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Abstract Forecasting natural rubber prices is critical for rubber industry in procurement decisions and 

marketing strategies. This study aims to model monthly bulk latex prices in Malaysia using 

Autoregressive Integrated Moving Averages (ARIMA), Exponential Smoothing, and Artificial Neural 

Networks (ANN). The models' performance is measured using the Mean Absolute Percentage Error 

(MAPE) and Root Mean Square Error (RMSE). The Malaysian Rubber Board has 132 historical prices 

for the latex in Malaysia from January 2010 to December 2020. They will be used for training and 

testing in determining the forecasting accuracy. Overall finding shows that ARIMA (1,1,0) provides 

the most accurate prediction. 
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1 Introduction 
 

Natural rubber (NR) is an essential agricultural commodity that is used to make a wide range of 

products. Goh et al.[1] stated that the volatility of natural rubber prices was a major challenge to 

manufacturers, merchants, customers and those involved in the natural rubber industry. In 

circumstances of considerable complexity and high risk, prices forecasts were required to support 

the purchasing or marketing decision-making. Due to the high uncertainty of natural rubber prices, 

it is recommended that accurate statistical methods be used to forecast future natural rubber prices. 

The high accuracy of prices forecasts was particularly important to facilitate the decision-makers 

to make strategic decisions since there was a significant time gap between the investment decision 

and the actual supply of the commodity on the market [2,3]. 

There are several factors affecting the natural rubber prices volatility. According to 

Vijayakumar [4], he discovered that the independent variables such as the exchange rate, crude oil 

rates, and the Thai and Malaysian rubber prices present a positive significant relationship with 

Indian rubber prices by using the multiple regression. Besides, the supply and demand of natural 

rubber might have a significant impact on the rubber prices [5]. According to his study, the 

econometric model has shown a negative relationship between the rubber prices and the quantity 

demanded of commodity. However, a positive relationship exists between the rubber prices and 

quantity supplied of commodity. 



 
Fu and Jamaludin (2021) Proc. Sci. Math. 2: 166-176 

 167 

 In addition, the consumers tend to look for an alternative raw material namely synthetic 

rubber if the cost of natural rubber rises or not available in the market [6]. The prices of synthetic 

rubber increase with the rising prices of crude oil, which consequently will soar up the demand 

for natural rubber. Therefore, crude oil prices have become a driving factor for natural rubber 

prices. Aside from that, the deadly COVID-19 pandemic influences the exportation and the 

importation of both regulated and unregulated commodities, potentially causing a long-term effect 

on commodity markets [7]. 

Previously, there have been several studies conducted on forecasting natural rubber prices 

by using Box-Jenkins’s method. A model of Thailand’s rubber prices with independent variables 

such as natural rubber and synthetic rubber prices, market prices of Tokyo Commodity Exchange, 

consumption and production of natural rubber was developed by using Autoregressive Integrated 

Moving Average (ARIMA) [8]. The model efficiency was evaluated by using mean absolute 

percentage error (MAPE). Furthermore, Zahari et al. [3] studied the forecasting of average 

monthly prices of Standard Malaysia Rubber 20 (SMR20) from January 2000 to December 2015. 

Their result showed that ARIMA (1,1,0) was the best model to forecast. Furthermore, a study that 

considered the seasonal component is also conducted. The study found that Seasonal 

Autoregressive Integrated Moving Average, SARIMA (0,1,0)(1,0,1) model was the best fit [9] to 

forecast the prices of field latex, the ribbed smoked sheets No 3 (RSS3). 

 Other than Box-Jenkins approaches, Khin et al. [10] used the simultaneous supply-

demand and price mechanism equation and Vector Error Correction Method (VECM) to predict 

the future trade of the Malaysian natural rubber. Their research aimed to estimate the relationship 

between natural rubber (NR) prices and supply, demand, and stock. Besides, a study on modelling 

of price volatility dynamics of SMR20 in Malaysia before and after the Financial Crisis in 2008 

using Autoregressive Conditional Heteroscedasticity (ARCH) models has been conducted [1]. The 

findings of the analysis showed the prevalence of clustering instability and long-term memory 

fluctuations in the SMR 20 during both incidents.  

