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Abstract This research presents a metaheuristic algorithm called Simulated Annealing (SA) 

for solving Travelling Salesman Problem (TSP) where the aim is to obtain the best cost. Six 

instances’ data are used which are Att48, Berlin52, St70, Pr76, Eil101 and KroA200. A 

comparison of the algorithm is being studied among 6 other metaheuristic algorithms which 

are Tabu Search (TS), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant 

Colony Optimization (ACO), PSO-ACO and GA-PSO-ACO. SA outperformed other 

algorithms in all test instances under investigation as it acquired the smallest best cost and 

the nearest optimal solution to the TSP instances. 
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1 Introduction 
 

Travelling Salesman Problem (TSP) is one of the most studied classical combinatorial 

optimization techniques [1]. It is very common in daily life situation especially in business world. 

TSP imitates the salesman moving around in the cities and wishes to visit every city on his list 

once and then return back to his original city in the least time. TSP is one of the most fundamental 

NP-complete combinatorial optimization problems. The standard TSP goes like this: given a set 

of cities, the goal is to identify the shortest Hamiltonian cycle that starts in one city and visits each 

of the others once before returning to the starting city [2]. Exact approaches, heuristics, and 

metaheuristics have all been presented to solve the TSP throughout the years. Heuristics and 

metaheuristics are preferred to precise techniques due to the significant rise in computing time as 

the issue size grows, since they exchange optimality for efficiency [3]. 

 The study of TSP has captivated many researchers from diverse field such as mathematics, 

physics, biology, and operations research. Not only TSP shows all aspects of combinatorial 

optimization, but it also assists as the platform for the new algorithm ideas like Simulated 

Annealing (SA), Tabu Search, and Neural Networks [4]. TSP has been applied in a real-world 

problem such as school bus routing problem, gas turbine engine overhaul, crystallography of X-

Ray, warehouse order-picking problem and computer wiring problem [5].  

 In this research, the focus is on solving the symmetric TSP using one of the powerful 

metaheuristic methods called SA to obtain the best route that can minimize the total cost travelled 

by salesman. Computer software called MATLAB is used to solve the TSP where the SA method 



 
Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106 

 98 

is incorporated into the software. This study focuses on 6 datasets taken from TSPLIB which is 

the benchmark of TSP where the number of cities is 48, 52, 70, 76, 101 and 200. In order to 

accomplish the research, two objectives have been identified, which are to implement the SA 

algorithm in solving and finding the best route that can minimize the cost for TSP and to compare 

the performance of SA with other metaheuristic algorithms which are Tabu Search (TS), Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), hybrid 

of PSO-ACO and hybrid of GA-PSO-ACO. 

 

 

2 Literature Review  
 

2.1 Simulated Annealing 

 

SA is a meta-heuristic algorithm capable of tackling many hard-combinatorial optimization 

problems through controlled randomization [6]. It can skip local minima by exploring the solution 

space in directions that lead to improvement in objective function. SA simulates the annealing 

process of metal atoms by attempting to find stable states at lower energy levels through controlled 

cooling. 

Simulated annealing is a method of optimization that resembles the material procedure of 

annealing. It is heated until it gets to a point where it liquefies as a substance experiences annealing 

and then gradually cools down until the material becomes solid again. The material's last property 

is highly dependent on the cooling schedule implemented. The structure can become imperfect if 

the material is easily or quickly cooled down but the final structure is strong if it is slowly cooled. 

SA operates by observing the physical mechanism by which a solid is slowly cooled, so 

that this will ultimately happen at a minimum energy configuration when the structure is frozen 

[7]. The structure of the material indicates the solution of the problem when solving the 

optimization problem using simulated annealing. In order to clarify how and when the new 

solution is perturbed and accepted, temperature is used. Therefore, the main concept behind SA is 

to use an acceptable given annealing schedule to reduce the cost function, which 'cools' the device 

slowly enough to achieve the approximately optimal solution. 

 

 

2.2 Related Works on SA 

 

SA has been shown to be able to solve many combinatorial optimization problems in real life, 

including the TSP. Two new TSP solution approaches based on SA have been suggested in a 

previous research [7]. The first method uses Roulette Wheel selection to join nodes chosen from 

the distance matrix. The second method uses a new matrix that is generated using the average of 

the previously visited solution's target function values. Using many TSPs from the literature, these 

two amended versions of SA were checked and the results of the tests were compared to the 

traditional SA technique. 

