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Abstract Capacitated Vehicle Routing Problem (CVRP) is classified in the VRP to 

minimize the cost travelled when deliverymen want to deliver goods for customers to serve 

all customers' demand. This research presented Simulated Annealing (SA) for solving the 

CVRP. The aims are to identify a set of vehicle routes with the lowest total transportation 

cost between three types of customers such as random customer, cluster customer and mixed 

random cluster customer where these datasets are obtained from the Augerat Benchmark. 

This research's final result is the comparison between SA and Branch-Cut-Price to get the 

optimal solution. 
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1 Introduction 
 

Vehicle Routing Problem (VRP) is a combinatorial optimization and integer programming 

seeking to service a number of customers with fleet of vehicles. VRP aims to find a set of routes 

at a minimal cost beginning and ending the route at the depot, so that the known demand of all 

nodes is fulfilled [1]. Each node is visited only once, by only one vehicle, and each vehicle has a 

limited capacity. There are many applications of VRP such as garbage disposal, mail delivery, 

school bus routing, airline schedule and many more. VRP is one of the optimization problems 

that belong to NP- hard (Non-deterministic Polynomial-time hard) problem because it is difficult 

to solve [2]. It has also become one of the important topics to discuss and analyze. VRP has been 

researched in many ways and used in many formulations to solve all problems in the real world 

by using any method to get the best result [3]. There are many types of VRP; this research is 

focusing on Capacitated Vehicle Routing Problem (CVRP). CVRP is defined as the problem of 

determining optimal routes to be used by vehicles starting from one or more depots to serve all 

customers’ demand, observing some constraints [4]. The CVRP was first formulated by 

Christofides et al. [5], a fixed capacity of vehicle serves a set of customers from a common point 

called warehouse. A customer is visited by the vehicle only once, the vehicle capacity cannot 

exceed the maximum capacity, and the model deserves to find minimum distance of vehicle route 

or minimum time to serve the customers. CVRP is like VRP with the additional constraint that 

every vehicle must have uniform capacity of single commodity. There are numbers of solution 

method for CVRP which are exact, heuristics and metaheuristics. To sum up, the VRP is an 
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optimization problem that is flexible. It is a dynamic expandable problem that can be used to 

model any real-world situation and solve specific problems. 

 

 

1.1 Problem Statement 
  

 CVRP is one of the most significant issues in the optimization of distribution networks. 

In transportation, one major area that has received lots of attention over the years is CVRP. This 

research will focus on CVRP where we want to find the optimal paths from a depot to the set of 

customers while also considering the vehicles' capacity to reduce the cost of transportation of 

goods and services. In this research, SA algorithm will be used in solving the CVRP by finding 

an optimal route through a given Cartesian of X and Y coordinates. The problem is to pick up or 

deliver the items for the least cost while never exceeding the capacity of the vehicles. 

 

1.2 Objective of the Research  
  

The objectives of this research are:  

i. To minimize the transportation cost in finding the best route of CVRP using SA. 

ii. To conduct an experimentation effect of changing the parameter values in SA 

such as initial temperature and cooling rate. 

iii. To compare the performance of SA with Branch-Cut-Price Algorithm in solving 

CVRP. 

 

2 Literature Review  
 

2.1 Simulated Annealing (SA) Method 

 

SA is an excellent example of incorporating ideas from a completely different field, and an 

unrelated area that deliver significant and unforeseen advantages at first glance. SA used the 

concept of annealing which is the method of heating a solid to eliminate strain and crystal 

imperfections and cooling it slowly [7]. The free energy of the solid has reduced during this 

process. To avoid being stuck in a local minimum, the initial heating is essential. It is possible to 

consider virtually every feature as the free energy of some device. Thus, observing and imitating 

how nature reaches a minimum should yield optimization algorithms during the annealing process 

[8].   

