

Vol. 2, 2021, page 97-106

 97

Solving Travelling Salesman Problem Using Simulated Annealing

1Indok Zarith Sofia Dzolkepli and 2Farhana Johar

1,2
Department of Mathematical Sciences

Faculty of Science, Universiti Teknologi Malaysia,

81310 Johor Bahru, Johor, Malaysia.

e-mail: 1indokzarithsofia@graduate.utm.my, 2farhanajohar@utm.my

Abstract This research presents a metaheuristic algorithm called Simulated Annealing (SA)

for solving Travelling Salesman Problem (TSP) where the aim is to obtain the best cost. Six

instances’ data are used which are Att48, Berlin52, St70, Pr76, Eil101 and KroA200. A

comparison of the algorithm is being studied among 6 other metaheuristic algorithms which

are Tabu Search (TS), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant

Colony Optimization (ACO), PSO-ACO and GA-PSO-ACO. SA outperformed other

algorithms in all test instances under investigation as it acquired the smallest best cost and

the nearest optimal solution to the TSP instances.

Keywords Travelling Salesman Problem; Simulated Annealing; metaheuristic

method

1 Introduction

Travelling Salesman Problem (TSP) is one of the most studied classical combinatorial

optimization techniques [1]. It is very common in daily life situation especially in business world.

TSP imitates the salesman moving around in the cities and wishes to visit every city on his list

once and then return back to his original city in the least time. TSP is one of the most fundamental

NP-complete combinatorial optimization problems. The standard TSP goes like this: given a set

of cities, the goal is to identify the shortest Hamiltonian cycle that starts in one city and visits each

of the others once before returning to the starting city [2]. Exact approaches, heuristics, and

metaheuristics have all been presented to solve the TSP throughout the years. Heuristics and

metaheuristics are preferred to precise techniques due to the significant rise in computing time as

the issue size grows, since they exchange optimality for efficiency [3].

 The study of TSP has captivated many researchers from diverse field such as mathematics,

physics, biology, and operations research. Not only TSP shows all aspects of combinatorial

optimization, but it also assists as the platform for the new algorithm ideas like Simulated

Annealing (SA), Tabu Search, and Neural Networks [4]. TSP has been applied in a real-world

problem such as school bus routing problem, gas turbine engine overhaul, crystallography of X-

Ray, warehouse order-picking problem and computer wiring problem [5].

 In this research, the focus is on solving the symmetric TSP using one of the powerful

metaheuristic methods called SA to obtain the best route that can minimize the total cost travelled

by salesman. Computer software called MATLAB is used to solve the TSP where the SA method

Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106

 98

is incorporated into the software. This study focuses on 6 datasets taken from TSPLIB which is

the benchmark of TSP where the number of cities is 48, 52, 70, 76, 101 and 200. In order to

accomplish the research, two objectives have been identified, which are to implement the SA

algorithm in solving and finding the best route that can minimize the cost for TSP and to compare

the performance of SA with other metaheuristic algorithms which are Tabu Search (TS), Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), hybrid

of PSO-ACO and hybrid of GA-PSO-ACO.

2 Literature Review

2.1 Simulated Annealing

SA is a meta-heuristic algorithm capable of tackling many hard-combinatorial optimization

problems through controlled randomization [6]. It can skip local minima by exploring the solution

space in directions that lead to improvement in objective function. SA simulates the annealing

process of metal atoms by attempting to find stable states at lower energy levels through controlled

cooling.

Simulated annealing is a method of optimization that resembles the material procedure of

annealing. It is heated until it gets to a point where it liquefies as a substance experiences annealing

and then gradually cools down until the material becomes solid again. The material's last property

is highly dependent on the cooling schedule implemented. The structure can become imperfect if

the material is easily or quickly cooled down but the final structure is strong if it is slowly cooled.

SA operates by observing the physical mechanism by which a solid is slowly cooled, so

that this will ultimately happen at a minimum energy configuration when the structure is frozen

[7]. The structure of the material indicates the solution of the problem when solving the

optimization problem using simulated annealing. In order to clarify how and when the new

solution is perturbed and accepted, temperature is used. Therefore, the main concept behind SA is

to use an acceptable given annealing schedule to reduce the cost function, which 'cools' the device

slowly enough to achieve the approximately optimal solution.

