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Abstract In this study, the investigation about mixed convection boundary layer flow of 

viscoelastic nanofluid past over a sphere has been carried out. The chosen nanoparticle is 

cooper while the base fluid is Carboxymethyl cellulose solution (CMC).The governing 

partial differential equations are transformed into differential equations using suitable 

transformation and then will be solved numerically solved using Keller box method. The 

effect of viscoelastic parameters, mixed convection parameters and Prandtl number has 

been plotted graphically.  
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1        Introduction 

 
Nanofluids are being used in human life every day because of its application in industrial field 

such as engineering, biomedical, and energy mechanical. Nanofluids are a new type of fluid 

created by dispersing nanometer sized particles in any base fluid. As a result, the presence of 

nanoparticles in a base fluid can alter the physical and chemical properties such as viscosity, 

thermal conductivity, thermal diffusivity and heat transfer. However, the effect of several 

properties such as nanoparticles particle size, concentration and nanoparticles types can affect 

the stability of the nanofluid. In many industrial applications heat transfers are one of the most 

crucial topics either in cooling or heating process. One of the methods that have been 

implemented in these crucial topics is by using nanofluid.  

 

During past years many researchers do their finding about the nanofluid, by testing different 

types of nanofluids, incorporate mixed convection in their experiment or  implement geometry in 

research. These elements are tested along with nanofluid to identify the changes in term of 

physical or chemical properties of the fluids.Choi and Eastmen [1] were the first to adopt the 

term ‘nanofluid’. Nanofluids expected to outperform traditional heat transfer fluids and micro – 

sized metallic particles in terms of performance. The heat transmission process is usually carried 

out the particles surface, so particles with a larger surface have a bigger potential in heat transfer. 

To identify the flow and heat exchanged process an experiment was conducted by Alwawi et al. 

[2] using water-𝛾𝐴𝑙2𝑂3 and ethylene glycol-𝛾 𝐴𝑙2𝑂3 nanofluid flow inside a channel. Other than 

that, hybrid nanofluid has received many researchers attention. So, Saba et al. [3] tested hybrid 

(𝐶𝑁𝑇 − 𝐹𝑒3𝑂4 /𝐻2𝑂) nanofluid to study about the heat transfer phenomena for hybrid 

nanoparticles in a squeezing wall. 
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Extensive research has been conducted by the scientist by adding mixed convection to test the 

nanofluid characteristics because of a higher usage in science and technology fields. A study has 

been conducted by Abu – Nada and Chamkha et al. [4] to identify the effect of a steady mixed 

convection for the nanoparticles volume fraction and also the angle of heat transfer. Other than 

that, Job and Gunakala [5] have tested the convection flow of nanofluid through grooved 

channels with two heat generating solid cylinder. The surface roughness from the object can be 

used to test the micro-irregularities that present at the object. Apart from cylinder, other 

geometries such sphere also has been tested by the researchers. This concept was used by Patil et 

al.[6] to investigate the non-linear mixed convection nanofluid flow about a rough sphere with 

the presence of liquid hydrogen. 

 

2       Mathematical Model 
 

The mixed convection boundary layer flow over a sphere with radius a  was placed in a 

viscoelastic nanofluid. It is assumed that the temperature of the ambient fluid is 𝑇∞ .Using the 

model of the nanofluid suggested by Tiwari- Das [7], 𝑇𝑤  is the constant temperature of the 

surface of the sphere, 𝑔 is the gravity acceleration and 
1

2
𝑈∞. The governing equations of the 

problem are as flow: 

 

Continuity equation: 

                                                                  
𝜕

𝜕�̅�
(𝑟 ̅�̅�) +

𝜕

𝜕�̅�
(�̅� �̅�) = 0.                                       (2.1)             

 

Momentum equation: 

                        𝜌𝑛𝑓 (�̅�
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
)                                     

= (𝜌𝑛𝑓)�̅�𝑒

𝜕�̅�𝑒

𝜕�̅�
+ (𝜇𝑛𝑓)