Modelling natural rubber prices by using the time series has been widely applied in many 

studies. Recently, ANN is used as the forecasting technique that mimics the operation of the 

human brain to render abstract predictions by identifying associations between vast amounts of 

data [11]. 

This study aims to forecast the bulk latex prices in Malaysia by employing the ARIMA, 

Exponential Smoothing and ANN. These are the most extensive models used to model prices as 

they have good performances in modelling of non-linear datasets. The performances of these three 

univariate forecasting models are studied and compared by using the MAPE and Root Mean 

Square Error (RMSE). 

 

2     Methodology 

There are 132 historical data of the monthly bulk latex prices from January 2010 to December 

2020 in Malaysian Rubber Board will be used in this study. The dataset is divided into two parts. 

Firstly, the data from January 2010 to December 2019 are used to train the model namely ARIMA, 

exponential smoothing and ANN. Next, the data in year 2020 are used to assess the model’s 

performance by using the MAPE and the RMSE. 

 

2.1 Exponential Smoothing 

Exponential Smoothing is forecasts of weighted averages of past observation. In this method, there 

are three types of models, namely Simple Exponential Smoothing, Holt’s Exponential Smoothing 

and Holt-Winter’s Exponential Smoothing. Simple Exponential Smoothing is suitable for 
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predicting data without consistent trend or seasonal component.The general formula for this model 

is expressed as: 

�̂�𝑡+1 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑦�̂� (1) 

where 𝛼 is the smoothing parameter, �̂�𝑡 is the predicted value and 𝑦𝑡 is the observed value. 

Besides, if the dataset presented with trend, it is advised to forecast using Double Exponential 

Smoothing. The general formula of this model can be written as: 

 

�̂�𝑡+ℎ = ℓt + ℎ𝑏𝑡 (2) 

with 

ℓt = 𝛼𝑦𝑡 + (1 − 𝛼)(ℓt−1 + 𝑏𝑡−1)  ,   0 ≤ 𝛼 ≤ 1 

 

𝑏𝑡 = 𝛽(ℓt − ℓt−1) + (1 − 𝛽)𝑏𝑡−1   ,   0 ≤ 𝛽 ≤ 1  

 

where �̂�𝑡+ℎ is the predicted value and 𝑦𝑡  is the actual value. The symbols of 𝛼 and  𝛽 are 

the smoothing parameters for level (ℓt) and trend (𝑏𝑡) component respectively, while ℎ is the 

number of periods to be forecast. 

 

2.2 Box-Jenkins Method 

 

ARIMA model is a conventional forecasting model in time series analysis. ARIMA model is a 

combination of Autoregression (AR), Moving Average (MA) or ARMA. 

 

2.2.1 Data Pre-processing 

Data normalization such as the Box-cox power transformation is used to convert the non-normal 

data to stabilize the variance for obeying the normality. The transformation parameter 𝜆 is selected 

automatically by the Guerrero method, which minimizes the coefficient of variation for subseries 

of data [12], This transformation can be defined as: 

 

𝑦𝑡 = {

log 𝑦𝑡 , 𝜆 = 0

𝑦𝑡
𝜆 − 1

𝜆
, 𝜆 ≠ 0

 (3) 

 

The time series must be stationary in order to use the ARIMA model. The time series is 

stationary when the mean, variance, and auto-covariance do not vary over time. The Augmented 

Dicker Fuller (ADF) test can be used to determine if the time series is stationary. The null 

hypothesis, 𝐻0 denotes that the time series is not stationary. The commonly used 𝑡-statistic, 𝑇 

under 𝐻0 is 

𝑇 =
𝛾

𝑆𝐸(𝛾)
(4) 

 

where 𝛾 is the unit root and 𝑆𝐸(𝛾) is the squared error of unit root. Reject 𝐻0 if  |𝑇| > |𝜏𝛼,𝑁| for 

𝑁  sample size and critical value, 𝜏𝛼,𝑁 . Besides, the 𝐻0  can be rejected if p-value less than 

𝛼 significance level to conclude the time series is stationary. 