 A diversified model of TSP was proposed with hybrid parallel SA to solve transport 

system problems [8]. Each city has various transport vehicles in the proposed model and the cost 

of driving through each city depends on the type of vehicle being transported. The objective is to 

establish, within a restricted budget, an optimal sequence of cities visited with minimum travelling 

time by means of accessible transport vehicles. 

 SA algorithm was introduced with list-based cooling program for solving TSP [9]. To 

monitor the reduce in temperature parameters, this list-based geometric cooling program with 

variable coefficient of cooling was used to control. The Metropolis acceptance criteria utilizes the 
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maximum temperature list to determine whether to approve a candidate solution once a 

temperature list has been created. This list-based performance of the cooling schedule on a large 

range of parameter values is seen to be stable. 

 

 

2.3 Advantages of SA 

 

The advantages of SA are its easy implementation and its ability to find a global optimum even 

after a local minimum has been identified, as it accepts solutions which are worse than the best 

candidate [10]. In addition, with a relatively low number of iterations, it can provide acceptable 

performance, which makes it ideal for real-time control. It has been shown that if enough 

randomness is used in conjunction with very slow cooling, SA would converge to its global 

optimality. Essentially, as a Markov chain, SA is a search algorithm which converges under 

suitable conditions [11]. 

 SA is a robust method for dealing with highly nonlinear models, chaotic and noisy data 

with several restrictions. Its main benefits over other local search methods are its adaptability and 

capacity to approach global optimality. The approach is particularly versatile since it does not rely 

on any model's restricting features. A given optimization algorithm can be tuned to improve its 

efficiency for any relatively difficult nonlinear or stochastic system, and since it takes time and 

effort to become familiar with a given code, the ability to tune a given algorithm for use in more 

than one problem should be considered an essential feature of an algorithm [12]. 

 It can consider the non-functions, as well as multi-local optima functions. In a number of 

disciplines, it is also capable for parallel implementation, a very strong and significant method. 

With all mention advantages of SA, this research proposes to solve TSP using SA method among 

others metaheuristic methods. 

 

 

3     Research Methodology 
 

3.1 Assumption of TSP 

 

The assumptions for this study are as follows: 

i. The direct link between every pair of nodes or cities must be incomplete graph where the 

nodes N and arcs A is connected. 

ii. The number of visits at each city is restricted to exactly once.  

iii. The cost matrix is symmetric because from each direction, the distance between two cities 

is the same where 𝑐𝑖𝑗 = 𝑐𝑗𝑖. 

iv. The salesman must return to the node or city where he began his tour, which is commonly 

referred to as depot. 

 

3.2 Notation of TSP 

 

The TSP can be represented by a complete directed graph 𝐺 = (𝑁, 𝐴). Below shows the notation 

in TSP that will be used in this study. 

N Set of nodes to be visited 

n Total number of nodes 

A The set of arcs connecting the nodes 

D Cost or distance matrix associated with each arc (𝑖, 𝑗) ∈ 𝐴 

𝑐𝑖𝑗 Cost of traveling from node 𝑖 to node 𝑗 
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X Set of decision variables 

𝑥𝑖𝑗 Decision variables 

𝑑𝑖𝑗 Distance from node 𝑖 to node 𝑗 

𝑧 Objective function 

 

The collection of places to visit is specified as 𝑁 = {1,2, … , 𝑛} where n denotes the total 

number of nodes or the size of the TSP data. The set of nodes that connects them is defined as 

𝐴 = {(𝑖, 𝑗) ∶  𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}, where the pair (𝑖, 𝑗) indicates the arc between node 𝑖 and node 𝑗. A 

set of decision variables is defined as 𝑋 = {𝑥𝑖𝑗 ∶  𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} where 𝑥𝑖𝑗 = 1 if the salesman 

travel from node 𝑖 to node 𝑗 and 0 otherwise. The cost matrix is defined as 𝐷 = {𝑐𝑖𝑗 ∶  𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠

𝑗} where 𝑐𝑖𝑗 represent the cost of traveling from node 𝑖 to node 𝑗. 

 

 

3.3 Model Formulation of TSP 

 

Minimize 

𝑧 =  ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

    

Subject to: 

∑ 𝑥𝑖𝑗

𝑛

𝑖=1

= 1, ∀ 𝑗 ∈ 𝑁 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 1, ∀ 𝑖 ∈ 𝑁 

𝑥𝑖𝑗 ∈ {0,1}, ∀ 𝑖, 𝑗 ∈ 𝑁                

 𝑥𝑖,𝑖 = 0, ∀ 𝑖 ∈ 𝑁       

 

From the formulation above, the objective function (1) will minimize the total cost along 

all the arcs that is used to complete the tour. Constraint (2), constraint (3) and constraint (4) are 

the standard assignment constraints. Constraint (5) will fix the diagonal in a square matrix of the 

binary variables equal to zero.  
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3.3 Simulated Annealing Flowchart 

 

The flowchart below is the process of SA in solving TSP with the objective to minimize the cost 

travelled by the salesman. 

