it is attached with several strings that can be played by 

plucking, generally using fingers or plectrum. Guitars are traditionally made of various types of 

wood, made of nylon, and there are also some modern guitars made of polycarbonate materials. 

Generally, guitars are divided into two types, namely acoustic guitars and electric guitars. The 

sound produced by different guitars will produce different sound waves and are available in the 

air space. A stringed musical instrument such as a guitar serves to transfer the bridge's vibrations 

into the surrounding air space. To produce this phenomenon, it requires a wide surface area to 

produce air that enters the front and back based on opinion [4]. The vibration factor of a guitar 

depends on the thickness of the strings used. The thicker the strings used, the vibration produced 

will be slower, while if the shorter strings are used, the vibrations produced will be stronger. This 

is due to the difference in string thickness on a guitar. The tension of the guitar strings will also 

change the frequency produced. If the guitar peg is tightened, the sound produced by the guitar 

will be louder. Next, the frequency also depends on the length of the strings on a guitar. When a 

string's duration is modified, it vibrates at a particular frequency. Short strings have more 

significant frequency and higher pitch [5]. 

 

2.1 A vibrating of wave Equation on Guitar String's 

 

 One guitar line is taken out of the center to obtain a wave equation, and u (x, t) represents 

a location along the string. According to [6] from Figure 3.1 we can see at points (x+dx), 

respectively, T_1 and T_2 are tangential. There will always be a constant state of T in the vertical 

part of the rope, as the wave will spread from point x to (x+dx). 
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Figure 1.1: Waves in Ideal String 

 

Based on the Figure 3.1 above let the length of a string be (∆𝑥),its mass, and the linear density 

is (𝑚), .When the angles of α ,and β, are tiny, a constant T, for which the net horizontal force is 

zero may estimate the horizontal components of tension on either side. Accordingly, the 

horizontal pressures on both sides of the string segment are given with the small-angle approach, 

this implies: 

 

3     Mathematics Formula and Equations 

 

The implies:  

T1x = T1 cos(α)  ≈ T 

T2x = T2 cos(β)  ≈ T 
T1x cos(α)  = T2x cos(β) ≈ T 

 

(1) 

T1 =  
T

cos(α)
 and T2 =  

T

cos(β)
 ,  

where T1x and T2x  are the guitar string's tangential tensions. 

 

We differentiate 𝛼 and 𝛽 due respect to t from the previous equation,  

 

 
 Figure 1.2: strings structure 

 

Based on [6] that associate the equation (3.2) following the vertical motion of the string that match 

with Newton's second law. Where newton’s second law stated that the rate of changing momentum 

of a body overtime is directly proportional to the force that applied, and it will occur in the same 

direction as the applied force. 

𝐹 =
𝑑(𝑚𝑣)

𝑑𝑡
= 𝑚

𝑑𝑣

𝑑𝑡
= 𝑚𝑎 

Where F is net force applied, m is the mass of body and a is the acceleration 

 

 

∑ 𝐹𝑦 =  𝑇2𝑦 − 𝑇1𝑦 =  𝑇2 sin β − 𝑇1 sin 𝛼 =  ∆𝑚𝑎  

                 (2) 
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𝑇2 sin β − 𝑇1 sin 𝛼 =  𝜌∆𝑥
𝑑2𝑦

𝑑𝑡2
 

where, 𝜌 is the mass per unit length and 𝑚 is an acceleration = 𝜌∆𝑥
𝑑2𝑦

𝑑𝑡2   

(3) 

 

Next we substitute equation (1) into (3), the replacement process substitutes equation (1) for 

equation (3), Which equates as below 

𝑇2 sin β 

𝑇2 cos 𝛽
−

𝑇1 sin 𝛼

𝑇1 cos 𝛼
=  

𝜌∆𝑥
𝑑2𝑦
𝑑𝑡2

𝑇
 

 

Ttan(β) − Ttan(α) =
 𝜌∆𝑥

𝑑2𝑦
𝑑𝑡2

𝑇
 

 
This acquire basic calculus. 

tan 𝛼 = |
𝑑𝑦

𝑑𝑥
|𝑥 

and 

tan 𝛽 = |
𝑑𝑦

𝑑𝑥
|𝑥+∆ x 

 
Next, equation (5) will be substituted into (4). In the limit Δx→ 0 this will 

become 

 

(4) 

 

 

 

 

 

 

 

 

             (5) 