2.2 Related Works on SA

SA has been shown to be able to solve many combinatorial optimization problems in real life,

including the TSP. Two new TSP solution approaches based on SA have been suggested in a

previous research [7]. The first method uses Roulette Wheel selection to join nodes chosen from

the distance matrix. The second method uses a new matrix that is generated using the average of

the previously visited solution's target function values. Using many TSPs from the literature, these

two amended versions of SA were checked and the results of the tests were compared to the

traditional SA technique.

 A diversified model of TSP was proposed with hybrid parallel SA to solve transport

system problems [8]. Each city has various transport vehicles in the proposed model and the cost

of driving through each city depends on the type of vehicle being transported. The objective is to

establish, within a restricted budget, an optimal sequence of cities visited with minimum travelling

time by means of accessible transport vehicles.

 SA algorithm was introduced with list-based cooling program for solving TSP [9]. To

monitor the reduce in temperature parameters, this list-based geometric cooling program with

variable coefficient of cooling was used to control. The Metropolis acceptance criteria utilizes the

Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106

 99

maximum temperature list to determine whether to approve a candidate solution once a

temperature list has been created. This list-based performance of the cooling schedule on a large

range of parameter values is seen to be stable.

2.3 Advantages of SA

The advantages of SA are its easy implementation and its ability to find a global optimum even

after a local minimum has been identified, as it accepts solutions which are worse than the best

candidate [10]. In addition, with a relatively low number of iterations, it can provide acceptable

performance, which makes it ideal for real-time control. It has been shown that if enough

randomness is used in conjunction with very slow cooling, SA would converge to its global

optimality. Essentially, as a Markov chain, SA is a search algorithm which converges under

suitable conditions [11].

 SA is a robust method for dealing with highly nonlinear models, chaotic and noisy data

with several restrictions. Its main benefits over other local search methods are its adaptability and

capacity to approach global optimality. The approach is particularly versatile since it does not rely

on any model's restricting features. A given optimization algorithm can be tuned to improve its

efficiency for any relatively difficult nonlinear or stochastic system, and since it takes time and

effort to become familiar with a given code, the ability to tune a given algorithm for use in more

than one problem should be considered an essential feature of an algorithm [12].

 It can consider the non-functions, as well as multi-local optima functions. In a number of

disciplines, it is also capable for parallel implementation, a very strong and significant method.

With all mention advantages of SA, this research proposes to solve TSP using SA method among

others metaheuristic methods.

3 Research Methodology

3.1 Assumption of TSP

The assumptions for this study are as follows:

i. The direct link between every pair of nodes or cities must be incomplete graph where the

nodes N and arcs A is connected.

ii. The number of visits at each city is restricted to exactly once.

iii. The cost matrix is symmetric because from each direction, the distance between two cities

is the same where 𝑐𝑖𝑗 = 𝑐𝑗𝑖.

iv. The salesman must return to the node or city where he began his tour, which is commonly

referred to as depot.

3.2 Notation of TSP

The TSP can be represented by a complete directed graph 𝐺 = (𝑁, 𝐴). Below shows the notation

in TSP that will be used in this study.

N Set of nodes to be visited

n Total number of nodes

A The set of arcs connecting the nodes

D Cost or distance matrix associated with each arc (𝑖, 𝑗) ∈ 𝐴

𝑐𝑖𝑗 Cost of traveling from node 𝑖 to node 𝑗

Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106

 100

X Set of decision variables

𝑥𝑖𝑗 Decision variables

𝑑𝑖𝑗 Distance from node 𝑖 to node 𝑗

𝑧 Objective function

The collection of places to visit is specified as 𝑁 = {1,2, … , 𝑛} where n denotes the total

number of nodes or the size of the TSP data. The set of nodes that connects them is defined as

𝐴 = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}, where the pair (𝑖, 𝑗) indicates the arc between node 𝑖 and node 𝑗. A

set of decision variables is defined as 𝑋 = {𝑥𝑖𝑗 ∶ 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} where 𝑥𝑖𝑗 = 1 if the salesman

travel from node 𝑖 to node 𝑗 and 0 otherwise. The cost matrix is defined as 𝐷 = {𝑐𝑖𝑗 ∶ 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠

𝑗} where 𝑐𝑖𝑗 represent the cost of traveling from node 𝑖 to node 𝑗.