𝜕2�̅�

𝜕�̅�2
 

+𝑘0 (
𝜕

𝜕�̅�
(�̅�

𝜕2�̅�

𝜕�̅�2) + �̅�
𝜕3�̅�

𝜕�̅�3
+

𝜕�̅�

𝜕�̅�

𝜕2�̅�

𝜕�̅�2) 

                                            +𝑔(𝜌𝛽)𝑛𝑓  (𝑇 − 𝑇∞) sin (
�̅�

𝑎
).                                         (2.2)  

 

Energy equation: 

                                       �̅�
𝜕𝑇

𝜕�̅�
+ �̅�

𝜕𝑇

𝜕�̅�
= (𝛼𝑛𝑓)

𝜕2𝑇

𝜕�̅�2
,                                   (2.3) 

subjected to the boundary conditions, 

�̅� = 0 , �̅� = 0, 𝑇 = 𝑇𝑤 , 𝑎𝑡    �̅� = 0,    �̅� ≥ 0,       

                    �̅� = �̅�𝑒(�̅�),         
𝜕�̅�

𝜕�̅�
= 0, 𝑇 = 𝑇∞,   𝑎𝑠  �̅� → ∞,   �̅� ≥ 0,           (2.4)  

 

where, 

𝜇𝑛𝑓 =
µ𝑓

(1 − 𝜙)2.5
 , 𝛼𝑓 =

𝑘𝑓

(𝜌𝐶𝑝)𝑓
 , 𝛼𝑛𝑓 =

𝑘𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓
,   
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(𝜌𝐶𝑝)
𝑛𝑓

= (1 − 𝜙)(𝜌𝐶𝑝)
𝑓

+ 𝜙(𝜌𝐶𝑝)𝑠, 

(𝜌𝛽)𝑛𝑓 =  (1 − 𝜙)(𝜌𝛽)𝑓 + 𝜙(𝜌𝛽)𝑠 , 

𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠 , 

                                           𝑘𝑛𝑓 = 𝑘𝑓

(𝑘𝑠 + 2𝑘𝑓) − 2𝜙(𝑘𝑓 − 𝑘𝑠)

(𝑘𝑠 + 2𝑘𝑓) + 𝜙(𝑘𝑓 − 𝑘𝑠)
,                         (2.5) 

 

�̅� and �̅� represent the Cartesian coordinates along the surface of the sphere. While, the ū and  

�̅� are the velocity components, T is the temperature of the fluid, 𝑘0 > 0 is the constant of the 

viscoelastic material (Walter’s Liquid-B model), 𝑄0  is the heat generation constant,𝜙  is the 

nanoparticle volume fraction, (𝜌𝐶𝑃)𝑛𝑓 is the heat capacitance of nanofluid, (𝛽)𝑛𝑓 is the 

coefficient of thermal expansion of nanofluid ,𝑘𝑛𝑓 is the thermal conductivities of the nanofluid, 

𝑘𝑓and 𝑘𝑠 are the thermal conductivities of the fluid and of the solid fractions, 𝜌𝑛𝑓 and µ𝑛𝑓 are 

the density and dynamic viscosity of nanofluid, µ𝑓 is the viscosity of the fluid fraction, and 𝛼𝑛𝑓 

and 𝛼𝑓 is the thermal diffusivity of the nanofluid. Lastly, velocity outside the boundary is ū𝑒(�̅�) 

and �̅� (�̅�) is the radial distance from the symemetrical axis of the sphere which is given by: 

                                   �̅�(𝑥) = 𝑎 sin (
�̅�

𝑎
),   ū𝑒(�̅�) =  

3

2
𝑈∞sin (

�̅�

𝑎
).                          (2.6)  

 

Then, the dimensionless variables are introduced: 

𝑥 =
�̅�

𝑎
 , 𝑦 = 𝑅𝑒

1
2 (

�̅�

𝑎
) ,       𝑟(𝑥) =

�̅�(�̅�)

𝑎
,      𝑢 =

�̅�

𝑈∞
 ,      

                        𝑣 = 𝑅𝑒
1
2 (

�̅�

𝑈∞
) , 𝑢𝑒(𝑥) =

�̅�𝑒(𝑥)

𝑈∞
,      𝜃 =

𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
,                    (2.7)   

 
𝑅𝑒 = 𝑈∞𝑎/𝑣 is the Reynold number.   