1

∆𝑥
[|

𝑑𝑦

𝑑𝑥
|

𝑥+∆ x
−  |

𝑑𝑦

𝑑𝑥
|

𝑥
] =  

𝜌

𝑇

𝑑2𝑦

𝑑𝑡2
 (6) 

At equation (6) you extract the equation for a wave, with, 

 

∂2y

∂x2
=  

𝜌

𝑇

∂2y

∂t2
 

 

 

            (7) 

In order to clarify, 
𝑇

ρ
= 𝐶2  where T is the tension and p is the density , 

the equation (7) would be, 

 

 

∂2y

∂x2
=  

1

c2

∂2y

∂t2
. (8) 

4          Numbering Equations 

 

 In the previous part, we have seen the formula or one-dimensional wave equation and the 

derivation of the formula. We would like to see how to relate the one-dimensional wave equation 

to the finite difference method for this part. For this study, we will see the central approximation 

of finite difference methods. 

 

∂2y

∂x2
=  

1

c2

∂2y

∂t2
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From the equation of one dimensional wave equation above we can transform to central 

approximation finite difference method. 

 
u(x + dx, t) − 2u(x, t) + u(x − dx , t)

(𝑑𝑥)2
=  

1

𝑐2

u(x, t + dt) − 2u(x, t) + u(x, t − dt)

(𝑑𝑡)2
 

 

In order to solve the problem of one-dimensional waves equation, we are going to add the i & j 

notation into the equation such a 𝑢(𝑥, 𝑡) = 𝑢𝑖,𝑗 and distribute dx=m , dt=n to generates the new 

equation such ;  

                               (9) 

 

 
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

𝑚2
=

1

𝑐2

𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

𝑛2
 

 

The equation can be reorganized into:  

                             (10)

  

𝑐2𝑛2

𝑚2
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 = 𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1 

 

So we conclude the λ = 
𝑛𝑐

𝑚
 and replace λ with equations (11): 

 

               (11) 

 

𝑢𝑖,𝑗+1 =  𝜆2𝑢𝑖−1,𝑗 + 2(1 − 𝜆2)𝑢𝑖,𝑗 + 𝜆2𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1 

 

 Since we have the strings that fixed at end point for both side such at x = 0 and x = L, we 

will have the boundary condition u (0, t) = 0 and u (L, t) = 0. These conditions are satisfied by the 

function f(x, t) = Asin(kx − ωt ) when the value of L is set  to L = 1 and the amplitude, A is 

constant value. In order to determine the value of the wave function at the first time step, we need 

the value of ui,−1 to start the finite difference scheme which is the value of i and j notation must 

start with (i = 0 and j = 0). 

               (12) 
δu(x, 0)

δt
= h(x) 

 

 

Based on the initial condition ut(x, 0) = h(x) we know that the string is plucked from rest and 

the velocity for its initial is h(x) = 0  

               (13) 
u(x, t + ∂t) − u(x, t − ∂t)

2 ∂t
= h(x) 

 

For i and j notation we will get  

               (14) 

ui,−1 = ui,1 − 2 ∂th(x) 
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Replace ui,−1 to the equation 13 to get :  

 

           (15) 

ui,j+1 =
1

2
λ2ui−1,J + (1 − λ2)ui,j +

λ2

2
ui+1,j − ∂th(x) 

 

We will get a new equation by substituting h(x)=0  

 

 

           (16) 

 

ui,j+1 =
1

2
λ2ui−1,J + (1 − λ2)ui,j +

λ2

2
ui+1,j 

 

Therefore, the final equation that we will use in Matlab to calculate the graph is from equation 

(16) 

 

5 Matlab calculation 

 

 The outcome of the calculation of the wave equation using the FDM technique will be 

seen for this segment. We also succeeded in having a calculation for the wave pattern. We have 

the validation outcome of FDM and the estimation of the frequency are also seen. In this chapter 

will also be shown a comparison of FDM calculations and graph sketches, as well as a comparison 

of different lambda values. 