Other than that, SA is a technique of algorithmic relaxation that finds its origins in 

statistical mechanics. The approach has the potential to achieve an almost optimal solution with a 

large search space of complex for different combinatorial optimization problems [9].  In this paper, 

the concept of CVRP by using SA method will be discussed. This method can be contributed to 

solve the minimization transportation cost to get near optima and travel distance. From the 

previous experiment, several researchers have proposed SA as an algorithm to solve CVRP. 

Experiments on literature sources show that SA is fast and outperforms current approaches [10].  

SA's benefit can be solved by the arbitrary system and cost features. This approach 

statistically ensures that an optimal solution can be found. It is reasonably easy to code, even for 

complex problems [10]. It is a robust technique and can deal with a large amount of data. Besides, 

the versatility and ability to approach global optimality are its key advantages [11]. As it does not 

depend on any restrictive properties of the model, the algorithm is very adaptable. Techniques 

from SA are easily tuned. Using SA, therefore, offers the right solution and give optimal results 
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in solving any problem of complexity [12]. Based on all the advantages of SA mentioned, we will 

use this powerful method in solving CVRP. 

 

2.2 Related Works on Simulated Annealing 

 

Many researchers have researched the SA method based on previous research. This is because SA 

provides the best outcome and give more optimal solution. Perwira et al. [13] present an algorithm 

based on SA for a VRP version. The suggested SA performance is compared to the method's 

performance in prior works to solve CVRP.  

Wei et al. [14] studied the CVRP with two-dimensional loading constraints. The study 

requires the creation of a set of low-cost routes that begin and end at the central depot in order to 

meet consumer demands for a set of two-dimensional and weighted products. To address the 

CVRP, a SA with a mechanism of repeatedly cooling and heating is proposed. Based on the 

findings, the SA algorithm is put to the test on the most common CVRP two-dimensional loading 

constraints. The results reveal that SA beats all other algorithms and, in most cases, SA improves 

on the best-known solutions. 

 The SA method good result compared against a frequently used heuristic known as the 

closest heuristics for the case study dataset [11]. Based on the results, the SA and closest neighbor 

algorithms outperform other methods. The SA outperforms the closest other heuristic approach 

[13]. Furthermore, the suggested SA approach consistently finds the same answer as the exact 

technique. As a result, the SA approach produces good solution quality for the problem. 

  

3 Mathematics Formulation of CVRP 

 
In this study, SA is considered to solve CVRP. CVRP defined as 𝑛 customers with known demand 

𝑑𝑖(𝑖 = 1 … 𝑛) are serviced with 𝑚 vehicles start and end at depot with uniform capacity 𝐶. The 

objective of this CVRP is to minimize the distance travelled and the assumptions are to load of 

each vehicle should not exceed the given vehicle capacity. Next, each customer is served exactly 

once and each vehicle starts and ends at the depot. 

CVRP is a problem of identifying the optimal routing for vehicles departing from a single 

or multiple depots in order to serve all customers. The objective may be to reduce the cost, time, 

or number of vehicles required to solve the problem. Moreover, the depot has several vehicles 

available to meet customer demand, and they must return to the depot. Each vehicle has a similar 

capacity. The mathematical formulation of the capacitated VRP will be presented below. 

 
3.1          Notation of CVRP 

 

Below are the notations involve in CVRP: 

𝐶  : Capacity of the vehicles 

𝑑𝑖 : Demand of customer 𝑖 
𝐶𝑖𝑗 : Distance between customer 𝑖 to customer 𝑗 

𝑛 : Number of customers 

𝐻 ∶ Set of vehicles 

ℎ : Number of vehicles 

 

A complete graph where 𝐺 = (𝑉, 𝐸), where 𝑉 = {0,1, … , 𝑛} is the vertex set and 𝐸 is the 

edge set. Vertices 𝑖 = 1,2, . . 𝑛 correspond to the customers. Vertex 0 corresponds to depot and 𝑛 

is the number of customers. A set of vehicles 𝐻 = {1,2, . . 𝑚} , where every vehicle capacity 𝐶, is 
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available at the depot and must be return to depot after finishing their deliveries. A non-negative 

cost 𝐶𝑖𝑗 is associated with each edge (𝑖, 𝑗) ∈ 𝐸 and represents distance from vertex 𝑖 to vertex 𝑗 

for all 𝑖 ≠ 𝑗. 𝑥𝑖𝑗𝑘 ∈ {0,1} where 1 if the vehicle 𝑘 travels from customer 𝑖 to 𝑗 and 0 otherwise. 