The differencing process will then be applied to the non-stationary time series to achieve 

stationary. Differencing is the computation of differences between consecutive observations to 

reduce or eliminate the trend and seasonality presented in the data as below: 
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𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−1 (5) 

 

where 𝑦𝑡 is the observation from the time series at time 𝑡. 

 

2.2.2 Model Identification and Selection 

 

To select the appropriate model for ARIMA in fitting the data, Autocorrelation Function (ACF) 

and Autocorrelation Function (PACF) plots are used to determine the order of ARIMA. The 

properties of ACF and PACF for ARIMA is shown as in Table 1: 

 

Table 1 Properties of ACF and PACF for ARIMA [13] 

 

 

 

 

The Akaike Information Criterion (AIC) can be used to assess the best model selection for the 

Box-Jenkins model. AIC is an estimator of out-sample prediction error for the datasets. As a result, 

a good model with the least prediction errors should comprise the least value of AIC. The formula 

of 𝐴𝐼𝐶 and corrected 𝐴𝐼𝐶 (𝐴𝐼𝐶𝑐) are given as: 

 
𝐴𝐼𝐶 = 𝑁 𝐿𝑛 (𝑆𝑆𝐸) + 2𝑘 (6) 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2(𝑘 + 1)(𝑘 + 2)

𝑁 − 𝑘 − 1
(7) 

where 𝑘 is the number of parameters, 𝑁 is the sample size, 𝑆𝑆𝐸 is the sum square of errors. 

 

2.2.3 Diagnostic Checking 

 

Residual analysis is used to ensure the adequacy of the model in this procedure. An adequate 

ARIMA model should comprise residuals with properties of zero mean, constant variance, non-

autocorrelated, independence and normality.  

The randomness of the residual can be verified by using the standardized residual plot. A 

good predictive model should comprise the residuals with zero mean and exhibits a random pattern 

in the plot. Besides, the independence of residuals is then tested by using the ACF plot of residuals. 

If most of the ACF of residuals fall within the 95% confidence interval, then the residuals of the 

model are independent. 

 In addition, Ljung-Box test is used to test the autocorrelation of the residuals from the 

chosen model. The null hypothesis, 𝐻0  of Ljung-Box test is that the residuals are not 

autocorrelated. The model is considered inadequate if the association with the Q statistic is small 

(p-value < 𝛼) [3]. The 𝑄-statistic for the Ljung-Box is given as:  

 

𝑄 = 𝑁(𝑁 + 2) ∑
�̂�𝑘

2

𝑁 − 𝑘

𝐾

𝑘=1

(8) 

 

where 𝑁 is the sample size, 𝑟�̂� is the sample autocorrelation at lag 𝑘, and 𝐾 is the number of lags 

being tested.  Reject 𝐻0 if 𝑄 > 𝜒𝑘−𝑣
2  where 𝑣 = 𝑝 + 𝑞, where 𝑝 is the order of autoregression and 

𝑞 is the order of moving average.  

Properties 𝑨𝑹(𝒑) 𝑴𝑨(𝒒) 𝑨𝑹𝑴𝑨(𝒑, 𝒒) 
ACF Decay Cuts after the 𝑞 lag Decay 

PACF Cuts after the 𝑝 lag Decay Decay 
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 Lastly, the normality of a dataset can be determined by using the Anderson-Darling (AD) 

test [14]. The null hypothesis, 𝐻0 of the test state that the data follow the normal distribution. This 

test would provide a 𝑝-value greater than the significance level for normally distributed data. If 

the chosen model meets all of the main assumptions above, then the forecast model is now 

considered adequate to predict. 