 
 

In order to form the dimensionless equation, substitute equation (2.7) to equation (2.1) until (2.3). 

The resulting equations are given below: 

 

Continuity equation: 

                                                    
𝜕

𝜕𝑥
(𝑟 𝑢) +

𝜕

𝜕𝑦
(𝑟 𝑣) = 0.                                             (2.8)   

 

Momentum equation: 

((1 − 𝜙) + 𝜙
𝜌𝑠

𝜌𝑓
) (𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = ((1 − 𝜙) + 𝜙

𝜌𝑠

𝜌𝑓
) 𝑢𝑒

𝜕𝑢𝑒

𝜕𝑥
 

+
1

(1 − 𝜙)2.5

𝜕2𝑢

𝜕𝑦2
+  𝐾 (

𝜕

𝜕𝑥
(𝑢

𝜕2𝑢

𝜕𝑦2) + 𝑣
𝜕3𝑢

𝜕𝑦3
+

𝜕𝑢

𝜕𝑦

𝜕2𝑣

𝜕𝑦2) 

                                                          + ((1 − 𝜙) + 𝜙
(𝜌𝛽)𝑠

(𝜌𝛽)𝑓
) 𝜆 sin ( 𝑥).                                     (2.9) 

 

Energy equation: 
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((1 − 𝜙) + 𝜙
(𝜌𝐶𝑝)

𝑠

(𝜌𝐶𝑝)
𝑓

) (𝑢 
𝜕𝜃

𝜕𝑥
 +  𝑣

𝜕𝜃

𝜕𝑦
 ) 

 

                                  =  
1

𝑃𝑟
 
(𝑘𝑠 + 2𝑘𝑓) − 2𝜙(𝑘𝑓 − 𝑘𝑠)

(𝑘𝑠 + 2𝑘𝑓) + 𝜙(𝑘𝑓 − 𝑘𝑠)
(

𝜕2𝜃

𝜕𝑦2),                                   (2.10) 

  

and the boundary condition (4) will become, 

�̅� = 0, 𝑣 = 0, 𝜃′ = −1  at  𝑦 = 0, 𝑥 ≥ 0, 

               �̅� = �̅�𝑒(�̅�),
𝜕𝑢

𝜕𝑦
 = 0, 𝜃 = 0, as 𝑦 → ∞, 𝑥 ≥ 0,                   (2.11)  

 

while, 

Pr =  
𝑣

𝛼
 , 𝐾 =  

𝑘0𝑈∞ 

𝑎𝜌𝑓𝑣
 , 

                                                𝜆 =
𝐺𝑟

𝑅𝑒2
, 𝐺𝑟 =  

𝑔𝛽(𝑇𝑤 − 𝑇∞)𝑎3

𝑣2 𝑓
.                             (2.12)  

 

Pr  represent the Prandtl number, while 𝐾 is the dimensionless viscoelastic parameter,  𝜆  is the 

mixed convection parameter and  Gr  is the Grashof number. It should be mention that 𝜆 > 0 is 

used for aiding flow while 𝜆 < 0 for opposing flow. K = 0 represent Newtonian fluids. 