3.3 Model Formulation of TSP

Minimize

𝑧 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

Subject to:

∑ 𝑥𝑖𝑗

𝑛

𝑖=1

= 1, ∀ 𝑗 ∈ 𝑁

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 1, ∀ 𝑖 ∈ 𝑁

𝑥𝑖𝑗 ∈ {0,1}, ∀ 𝑖, 𝑗 ∈ 𝑁

 𝑥𝑖,𝑖 = 0, ∀ 𝑖 ∈ 𝑁

From the formulation above, the objective function (1) will minimize the total cost along

all the arcs that is used to complete the tour. Constraint (2), constraint (3) and constraint (4) are

the standard assignment constraints. Constraint (5) will fix the diagonal in a square matrix of the

binary variables equal to zero.

(1)

(3)

(2)

(5)

(4)

Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106

 101

3.3 Simulated Annealing Flowchart

The flowchart below is the process of SA in solving TSP with the objective to minimize the cost

travelled by the salesman.

Generate an initial solution, 𝑍𝑐 randomly

Generate a candidate solution, 𝑍𝑛 randomly based on current solution, 𝑍𝑐 and a

specified neighbourhood structure

𝑍𝑛 is better than 𝑍𝑐?

𝑃(𝑎) = 𝑒
 𝑍𝑐−𝑍𝑛

𝑇

Generate 𝑟 between [0,1)

𝑟 < 𝑃(𝑎)?

Update 𝑍𝑛 as the new current solution

Decrease the temperature, 𝑇

End

No Yes

Yes

No

Start

Is the minimum temperature

reached?

Yes

No

Figure 1: Simulated Annealing Flowchart

Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106

 102

4 Result and Discussion

4.1 Parameter Estimation

A few parameters have been experimented to set the algorithm of SA. In this paper, the parameters

of these algorithm are selected after thorough testing. There are two things that need to be

considered in implementing SA to solve TSP, which are initial temperature and cooling rate. The

initial temperature is set to be 100 and the cooling rate is set to be 0.80 throughout the execution

of 6 instances which are Att48, Berlin52, St70, Pr76, Eil101 and KroA200.

4.2 Best Route of TSP

The data for this research are taken from TSPLIB which is the benchmark of TSP and solve by

using MATLAB software. Six instances’ data are used to compare the effectiveness and

performance of the algorithms. Att48 is a set of 48 cities in United State capitals, Berlin52 is a set

of 52 locations in Berlin, St70 is a set 0f 70-city problem, Pr76 is a set of 76-city problem, Eil101

is a set of 101-city problem and KroA200 is a set of 200-city problem where all datasets are taken

from TSPLIB benchmark.

All datasets were run 20 times for each instance and the results presented include the best,

worst and average solutions. Figure 2 shows the path of the best route for the 6 instances. All

instances have a mixed of random and cluster distribution as the positions have a combination of

concentrated which close to each other and random position which is far to each other.

In terms of time, the instance with a smaller number of cities tends to have a shorter

running time to get an optimal solution. In this research, Att48 that consists of 48 cities does not

take a longer time than the instance with a larger number of cities like KroA200, which consists

of 200 cities. The smaller number of cities does not require many movements of the swapping

between the cities to find the optimal cost, thus requiring less running time. Unlike the instance

with a larger number of cities, it tends to have many swapping numbers between cities, requiring

it to have a longer running time.

Figure 2: Best Route of TSP

Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106

 103

4.3 Comparison of Algorithms

A comparison of the algorithm is being studied among 7 algorithms which are TS, GA, PSO, ACO,

hybrid of PSO-ACO, hybrid of GA-PSO-ACO and SA. The comparison to be performed here will

take into account the cost of solutions found by the algorithms, the difference and the error. The

results of TS, GA, PSO, ACO, PSO-ACO and GA-PSO-ACO for Att48, Berlin52, St70, Pr76,

Eil101 and KroA200 are directly taken from Deng et al. [13] and being compared with the result

obtained by using SA algorithm.

Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6 show the comparison for each

instance. From the table, scale indicates the number of cities which include the depot and the

optimal tour length, as indicated in TSBLIB, is the optimal solution. The term "best" refers to the

algorithm's best answer, the poorest answer obtained by each algorithm is denoted by the word

"worst" and the average value of the whole run solutions is denoted by average. Difference denotes

the result of subtracting between best and optimal solution and error denotes the percent difference

of the solution.