 

 
 

Figure 1.3: The form of the wave at lambda = 1 
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Figure1.4: The form of the wave at lambda = 2 

 

 
 

Figure1.5: The form of the wave at lambda = 5 

 

 We can see that each graph that has a different lambda value will produce a different graph 

pattern. For example, Figure 1.3 shows a slow wave and circulate at the zero value only when the 

lambda value increases. For example, as in Figure 1.4, the graph pattern starts to change, initially, 

it undulates slowly and subsequently undulates below the level of an empty value and indicates a 

negative value. Since the value of lambda, λ = Cn/m, the effects of the phase sizes, n, and m, are 

seen differently. Higher values of lambda produce Non-uniform amplitude waveforms. We can 

see from Figures 1.5 when the value of lambda is 5, and it shows that larger step-width values will 

cause a loss of consistency. This shows that the larger value for wavelength, the smaller of energy 

is going to produce.  
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6 The result of frequency 

 

 
Figure 1.7: A waveform graph of u (x, t) at λ = 1, 

c = 1, t = 0.5 and L = 1.5 

 
Figure 1.8: A waveform graph of u (x, t) at λ = 

1, c = 2, t = 0.5 and L = 1.5 

 
Figure 1.9: A waveform graph of u (x, t) at λ = 4, 

c = 2, t = 0.5 and L = 1.5 

 
Figure 1.10: A waveform graph of u (x, t) at λ 

= 2, c = 1, t = 0.5 and L = 1.5 

 

 As we can see in Figures 1.7, where the value of L is 1.5, the waveform shows it oscillates 

uniformly from 0 oscillations approaching 120th oscillations compared to the Figures 1.8, where 

the value of L is 1.5. Still, the value of c is increasing from 1 to 2. It indicates a waveform in 

Figures 1.7 is a more stable and uniform frequency. The parameters, in this case, are approximately 

standard. 

             However, Figures 1.8 shows the wave oscillated with a sharp peak starting from the 

beginning until the end of the graph. This may have happened owing to truncation errors in the 

derivation of the finite difference system, or it's happened when the value of c is higher. For 

example, the values are more than 1. The main point to be considered in the graph of Figures 1.8 

is that the wave occurred just above the rest position, which might not be correct.  Therefore, the 

approximate solution is inaccurate. 

 We can see in Figure 1.9 portrays the impact of high values of λ. When λ is 4, and the 

value of c is 2, the frequency is not uniform, and the non-uniform amplitudes are observed. This 

implies that the calculated results of u(x, t) aren't close to the actual values. From the graph of 

Figures 1.10, we can see the value of c is 1, and the value of lambda is 2, where the value of c is 
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smaller than the value of lambda. The frequency is not uniform and has a peak value at 

approximately 110th oscillations.  

 From the four graphs plotted above, we can conclude that when the value of c is higher 

than the value of lambda, the graph form is not accurate, and when the value of lambda is higher 

than the value of c, the frequency is not uniform. When the value of lambda is high, the frequency 

produces is low, which means the sound produces also will be slow. We know by using lower 

lambda, the sound would be loud. One way to avoid the buzz fret problem, a musician must avoid 

strumming too hard because when strumming the string too hard, it could produce a loud sound. 

 

 
Figure 1.11 : A waveform graph of u (x, t) at t > 0 , f(x)=0.2sin(2𝝅x) 

 

Based on Figure 1.11, the graph produced is the result of the calculation from the method 

separation of variables. The amplitude of the graph decreases constantly, and the 

waveform is more uniform compared to Figure 1.19. Based on the graph shown above 

shows that the waveform does not fluctuate randomly. The graph shows that the amplitude 

approaches zero as time increases. The waveform oscillates uniformly. The method used 

to plot the graphs of Figure 1.11 is the separation of variables. This method is used to 

compare the results obtained from the central approximation method. The conclusion we 

can see is that these two methods show almost the same results. However, using the 

separation method of variables, the resulting graph obtained is more constant and accurate. 
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7 Conclusion  

  

 In conclusion this study aims to investigate the application of a one-dimensional wave 

equation on the finite difference method by using the central approximation approach. We are 

using this method because it is easy to calculate and easy to apply. For this project, we mainly 

derive the one-dimensional wave equation and use Matlab software to calculate the answer and 

run the coding. We are looking to observe the pattern of the graph produce by using Matlab, and 

we would like to see the frequency of the guitar string when the musician plucks it. For this project, 

we want to see how the musician faces the problem when they are using the guitar, which is the 

buzz fret sound that came out when they plucked the strings. We would like to see and improve 

the quality of music from this experiment, which is to reduce the buzz fret problem. From the 

result that we have seen based on the graph produces, we know when the wavelength of the string 

is short, the frequency that produces is high; therefore, the sound produces by the string is loud. 

We know that several causes cause the buzz fret sound, one of them are when strumming the string 

too hard. From this observation, we know that when we reduce the frequency by plucked the 

strings slowly, it can help the musician play the strings instrument way better. 
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