𝑥𝑖𝑘 ∈ {0,1} where 1 if the customer 𝑖 is visited by vehicle 𝑘 and 0 otherwise. 

 

3.3         Model and Description of CVRP 
 

The mathematical model that includes the objective function and constraints of CVRP is as 

follows: 

              Minimize ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘

𝑛

𝑗=0

𝑛

𝑖=0

ℎ

𝑘−1

 

            Subject to: 

             ∑ 𝑥𝑖0𝑘 − ∑ 𝑥0𝑗𝑘

𝑛

𝑗=0

= 0

𝑛

𝑖=0

, ∀𝑘 = 1, … , ℎ 

             ∑ ∑ 𝑥𝑖𝑗𝑘

ℎ

𝑘=1

𝑛

𝑖=0

= 1, ∀𝑗 = 1,2, … , 𝑛 

            ∑ ∑ 𝑥𝑖𝑗𝑘

ℎ

𝑘−1

𝑛

𝑗=0

= 1, ∀𝑖 = 1,2, … , 𝑛 

∑ 𝑥0𝑗𝑘 ≤ 1,

𝑛

𝑗=1

 ∀𝑘 = 1,2, . . , ℎ 

∑ 𝑥𝑖𝑗𝑘 = 𝑦𝑗𝑘 ,

𝑛

𝑖=0

∀𝑗 = 0,1, . . , 𝑛;  𝑘 = 1,2 … , ℎ 

∑ 𝑥𝑖𝑗𝑘 = 𝑦𝑖𝑘 ,

𝑛

𝑗=0

∀𝑖 = 0,1, . . , 𝑛;  𝑘 = 1,2 … , ℎ 

∑ 𝑑𝑖 𝑦𝑖𝑘 ≤ 𝐶,

𝑛

𝑗=1

 ∀𝑘 = 1,2, . . , ℎ 

 where 

           (1) represents for objective function of the minimize total travel distance. 

           (2) is the number of vehicles that arrive at depart from depot is the same. 

           (3) represents for each customer for location 𝑖  is visited exactly once. 

(2) 

(3) 

(4) 

(7) 

(5) 

(6) 

(1) 

(8) 
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   (4) represents for each customer for location  𝑗  is visited exactly once. 

           (5) is defines that at most ℎ vehicles are to be used. 

(6) express the relation between two decision variables where is represents for location 𝑖 and 

vehicle 𝑘 . 

(7) express the relation between two decision variables where is represents for location 𝑗 and 

vehicle 𝑘 . 

   (8) represents for guarantees that vehicle capacity is not exceeded. 

3.4             Simulated Annealing Implementation 

 

The implementation of SA for CVRP is as follows. It is designed to solve the proposed CVRP 

efficiently and has been suggested to solve the Vehicle Routing Vehicle (VRP) and its variants. 

The core function of SA that divides it from other approaches is its mechanism for exploring worse 

solutions, even infeasible ones with a low probability to escape from the local optimal [10]. The 

probability of accepting a worse solution is calculated using a formula that considers the difference 

between solutions and a temperature parameter. This section identifies the implementation of SA 

for CVRP in-depth, including the solution representation, the parameters used, the SA technique, 

and the neighborhood move. For temperature schedule, we must choose an appropriate 

temperature schedule when designing the SA algorithm for an optimization problem. The 

effectiveness of the SA algorithm can be used. The initial, relatively large value of  𝑇 must be 

defined in the schedule and the increasingly smaller values in the subsequence. It is also essential 

to define the number of iterations of each temperature that should be generated. There two three 

parameters to be specified for the temperature schedule: initial temperature and cooling rate [11]. 