Table 1: Comparison for Att48

Algorithm Scale
Optimal

Solution
Best Worst Average Difference

Error

(%)

TS 48 33,522 34,198 35,886 34,978 676 2.017

GA 48 33,522 34,572 36,299 35,002 1,050 3.132

PSO 48 33,522 34,759 37,672 36,179 1,237 3.690

ACO 48 33,522 34,357 35,197 34,460 835 2.491

PSO-ACO 48 33,522 33,641 34,730 33,956 119 0.355

GA-PSO-

ACO 48 33,522 33,524 34,164 33,662 2 0.006

SA 48 33,522 33,523.71 34,113.58 33,658.24 1.71 0.005

Table 2: Comparison for Berlin52

Algorithm Scale
Optimal

Solution
Best Worst Average Difference

Error

(%)

TS 52 7,542 7,976.84 8,286.68 8,014.60 434.84 5.766

GA 52 7,542 8,201.17 8,443.02 8,376.55 659.17 8.740

PSO 52 7,542 8,197.79 8,589.31 8,319.51 655.79 8.695

ACO 52 7,542 7,647.55 7,780.57 7,732.31 105.55 1.399

PSO-ACO 52 7,542 7,568.54 7,618.31 7,586.42 26.54 0.352

GA-PSO-

ACO 52 7,542 7,544.37 7,544.37 7,545.37 2.37 0.031

SA 52 7,542 7,544.37 7,549.71 7,546.31 2.37 0.031

Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106

 104

Table 3: Comparison for St70

Algorithm Scale
Optimal

Solution
Best Worst Average Difference

Error

(%)

TS 70 675 702.27 738.45 718.56 27.27 4.040

GA 70 675 715.43 744.31 731.72 40.43 5.990

PSO 70 675 720.41 753.29 741.09 45.41 6.727

ACO 70 675 697.76 716.83 705.58 22.76 3.372

PSO-ACO 70 675 684.16 710.47 698.75 9.16 1.357

GA-PSO-

ACO 70 675 679.60 704.25 694.60 4.6 0.681

SA 70 675 679.32 706.98 694.17 4.32 0.640

Table 4: Comparison for Pr76

Algorithm Scale
Optimal

Solution
Best Worst Average Difference

Error

(%)

TS 76 108,159 110,941.00 130,637.00 122,104.00 2,782.00 2.572

GA 76 108,159 115,329.00 124,851.00 120,245.00 7,170.00 6.629

PSO 76 108,159 118,038.00 126,583.00 122,735.00 9,879.00 9.134

ACO 76 108,159 110,517.00 120,922.00 114,964.00 2,358.00 2.180

PSO-ACO 76 108,159 109,244.00 113,120.00 110,162.00 1,085.00 1.003

GA-PSO-

ACO 76 108,159 109,206.00 112,443.00 110,023.00 1,047.00 0.968

SA 76 108,159 108,159.44 111,599.33 109,993.12 0.44 0.000

Table 5: Comparison for Eil101

Algorithm Scale
Optimal

Solution
Best Worst Average Difference

Error

(%)

TS 101 629 667.43 709.11 685.49 38.43 6.110

GA 101 629 682.37 745.33 706.25 53.37 8.485

PSO 101 629 687.32 779.11 731.58 58.32 9.272

ACO 101 629 649.87 695.18 664.07 20.87 3.318

PSO-ACO 101 629 637.65 674.07 651.36 8.65 1.375

GA-PSO-

ACO 101 629 633.07 641.17 637.93 4.07 0.647

SA 101 629 631.05 641.60 637.84 2.05 0.326

Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106

 105

Table 6: Comparison for KroA200

Algorithm Scale
Optimal

Solution
Best Worst Average Difference

Error

(%)

TS 200 29,368 31,289 33,438 32219 1,921 6.541

GA 200 29,368 32,261 34,572 33158 2,893 9.851

PSO 200 29,368 32,350 34,526 33132 2,982 10.154

ACO 200 29,368 31,669 33,839 32434 2,301 7.835

PSO-ACO 200 29,368 30,190 33,626 31,927 822 2.799

GA-PSO-

ACO 200 29,368 29,731 33,228 31,015 363 1.236

SA 200 29,368 29,492.69 31,934.32 30,973.43 125 0.425

As can be seen in Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6, the SA

outperformed the other algorithms in all test instances under investigation. Besides, the SA

obtained the nearest-optimal solution to the TSP instances compared to any other algorithms. In

terms of the average results obtained by each algorithm, the SA still has the best performance for

Att48, St70, Pr76, Eil101 and KroA200 datasets. In comparison to the error, SA produces the

smallest error compared to other 6 algorithms. Specifically, SA algorithm gives a better

improvement on the results obtained for the 6 datasets.