 

Generate an initial solution, 𝑍𝑐 randomly 

Generate a candidate solution, 𝑍𝑛 randomly based on current solution, 𝑍𝑐 and a 

specified neighbourhood structure 

𝑍𝑛 is better than 𝑍𝑐? 

𝑃(𝑎) = 𝑒
 𝑍𝑐−𝑍𝑛

𝑇  

Generate 𝑟 between [0,1) 

𝑟 < 𝑃(𝑎)? 

Update 𝑍𝑛 as the new current solution 

Decrease the temperature, 𝑇 

End 

No Yes 

Yes 

No 

Start 

Is the minimum temperature 

reached? 

 

Yes 

No 

Figure 1: Simulated Annealing Flowchart 
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4          Result and Discussion 

 
4.1 Parameter Estimation 

 

A few parameters have been experimented to set the algorithm of SA. In this paper, the parameters 

of these algorithm are selected after thorough testing. There are two things that need to be 

considered in implementing SA to solve TSP, which are initial temperature and cooling rate. The 

initial temperature is set to be 100 and the cooling rate is set to be 0.80 throughout the execution 

of 6 instances which are Att48, Berlin52, St70, Pr76, Eil101 and KroA200. 

 

4.2 Best Route of TSP 

 

The data for this research are taken from TSPLIB which is the benchmark of TSP and solve by 

using MATLAB software. Six instances’ data are used to compare the effectiveness and 

performance of the algorithms. Att48 is a set of 48 cities in United State capitals, Berlin52 is a set 

of 52 locations in Berlin, St70 is a set 0f 70-city problem, Pr76 is a set of 76-city problem, Eil101 

is a set of 101-city problem and KroA200 is a set of 200-city problem where all datasets are taken 

from TSPLIB benchmark. 

All datasets were run 20 times for each instance and the results presented include the best, 

worst and average solutions. Figure 2 shows the path of the best route for the 6 instances. All 

instances have a mixed of random and cluster distribution as the positions have a combination of 

concentrated which close to each other and random position which is far to each other. 

In terms of time, the instance with a smaller number of cities tends to have a shorter 

running time to get an optimal solution. In this research, Att48 that consists of 48 cities does not 

take a longer time than the instance with a larger number of cities like KroA200, which consists 

of 200 cities. The smaller number of cities does not require many movements of the swapping 

between the cities to find the optimal cost, thus requiring less running time. Unlike the instance 

with a larger number of cities, it tends to have many swapping numbers between cities, requiring 

it to have a longer running time. 

 

    
 

     
 

Figure 2: Best Route of TSP 
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4.3 Comparison of Algorithms 

 

A comparison of the algorithm is being studied among 7 algorithms which are TS, GA, PSO, ACO, 

hybrid of PSO-ACO, hybrid of GA-PSO-ACO and SA. The comparison to be performed here will 

take into account the cost of solutions found by the algorithms, the difference and the error. The 

results of TS, GA, PSO, ACO, PSO-ACO and GA-PSO-ACO for Att48, Berlin52, St70, Pr76, 

Eil101 and KroA200 are directly taken from Deng et al. [13] and being compared with the result 

obtained by using SA algorithm.  

Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6 show the comparison for each 

instance. From the table, scale indicates the number of cities which include the depot and the 

optimal tour length, as indicated in TSBLIB, is the optimal solution. The term "best" refers to the 

algorithm's best answer, the poorest answer obtained by each algorithm is denoted by the word 

"worst" and the average value of the whole run solutions is denoted by average. Difference denotes 

the result of subtracting between best and optimal solution and error denotes the percent difference 

of the solution. 