 
In order to solve the equation from (2.8) until (2.10) with boundary condition (2.11), the 

following variables are introduced: 

                                                  𝛹 = 𝑥𝑟(𝑥)𝑓(𝑥, 𝑦), 𝜃 = 𝜃(𝑥, 𝑦),                              (2.13)   
 

while, 𝛹 is known as stream function that can be defined as: 

                                                 𝑢 =
1

𝑟

𝜕𝛹

𝜕𝑦
, 𝑣 = −

1

𝑟

𝜕𝛹

𝜕𝑥
.                                               (2.14)     

 

Then, equation (2.14) is applied into equation (2.8) to (2.11), by considering 𝑢𝑒(𝑥) =  
𝑢𝑒(𝑥)

𝑈∞
=

3

2
sin 𝑥. The following transformed equations are: 

 

Continuity equation: 

                                                             
𝜕2𝛹

𝜕𝑥𝜕𝑦
−

𝜕2𝛹

𝜕𝑥𝜕𝑦
= 0.                                                  (2.15)  

 

Momentum equation: 

((1 − 𝜙) + (𝜙)
𝜌𝑠

𝜌𝑓
) (−

cos 𝑥

sin 𝑥
(

𝜕𝑓

𝜕𝑦
)

2

+ 𝑥 (
𝜕𝑓

𝜕𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦
−

𝜕𝑓

𝜕𝑥

𝜕2𝑓

𝜕𝑦2)

+ (𝑥
cos 𝑥

sin 𝑥
+ 1) ((

𝜕𝑓

𝜕𝑦
)

2

−
𝜕2𝑓

𝜕𝑦2
𝑓)) 
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=
9

4

sin 𝑥 cos 𝑥

𝑥
((1 − 𝜙) + (𝜙)

𝜌𝑠

𝜌𝑓
) +

1

(1 − 𝜙)2.5 (
𝜕3𝑓

𝜕𝑦3) 

+𝐾 (𝑥
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕3𝑓

𝜕𝑦3
+ 2 (𝑥

cos 𝑥

sin 𝑥
+ 1)

𝜕𝑓

𝜕𝑦

𝜕3𝑓

𝜕𝑦3
+ 𝑥

𝜕4𝑓

𝜕𝑥𝜕𝑦3

𝜕𝑓

𝜕𝑦
− 2 (𝑥

cos 𝑥

sin 𝑥
)

𝜕𝑓

𝜕𝑦

𝜕3𝑓

𝜕𝑦3
− 𝑥

𝜕𝑓

𝜕𝑥

𝜕4𝑓

𝜕𝑦4

− (𝑥
cos 𝑥

sin 𝑥
+ 1)

𝜕4𝑓

𝜕𝑦4
𝑓 − 𝑥

𝜕3𝑓

𝜕𝑥𝜕𝑦2

𝜕2𝑓

𝜕𝑦2
    − (𝑥

cos 𝑥

sin 𝑥
+ 1)

𝜕2𝑓

𝜕𝑦2

𝜕2𝑓

𝜕𝑦2)

+ ((1 − 𝜙) + 𝜙
(𝜌𝛽)𝑠

(𝜌𝛽)𝑓
) 𝜆𝜃 sin ( 𝑥).                                                           (2.16) 

 

Energy equation: 

((1 − 𝜙) + 𝜙
(𝜌𝐶𝑝)

𝑠

(𝜌𝐶𝑝)
𝑓

) ((𝑥
𝜕𝑓

𝜕𝑦
)

𝜕𝜃

𝜕𝑦
− ( 𝑥

𝜕𝑓

𝜕𝑥
+ (1 +

cos 𝑥

sin 𝑥
) 𝑓)

𝜕𝜃

𝜕𝑦
) 

                                      =  
1

𝑃𝑟
 
(𝑘𝑠 + 2𝑘𝑓) − 2𝜙(𝑘𝑓 − 𝑘𝑠)

(𝑘𝑠 + 2𝑘𝑓) + 𝜙(𝑘𝑓 − 𝑘𝑠)
(

𝜕2𝜃

𝜕𝑦2),                                   (2.17) 