5 Conclusion

In conclusion, the objectives of this research are successfully achieved. The objectives are to

implement the SA algorithm in solving and finding the best route that can minimize the cost for

TSP and to compare the performance of SA with other metaheuristic algorithms in solving TSP.

 SA is performed on 6 TSP benchmark instances from TSPLIB with cities scale of 48, 52,

70, 76, 101 and 200 where the algorithms were coded in MATLAB language. Experimental result

and analysis also have been discussed in this research. In order to test the effectiveness of the SA,

a comparison of the algorithm is being studied among 6 other metaheuristic algorithms which are

TS, GA, PSO, ACO, hybrid of PSO-ACO, hybrid of GA-PSO-ACO. According to the experiment

results obtained, SA can greatly improve the computing efficiency for solving TSP and

outperforms the other 6 metaheuristics. SA has obtained the smallest best cost and the nearest

optimal solution to the TSP instances compared to other algorithms. To conclude, we can see that

the order of solution quality for the 6 algorithms is SA > GA-PSO-ACO > PSO-ACO > ACO >

TS > GA > PSO.

 As recommendation for future work, it is hoped that further study can be carried out to

consider merging SA algorithm with any other metaheuristic algorithms, given the fact that SA is

so sophisticated, easy to implement and has many advantages. The hybrid algorithm might give

interesting results and might produce a better solution. Besides, researcher might want to consider

more constraints in solving TSP or consider on solving other types of TSP which are asymmetric

TSP (aTSP) and multi-TSP (mTSP). Researcher also might want to conduct a research on solving

the applications of TSP which include vehicle routing, job scheduling and urban transportation

problems, logistics, genome sequencing, scan chains, drilling problems and data clustering. In

Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106

 106

addition, researcher can include a fair comparison on parameters for other algorithms in solving

TSP.

References

[1] Gonsalves, T. and Shiozaki, T. (2015) ‘Solving capacity problems as symmetric travelling

salesman problems’, International Journal of Artificial Intelligence & Applications. 6(2): 53.

[2] Mavrovouniotis, M., Müller, F. M. and Yang, S. (2016) ‘Ant colony optimization with local

search for dynamic traveling salesman problems’, IEEE Transactions on Cybernetics. 47(7):

1743-1756.

[3] Mansouri, N. and Javidi, M. M. (2020) ‘A review of data replication based on meta-heuristics

approach in cloud computing and data grid’, Soft Computing. 1-28.

[4] Chauhan, C., Gupta, R. and Pathak, K. (2012) ‘Survey of methods of solving TSP along with

its implementation using dynamic programming approach’, International Journal of

Computer Applications. 52(4).

[5] Sghaier, S. B., Guedria, N. B. and Mraihi, R. (2013) ‘Solving school bus routing problem with

genetic algorithm’, International Conference on Advanced Logistics and Transport. 7-12.

[6] Du, K. L. and Swamy, M. N. S. (2016) Simulated Annealing. in Search and Optimization by

Metaheuristics. Birkhäuser, Cham. 29-36.

[7] Bayram, H. and Şahin, R. (2013) ‘A new simulated annealing approach for travelling salesman

problem’, Mathematical and Computational Applications. 18(3): 313-322.

[8] Azimi, P., Rooeinfar, R. and Pourvaziri, H. (2014) ‘A new hybrid parallel simulated annealing

algorithm for travelling salesman problem with multiple transporters’, Journal of

Optimization in Industrial Engineering. 7(15): 1-13.

[9] Zhan, S. H., Lin, J., Zhang, Z. J. and Zhong, Y. W. (2016) ‘List-based simulated annealing

algorithm for traveling salesman problem’, Computational Intelligence and Neuroscience.

[10] Martinez, C. M. and Cao, D. (2018) iHorizon-Enabled Energy Management for Electrified

Vehicles. Butterworth-Heinemann.

[11]Yang, X. S. (2020) ‘Nature-inspired optimization algorithms: challenges and open problems’,

Journal of Computational Science. 46: 101-104.

[12] Samora, I., Franca, M. J., Schleiss, A. J. and Ramos, H. M. (2016) ‘Simulated annealing in

optimization of energy production in a water supply network’, Water Resources Management.

30(4): 1533-1547.

[13] Deng, W., Chen, R., He, B., Liu, Y., Yin, L. and Guo, J. (2012) ‘A novel two-stage hybrid

swarm intelligence optimization algorithm and application’, Soft Computing. 16(10): 1707-

1722.