 

Table 1: Comparison for Att48 

  

Algorithm Scale 
Optimal 

Solution 
Best Worst Average Difference 

Error 

(%) 

TS 48 33,522 34,198 35,886 34,978 676 2.017 

GA 48 33,522 34,572 36,299 35,002 1,050 3.132 

PSO 48 33,522 34,759 37,672 36,179 1,237 3.690 

ACO 48 33,522 34,357 35,197 34,460 835 2.491 

PSO-ACO 48 33,522 33,641 34,730 33,956 119 0.355 

GA-PSO-

ACO 48 33,522 33,524 34,164 33,662 2 0.006 

SA 48 33,522 33,523.71 34,113.58 33,658.24 1.71 0.005 

        

        
Table 2: Comparison for Berlin52 

  

Algorithm Scale 
Optimal 

Solution 
Best Worst Average Difference 

Error 

(%) 

TS 52 7,542 7,976.84 8,286.68 8,014.60 434.84 5.766 

GA 52 7,542 8,201.17 8,443.02 8,376.55 659.17 8.740 

PSO 52 7,542 8,197.79 8,589.31 8,319.51 655.79 8.695 

ACO 52 7,542 7,647.55 7,780.57 7,732.31 105.55 1.399 

PSO-ACO 52 7,542 7,568.54 7,618.31 7,586.42 26.54 0.352 

GA-PSO-

ACO 52 7,542 7,544.37 7,544.37 7,545.37 2.37 0.031 

SA 52 7,542 7,544.37 7,549.71 7,546.31 2.37 0.031 
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Table 3: Comparison for St70 

  

Algorithm Scale 
Optimal 

Solution 
Best Worst Average Difference 

Error 

(%) 

TS 70 675 702.27 738.45 718.56 27.27 4.040 

GA 70 675 715.43 744.31 731.72 40.43 5.990 

PSO 70 675 720.41 753.29 741.09 45.41 6.727 

ACO 70 675 697.76 716.83 705.58 22.76 3.372 

PSO-ACO 70 675 684.16 710.47 698.75 9.16 1.357 

GA-PSO-

ACO 70 675 679.60 704.25 694.60 4.6 0.681 

SA 70 675 679.32 706.98 694.17 4.32 0.640 

 

 

Table 4: Comparison for Pr76 

 

Algorithm Scale 
Optimal 

Solution 
Best Worst Average Difference 

Error 

(%) 

TS 76 108,159 110,941.00 130,637.00 122,104.00 2,782.00 2.572 

GA 76 108,159 115,329.00 124,851.00 120,245.00 7,170.00 6.629 

PSO 76 108,159 118,038.00 126,583.00 122,735.00 9,879.00 9.134 

ACO 76 108,159 110,517.00 120,922.00 114,964.00 2,358.00 2.180 

PSO-ACO 76 108,159 109,244.00 113,120.00 110,162.00 1,085.00 1.003 

GA-PSO-

ACO 76 108,159 109,206.00 112,443.00 110,023.00 1,047.00 0.968 

SA 76 108,159 108,159.44 111,599.33 109,993.12 0.44 0.000 

 

 

Table 5: Comparison for Eil101  

Algorithm Scale 
Optimal 

Solution 
Best Worst Average Difference 

Error 

(%) 

TS 101 629 667.43 709.11 685.49 38.43 6.110 

GA 101 629 682.37 745.33 706.25 53.37 8.485 

PSO 101 629 687.32 779.11 731.58 58.32 9.272 

ACO 101 629 649.87 695.18 664.07 20.87 3.318 

PSO-ACO 101 629 637.65 674.07 651.36 8.65 1.375 

GA-PSO-

ACO 101 629 633.07 641.17 637.93 4.07 0.647 

SA 101 629 631.05 641.60 637.84 2.05 0.326 

 

 



 
Dzolkepli and Johar (2021) Proc. Sci. Math. 2: 97-106 

 105 

 

Table 6: Comparison for KroA200 

  

Algorithm Scale 
Optimal 

Solution 
Best Worst Average Difference 

Error 

(%) 

TS 200 29,368 31,289 33,438 32219 1,921 6.541 

GA 200 29,368 32,261 34,572 33158 2,893 9.851 

PSO 200 29,368 32,350 34,526 33132 2,982 10.154 

ACO 200 29,368 31,669 33,839 32434 2,301 7.835 

PSO-ACO 200 29,368 30,190 33,626 31,927 822 2.799 

GA-PSO-

ACO 200 29,368 29,731 33,228 31,015 363 1.236 

SA 200 29,368 29,492.69 31,934.32 30,973.43 125 0.425 

 

 

As can be seen in Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6, the SA 

outperformed the other algorithms in all test instances under investigation. Besides, the SA 

obtained the nearest-optimal solution to the TSP instances compared to any other algorithms. In 

terms of the average results obtained by each algorithm, the SA still has the best performance for 

Att48, St70, Pr76, Eil101 and KroA200 datasets. In comparison to the error, SA produces the 

smallest error compared to other 6 algorithms. Specifically, SA algorithm gives a better 

improvement on the results obtained for the 6 datasets. 