2.2.4 Autoregressive Integrated Moving Average (ARIMA) 

 

In general, ARIMA model (𝑝, 𝑑, 𝑞)  is a merged form of Autoregressive (AR) and Moving 

Average (MA), both or special cases. The 𝑝 donates the order of autoregressive terms, while 𝑑 is 

known as the degree of differencing involved, and 𝑞 is known as the order of moving average.  

The general equation of the ARIMA model can be written in backshift notation, 𝐵 as 

 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃𝑞(𝐵)𝜀𝑡  (9) 

with 

𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝 

𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞  

where 𝐵 is the backshift operator and defined as 𝐵𝑦𝑡 = 𝑦𝑡−1. 𝜙𝑝 and 𝜃𝑞 are the coefficient of 

autoregression term at order 𝑝 and coefficient of moving averages at order 𝑞 respectively. 

 

2.3 Artificial Neural Network (ANN) 

ANN has proven to be an efficient and general machine learning technique. This model consists 

of three layers. The first layer is the input layer where to input data, the second layer is the hidden 

layer to process data, and the last layer is the output layer to produce the result. The relationship 

between the output (𝑦𝑡) and the input (𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝) is given as:  

 

𝑦𝑡 = 𝑏0 + ∑ 𝑏𝑗𝑓 (𝑤𝑜𝑗 + ∑ 𝑤𝑖𝑗𝑦𝑡−𝑖

𝑝

𝑖=1

)

𝑞

𝑗=1

+ 𝜀𝑡 (10) 

where 𝑏𝑗 and 𝑤𝑖𝑗 are the model parameters, 𝑝 is the number of input nodes, 𝑞 is the number of 

hidden nodes, and 𝑓 is the transfer function. The logistic function is usually used as the hidden 

layer transfer function while the pure linear transfer function is used for the output layer.  

 

2.4 Forecasting Performance Evaluation 

Statistics that used to inspect the accuracy of the forecasting model include the Mean Absolute 

Percentage Error (MAPE) and Root Mean Square Error (RMSE) are formulated as in Table 2. 

MAPE is a measurement to evaluate the forecasting accuracy of the model in percentage while 

the standard deviation of estimation errors is defined as the Root Mean Square Error (RMSE).  

 

Table 2   Statistical Error Metric 

MAPE RMSE 

1

𝑁
∑ |

𝑦𝑡 − �̂�𝑡

𝑦𝑡

| × 100

𝑁

𝑡=1

 √
1

𝑁
∑(𝑦𝑡 − �̂�𝑡)2

𝑁

𝑡=1
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where �̂�𝑡 is the predicted value, 𝑦𝑡 is the actual value at time 𝑡 and 𝑁 is the size of the sample. If 

the MAPE is less than 10%, then it can be considered as highly accurate forecast. Otherwise, it is 

categorised as good forecasting for MAPE in between 10% to 20%. An outperformed model 

should comprise the lowest MAPE and RMSE. 

 

3     Results and Discussion 

In this section, the time series was analyzed to determine the suitable forecasting models. Next, 

the first part of the dataset was used to fit the model of exponential smoothing, ARIMA and ANN. 

After that, the second part of the dataset was used to test the forecasting accuracy. 

 

3.1 Time Series Analysis 

The time series plot as in Figure 1 shows the bulk latex price has an inconsistent trend changing 

over time and it was not fluctuating around the mean. Moreover, the ACF plot of the series 

indicating that ACF decays at a slower rate. Thus, this indicates that the time series is non-

stationary. As a justification, the ADF test of this original series resulting a p-value of 0.4076 > 

0.05. This indicates that 𝐻0 is not rejected at 5% significance level, the data is not stationary. 

 
Figure 1   Time Series and ACF of Malaysia bulk latex prices from year 2010 to 2019 

 

After the regular differencing process, the detrended time series in Figure 2 shows that 

the series is fluctuating around zero mean. The detrended ACF plot as shown in Figure 2 has 

significant spikes at lag 1 and lag 5 and decays to zero with a faster rate. Besides, the ADF test of 

this differenced series yields a 𝑝-value of 0.01, which lower than 5% significance level. The series 

is now stationary in first differencing order, 𝑑 = 1. 
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Figure 2   Detrended Time Series and ACF plot 

Seasonality is one of the important considerations in time series analysis. Based on the 

ACF plot of the time series in Figure 1, there are no oscillations that occurred at lag 12 and lag 24. 