 

3.5           Initial Temperature 

 

A temperature parameter is used to handle the acceptance of adjustment. The initial temperature 

value, 𝑇0  need to be high enough to achieve a large number of acceptances at the initial stages. 

Depending on the cooling rate, it is gradually reduced over time. As the algorithm continues and 

the temperature becomes cooler, unfavorable solutions are less likely to be selected. A stopping 

criterion the choice of final temperature. Usually, a proper small temperature is being set as the 

final temperature to become the stopping condition. In this study, the algorithm will stop when 

temperature drops down to a pre-selected final temperature 0.0000 [14]. 

 

3.6           Cooling Rate 

 

The rate of cooling is the factor that is used to lower the temperature at the end of each temperature 

change counter. The chance of becoming stuck in a local minimum is larger when the faster 

decrement rate is employed. The slower the decrement rate, on the other hand, the more processing 

time is required. 

 

 

𝑇𝑡 is represent the temperature at the end. 

𝑇𝑡−1 is represent the temperature at the beginning. 

𝑇𝑡 = 𝛼𝑇𝑡−1 (9) 

where 
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𝛼 is the represent the cooling rate which can range from 0 to 1. The value of 𝛼 is accomplished 

when using in the ranges between 0.8 and 0.99 [12]. 

3.7 Simulated Annealing Flowchart 

 

Figure 1 displays the SA flowchart which is the process involved in solving CVRP. 
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Figure 1: Simulated Annealing Flowchart 
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4          Result and Analysis 

 

The results obtained by solving CVRP using SA are shown and analyzed. The data were run 20 

times in MATLAB and the result of best, worst and average were recorded. In this problem, we 

want to determine the best route for each vehicle that give the minimum cost travelled. The best 

is obtained by comparing the 20 results that give the lowest cost while the worst is the result that 

give the highest cost. The aims are to identify a set of vehicle routes with the lowest total 

transportation cost between three types of customers such as random customer, cluster customer 

and mixed random cluster customer where these datasets are obtained from the Augerat 

Benchmark. 

 

4.1         Parameter Estimation 

 

Several parameters have been experimented to solve the CVRP by using SA. The proposed SA 

use parameters such as T0 and 𝛼 where T0 denotes the initial temperature while 𝛼 denotes cooling 

rate that control the cooling schedule. To end the annealing process, a stopping criterion is used. 

In this research, the iterations are set to be 500 where after reach this iteration the algorithm will 

stop and final best cost is obtained. Besides, at 500th iterations, the final temperature drops to 0 

and there is no improvement on the result obtained.  

 

 

4.2         Best Route of three sets of customer location 

 

   
Random Location Cluster Location Random-Cluster Location 

 

Figure 2: Three Types of Location for data sets 

 

Figure 2 shows three types of the location. In this research, investigations were done through three 

different cases; random, cluster and random-cluster locations. The test instances are generated 

based on the CVRP dataset proposed by Augerat Benchmark. Random location involves 50 

customers visited by 7 vehicles, cluster location contains 50 customers visited by 7 vehicles and 

random-cluster location involves 41 customers visited by 6 vehicles. We will assume only 

homogeneous vehicle type in this research. The location points are based on the Cartesian 

coordinate and the demands for each customer are presented.  
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4.3         Comparison of 3 Types of Location 

 

Table 1: Comparison of three sets of customer location 

   

No 
Types Of 

Data 

Initial 

Temperature, 

T0 

Alpha Best Worst Average 

Time 

taken to 

reach 

optimal 

Ranking 

1 
Random 

Location 
110 0.84 501.6874 581.6780 558.455 1 min 31 s 3 

2 
Cluster 

Location 
120 0.82 720.8999 755.6809 737.171 1 min 27 s 2 

3 

Random-

Cluster 

Location 

110 0.83 786.3697 864.5673 824.586 1 min 22 s 1 

 

Comparison and analysis are made by taking the time for each type of data to reach the 

optimal solution. Based on the results found in table 1, the random-cluster location reached the 

optimal first with 1 minute and 22 seconds, followed by the cluster location that takes 1 minute 

and 27 seconds to achieve the optimal solution. However, random location takes the longest 

among other location to reach the optimal solution. This happen probably due to the distance of 

each location that is random and far among each other. Thus, the swapping of locations take longer 

time for the random location to reach the optimal solution compared to cluster and random-cluster 

location.  