 

along with boundary condition,  

𝑓(0) = 0,     𝑓′(0) = 0,     𝜃′(0) = −𝛾1(1 − 𝜃(0)), on  𝑦 − 0, 

                                 
𝜕𝐹

𝜕𝑦
 →

3

2
 
sin 𝑥

𝑥
 ,     

𝜕2𝑓

𝜕𝑦2
= 0, 𝜃 → 0  𝑎𝑠 𝑦 → ∞.                           (2.18)    

 

The lower stagnation point of the sphere, 𝑥 ≈ 0, equation (2.16) and (2.17) will be reduced to: 

 

Momentum equation: 

((1 − 𝜙) + (𝜙)
𝜌𝑠

𝜌𝑓
) (2𝑓𝑓′′ − 𝑓′2 +

9

4
) +

1

(1 − 𝜙)2.5
 𝑓′′′ 

                               +2𝐾(𝑓′𝑓′′′′ − 𝑓′′2) + ((1 − 𝜙) + (𝜙)
(𝜌𝛽)𝑠

(𝜌𝛽)𝑓
) 𝜆𝜃 = 0.            (2.19) 

 

Energy equation: 

       
1

𝑃𝑟
 
(𝑘𝑠 + 2𝑘𝑓) − 2𝜙(𝑘𝑓 − 𝑘𝑠)

(𝑘𝑠 + 2𝑘𝑓) + 𝜙(𝑘𝑓 − 𝑘𝑠)
𝜃′′ + 2 ((1 − 𝜙) + (𝜙)

(𝜌𝛽)𝑠

(𝜌𝛽)𝑓
) 𝑓𝜃′,      (2.20)  

 

with boundary conditions, 

𝑓(0) = 0,     𝑓′(0) = 0,     𝜃′(0) = −1 , 

                                   𝑓′ →
3

2
, 𝑓′′ = 0, 𝜃 → 0, 𝑦 → ∞.                   (2.21)  

 

3        Research Methodology 
 

Equation (2.19) and (2.20) along with boundary conditions (2.21) will be solved using Keller-

box method in FORTRAN programming. The obtain data from FORTRAN will be used to plot 

graph in MATLAB. 
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4       Results and Discussion 

 
The effect on skin friction (shear) and velocity for different positions, Y with various viscoelastic 

parameters K are illustrated in Figure 4.1 and Figure 4.2 respectively. It is observed that as the 

viscoelastic parameter increase, the value for skin friction (shear) and velocity are also 

decreasing. 

 

 

 
Figure 4.1 Shear at λ = 1 and Pr =1 for various value of K. 

 

 
                 Figure 4.2 Velocity at λ = 1 and Pr = 1 for various value of K. 

 

 

Figure 4.3 and Figure 4.4 presented the variation of the skin friction (shear) and velocity for 

different positions, Y with various value of mixed convection parameter λ. From the observation, 

when the value of λ increases, the skin friction (shear) and velocity profile also increase. 

 

                   
        Figure 4.3 Shear at K = 1 and Pr = 1 for various value of λ. 
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             Figure 4.4 Velocity at K = 1 and Pr = 1 for various value of λ. 

 

 

Figure 4.5 and Figure 4.6 illustrated the graph for shear and velocity for different positions, Y for 

various Prandtl number. The figure shows a decreasing trend for velocity and constant trend for 

shear as the Prandtl number increase. 

 

 

 
                                  Figure 4.5 Shear at K = 1 and λ = 1 for various value of Pr. 

 

 

 
                                   Figure 4.6 Velocity at K = 1 and λ = 1 for various value of Pr. 

 
 

5       Conclusion  

 



 

 
Sadique and Abdullah (2021) Proc. Sci. Math. 2: 89-96 

 96 

In this problem, the study about mixed convection of viscoelastic nanofluid past over a sphere 

has been carried out theoretically and graphically. It can be clearly see that the effect of 

viscoelastic parameter, mixed convection parameter and Prandtl number affect the fluid motion 

in terms of velocity and skin friction (shear). 
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