Moreover, the detrended ACF plot in Figure 2 does not present any significant peaks after lag 12. 

These properties have shown that the time series does not exhibit seasonality from year 2010 to 

2019. In short, the time series of latex prices is non-stationary and not influenced by seasonality.  

 

3.2 Exponential Smoothing 

Based on the time series analysis, the training set exhibits trend behaviour without seasonality. 

The suitable model to fulfil this requirement is double exponential smoothing. With the aids of R 

programming, the optimal parameters are determined by using the maximum likelihood estimation. 

The initial state and the optimal smoothing parameters are shown in Table 3. 

 

Table 3   Optimal parameters of double exponential smoothing 

Smoothing Parameters Initial States 

𝛼 𝛽 ℓ0 𝑏0 

0.996 0.0004 695.638 -2.2069 

 

3.3 Box-Jenkins Method 

In this section, ARIMA is used to model the latex prices as the time series has no seasonality. In 

order to meet the major assumptions of residuals in ARIMA’s diagnostic checking, the Box-Cox 

transformation is applied to these positively skewed data. The optimal power parameter 𝜆 =
−0.3968 is obtained. The ADF of transformed series has resulted a 𝑝-value of 0.4017 > 0.05 

significance level as the series is not stationary. Hence, regular differencing is then applied. 
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Figure 3   ACF and PACF of first differencing transformed series 

The ACF and PACF have significant spikes at lag 1 and lag 5 as in Figure 3. The plots 

suggesting the orders 𝑝 = 1 or 5 and 𝑞 = 1 or 5 for the ARIMA model. The tentative models 

with orders combination of 𝑝 = 1 with 𝑞 = 1 and 𝑝 = 5 with 𝑞 = 5 will be tested to choose the 

optimal order of ARIMA. 

Table 4   Tentative models of ARIMA  

Tentative Model ( 𝒑 = 𝟏,  𝒒 = 𝟏)  AICc Tentative Model ( 𝒑 = 𝟓,  𝒒 = 𝟓) AICc 

ARIMA (1,1,1) -906.83 ARIMA (5,1,5) -897.50 

ARIMA (1,1,0) -908.88 ARIMA (5,1,0) -905.68 

ARIMA (0,1,1) -908.62 ARIMA (0,1,5) -903.21 

ARIMA (1,1,1) with drift -904.81 ARIMA (5,1,5) with drift -895.23 

ARIMA (1,1,0) with drift -906.89 ARIMA (5,1,0) with drift -903.67 

ARIMA (0,1,1) with drift -906.67 ARIMA (0,1,5) with drift -901.15 

Based on the computed 𝐴𝐼𝐶𝑐, it suggests that the optimal orders of 𝑝 = 1 and 𝑞 = 1 since the 

tentative models with this pair of orders yield relatively lower 𝐴𝐼𝐶𝑐 comparing to the models with 

orders combination of 𝑝 = 5 and 𝑞 = 5. Therefore, ARIMA (1,1,0) should be chosen as it has the 

least 𝐴𝐼𝐶𝑐 value. 