 

5 Conclusion 
 

In conclusion, the objectives of this research are successfully achieved. The objectives are to 

implement the SA algorithm in solving and finding the best route that can minimize the cost for 

TSP and to compare the performance of SA with other metaheuristic algorithms in solving TSP.  

 SA is performed on 6 TSP benchmark instances from TSPLIB with cities scale of 48, 52, 

70, 76, 101 and 200 where the algorithms were coded in MATLAB language. Experimental result 

and analysis also have been discussed in this research. In order to test the effectiveness of the SA, 

a comparison of the algorithm is being studied among 6 other metaheuristic algorithms which are 

TS, GA, PSO, ACO, hybrid of PSO-ACO, hybrid of GA-PSO-ACO. According to the experiment 

results obtained, SA can greatly improve the computing efficiency for solving TSP and 

outperforms the other 6 metaheuristics. SA has obtained the smallest best cost and the nearest 

optimal solution to the TSP instances compared to other algorithms. To conclude, we can see that 

the order of solution quality for the 6 algorithms is SA > GA-PSO-ACO > PSO-ACO > ACO > 

TS > GA > PSO. 

 As recommendation for future work, it is hoped that further study can be carried out to 

consider merging SA algorithm with any other metaheuristic algorithms, given the fact that SA is 

so sophisticated, easy to implement and has many advantages. The hybrid algorithm might give 

interesting results and might produce a better solution. Besides, researcher might want to consider 

more constraints in solving TSP or consider on solving other types of TSP which are asymmetric 

TSP (aTSP) and multi-TSP (mTSP). Researcher also might want to conduct a research on solving 

the applications of TSP which include vehicle routing, job scheduling and urban transportation 

problems, logistics, genome sequencing, scan chains, drilling problems and data clustering. In 
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addition, researcher can include a fair comparison on parameters for other algorithms in solving 

TSP. 

 

 

References 

 

[1]   Gonsalves, T. and Shiozaki, T. (2015) ‘Solving capacity problems as symmetric travelling 

salesman problems’, International Journal of Artificial Intelligence & Applications. 6(2): 53. 

[2]  Mavrovouniotis, M., Müller, F. M. and Yang, S. (2016) ‘Ant colony optimization with local 

search for dynamic traveling salesman problems’, IEEE Transactions on Cybernetics. 47(7): 

1743-1756. 

[3]  Mansouri, N. and Javidi, M. M. (2020) ‘A review of data replication based on meta-heuristics 

approach in cloud computing and data grid’, Soft Computing. 1-28. 

[4]  Chauhan, C., Gupta, R. and Pathak, K. (2012) ‘Survey of methods of solving TSP along with 

its implementation using dynamic programming approach’, International Journal of 

Computer Applications. 52(4). 

[5]  Sghaier, S. B., Guedria, N. B. and Mraihi, R. (2013) ‘Solving school bus routing problem with 

genetic algorithm’, International Conference on Advanced Logistics and Transport. 7-12. 

[6]  Du, K. L. and Swamy, M. N. S. (2016) Simulated Annealing. in Search and Optimization by 

Metaheuristics. Birkhäuser, Cham. 29-36. 

[7]  Bayram, H. and Şahin, R. (2013) ‘A new simulated annealing approach for travelling salesman 

problem’, Mathematical and Computational Applications. 18(3): 313-322.  

[8]  Azimi, P., Rooeinfar, R. and Pourvaziri, H. (2014) ‘A new hybrid parallel simulated annealing 

algorithm for travelling salesman problem with multiple transporters’, Journal of 

Optimization in Industrial Engineering. 7(15): 1-13. 

[9]  Zhan, S. H., Lin, J., Zhang, Z. J. and Zhong, Y. W. (2016) ‘List-based simulated annealing 

algorithm for traveling salesman problem’, Computational Intelligence and Neuroscience. 

[10] Martinez, C. M. and Cao, D. (2018) iHorizon-Enabled Energy Management for Electrified 

Vehicles. Butterworth-Heinemann. 

[11]Yang, X. S. (2020) ‘Nature-inspired optimization algorithms: challenges and open problems’, 

Journal of Computational Science. 46: 101-104. 

[12] Samora, I., Franca, M. J., Schleiss, A. J. and Ramos, H. M. (2016) ‘Simulated annealing in 

optimization of energy production in a water supply network’, Water Resources Management. 

30(4): 1533-1547. 

[13] Deng, W., Chen, R., He, B., Liu, Y., Yin, L. and Guo, J. (2012) ‘A novel two-stage hybrid 

swarm intelligence optimization algorithm and application’, Soft Computing. 16(10): 1707-

1722. 

 

 

 

 