 

4.4         Comparison Optimal Solution Between algorithm 

 

To check the performance of the proposed SA algorithm, it is necessary to compare it with another 

method which is Branch-Cut-and-Price algorithm. Therefore, the experiment was conducted on 

benchmark instances consists of the datasets for CVRP. Table 4.23, Table 4.24 and Table 4.25 

show the comparison of optimal solution for random, cluster and random-cluster locations 

respectively. 

 

 Table 2: Comparison of Optimal Solution for Random Location 

Algorithm Scale Vehicle Capacity Limit Optimal Solution 

Branch-Cut-and-Price 50 7 150 554 

Simulated Annealing 50 7 150 501.6874 

 

              Table 3: Comparison of Optimal Solution for Cluster Location 

Algorithm Scale Vehicle Capacity Limit Optimal Solution 

Branch-Cut-and-Price 50 7 100 741 

Simulated Annealing 50 7 100 720.8999 
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Table 4: Comparison of Optimal Solution for Random-Cluster Location 

Algorithm Scale Vehicle Capacity Limit Optimal Solution 

Branch-Cut-and-Price 41 6 100 829 

Simulated Annealing 41 6 100 786.3697 

 

Based on the result from Table 2, Table 3 and Table 4, we make a comparison between SA method 

and Branch-Cut-and-Price method. The optimal solution for Branch-Cut-and-Price are obtained 

from Augerat Benchmark. From the comparison of both methods, SA can provide a better result 

compared to Branch-Cut-and-Price as it gives the lowest optimal solution for the random, cluster 

and random-cluster locations. The SA method shows the effectiveness and promising a better 

result compared to the Branch-Cut-and-Price method. Furthermore, the computational time of 

using SA approach is reported to be faster and quickly in getting the optimal solution as this 

method is a metaheuristic.  

 

 

5 Conclusion 
 

In conclusion, investigations were done through three different cases; random, cluster and random-

cluster locations where the data are collected from Augerat Benchmark with different types of 

customer’s location. The parameters estimation before implementing SA were done which is 

initial temperature and cooling rate for different types of location. In this chapter, the data were 

run 20 times in MATLAB and the result of best, worst and average were recorded. Comparison 

and analysis are made by taking the time for each type of data to reach the optimal solution. In 

getting the optimal solution, random-mixed location takes the shortest computational time 

followed by cluster and random location. Apart from that, the performance of SA is being 

compared with another method which is Branch-Cut-and-Price algorithm where the optimal 

solution for Branch-Cut-and-Price are obtained from Augerat Benchmark. From the comparison 

of both methods, SA provide a better result compared to Branch-Cut-and-Price as it gives the 

lowest optimal solution for the random, cluster and random-cluster locations. 

 For the recommendation there are various ideas for future research. We may try to solve 

SA on other types of VRP such as Vehicle Routing Problem with Time Windows (VRPTW), 

Vehicle Routing Problem with Pick-Ups and Deliveries (VRPPD), Multiple Depot Vehicle 

Routing Problem (MDVRP) and Vehicle Routing Problem with Stochastic Dynamic (SDVRP) to 

see the effectiveness of SA algorithm. Besides, upgrading or improve the SA method by creating 

a hybrid of SA with other metaheuristic methods might produce a better result to solve the CVRP. 

This is because many sophisticated metaheuristics are available for the further research that 

enables us to find the best optimal solution. 
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