 
Figure 4   Diagnostic Checking on ARIMA (1,1,0) 
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The residual plot shown in Figure 4 indicates that residuals are scattered randomly with 

the mean of zero. Next, most of the sample autocorrelations are lie within the 95% confidence 

interval in the ACF plot of residuals, it concludes that the residuals are independent. The chosen 

model also satisfies the Ljung-Box test as p-values are higher than 0.05 for all 60 lags. This 

indicates that the residuals are non0-autocorrelated. As in normal Q-Q plot, all the residuals are 

linearly fit to theoretical quantiles. Also, the Anderson-Darling test shown a p-value of 0.9405, 

which is greater than 0.05, thus 𝐻𝑜 is failed to reject at 5% significance level. Thus, the residuals 

obey the normality. Overall, the residuals of ARIMA (1,1,0) are a white noise since it satisfies all 

the major assumptions of residuals. Therefore, these results are sufficient to conclude ARIMA 

(1,1,0) is an adequate model to forecast. The coefficient of 𝐴𝑅(1) term is 0.2758 which estimated 

by maximum likelihood using R programming. The finalized equation of this forecasting model 

after rearrangement can be formulated as: 

 

𝑦𝑡 = 1.2758𝑦𝑡−1 − 0.2758𝑦𝑡−2 + 𝜀𝑡 (11) 

3.4 Artificial Neural Network (ANN) 

 

Firstly, the training data is normalized by using the min-max standardization to convert the data 

to lie within the range between 0 to 1. This is aimed to feed the data to be processed by the logistic 

transfer function in hidden layer. With trial and experimentation, the best network architecture of 

the ANN model consists of 4 input layer neurons, 8 hidden layer neurons, and 1 output layer 

neuron (4-8-1) in 1000 training repetitions as it has the minimal loss of Mean Square Error (MSE), 

with value 0.002433. The sequence of the input data is using combination of 𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3 and 

𝑦𝑡−4 to forecast the output, 𝑦𝑡 . Therefore, this model is used to forecast the monthly bulk latex 

prices in Malaysia in year 2020. The forecasted values are then denormalized back to the original 

scale in order to compare the performance of the model. 

3.5 Forecasting Performance Evaluation 

The performances of the forecasting models were evaluated by using the MAPE and RMSE as in 

Table 5. To ensure the consistency of the outcomes, the evaluation of forecast accuracy is based 

on the testing set only to select the best model. Based on Table 5, the best forecasting model is 

ARIMA (1,1,0) as it has the least MAPE and RMSE in forecasting accuracy. However, the training 

process of historical data is outperformed by ANN as it has the lowest MAPE and RMSE value 

comparing to the other models. 

 

Table 5   Forecast accuracy of employed models 

Model 
Modelling Forecasting 

MAPE RMSE MAPE RMSE 

Holt Trend 5.338 40.568 10.734 85.308 

ARIMA 5.089 38.762 8.594 69.779 

ANN 4.813 35.117 10.593 83.619 

 

Figure 5 shows the testing sample in year 2020 with their forecasted values. The actual 

time series of the bulk latex prices in Malaysia for year 2020 shows an increasing trend and a 

fluctuation starting from September, it raised to 620.76 sen per kg in November 2020. The uptrend 

of bulk latex prices from September to November 2020 as in Figure 5 was driven by COVID-19 

vaccine optimism, solid economic growth and NR demand from China, and tightened NR supply 

due to the rainy season. Therefore, the employed univariate forecasting models unable to predict 
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as expected to reach the actual data for September to December 2020. This is due to the univariate 

models do not consider the influencing factors to the bulk latex prices. 

 

 
Figure 5   Actual and Forecast of Bulk Latex Prices for year 2020 

 

4 Conclusion and Recommendations 

Forecasting in bulk latex prices in Malaysia is extremely important in rubber industry and related 

parties for decision making in sourcing and procurement also resource allocation planning. As a 

result, the ARIMA is the most appropriate model in forecasting the bulk latex prices with nonlinear 

behaviors in this study. However, due to the COVID-19 outbreak and surging demand of latex 

products, some predictions are not forecasted as expected as in actual data. 

  Therefore, the hybrid models may help to improve the results. The hybrid model is the 

combination of two methods used to overcome the drawbacks of the individual methods. In this 

study, the ANN is outperformed in the training process, while ARIMA has the best forecasting 

accuracy that can be used in hybridization. Besides, an exogenous model such as ARIMAX that 

including influencing factors is also recommended to be used to have better accuracy. 
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