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Abstract  
Influenza is one of the common infectious diseases that can affect people of all ages. A non-linear 
mathematical model is used to study the transmission dynamics of influenza using the Susceptible- 
Infected-Treatment-Recovered (SITR) model. The SITR model is developed based on the Ordinary 
Differential Equations (ODEs) system. The stability of the model is determined using the Routh-
Hurwitz Criterion Method, and the equilibrium point is measured at a disease-free equilibrium point. 
To identify if the disease is extinct or widespread in the population, the basic reproduction number, 
𝑅₀, is generated and analyzed using Next-Generation Matrix Method. 
Keywords: Influenza; Disease-free equilibrium point; Basic reproduction number; SITR model; 
Routh-Hurwitz Criterion Method; Next-Generation Matrix Method. 
 
 
1 Introduction 
Influenza is an infectious disease that spreads within the population. Influenza is a respiratory 
infectious disease caused by the influenza virus, commonly known as flu [1]. It can spread from 
person to person through the air from the respiratory tract of an infected person when they talk, 
cough, or sneeze. Influenza symptoms include a high fever, muscle pain, fatigue, runny nose, sore 
throat, coughing, and nausea [2]. It can also be transmitted by touching a surface with respiratory 
droplets with influenza viruses and then touching the nose, mouth, or possibly eyes. Children under 
five years of age, adults over 65 years of age, pregnant mothers, people with chronic conditions 
such as asthma, heart disease, kidney disease, diabetes, and individual with weaker immune 
systems are at high risk for influenza [3]. However, most influenza-related deaths occur in the 
elderly (65 years of age and older) and in those with underlying cardiovascular and respiratory 
comorbidities. Although the influenza virus is commonly compared to a common cold, it can also 
result in more severe disease or death. During the 2018–2019 influenza season, the Centers for 
Disease Control and Prevention (CDC) estimated that influenza caused more than 35.5 million 
illnesses, 16.5 million medical visits, 490,600 hospitalizations, and 34,200 fatalities [4]. The 
Director-General of Health issued a press article on 21st January 2020 to inform the public of the 
ongoing management of influenza cases. It has been reported that 186 cases of influenza until 18th 
January 2020 in Malaysia compared to 11 cases recorded in the previous year [5]. There are many 
antiviral drugs on the market. Influenza can be prevented with the use of antiviral drugs. Suppose 
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the person is severely unwell and concurrently has another disease. If there is a risk factor, and 
antiviral medications are required, then it is advisable to consult a doctor for treatment. 
 Mathematical modelling plays an essential role in understanding the dynamics of 
infectious disease influenza and preventing the disease through treatment, vaccination, and 
isolation of infected population. Many mathematical models were developed and studied to 
spread contagious illness in people, and they were applied to specific cases. The history of 
mathematical modelling on contagious diseases has been shown a significant concern for 
humankind. Epidemiology models are useful in comparing the effects of prevention or control 
procedures. The majority of the influenza mathematical model uses the Ordinary Differential 
Equations (ODEs) inspired by the basic susceptible, infected and recovered (SIR) epidemic model. 
Susceptible-Infected-Recovered (SIR) model is the foundation in determining the dynamics of 
infectious disease. In this paper, an extended Susceptible-Infected-Recovered (SIR) model will be 
used to assess influenza transmission in a population. The new compartment, the proportion of 
the human population treated at time t (T), is added into the basic Susceptible-Infected-Recovered 
(SIR) model where it refers to the process of offering the influenza infected individual with 
medicine or vaccination. 
 
2 Formulation of the Model  
2.1 SITR Model 
In this section, an extended Susceptible-Infected-Recovered (SIR) model of influenza transmission 
is introduced. The T (Treatment) compartment is added into the existing SIR model. The 
Susceptible-Infected-Treatment-Recovered (SITR) model consists of a system of four ordinary 
differential equations. The compartments are S(t) represents the number of susceptible individuals, 
I(t) represent the number of infected individuals, T(t) represents the number of treated individuals 
and R(t) represents number of recovered individuals. The total population at time t, N(t) is given 
by: 
 

  (1) 
 
The transfer diagram of the model is shown in Figure 1 below. 
 

 
 

Figure 1: The schematic diagram of progression of transmission dynamics of 

( ) ( ) ( ) ( ) ( )N t S t I t T t R t= + + +
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influenza with treatment [6]. 
 
According to Figure 1, we have following model [6]: 
 

 
 

(2) 

 
 

(3) 

 
 

(4) 

 
 

(5) 

 
   

There are several assumptions in the Susceptible-Infected-Treatment-Recovered (SITR) model. We 
assumed that the total population, 𝑁(𝑡), is not fixed, and due to contact of infectious individuals, 
all people are equally likely to be infected. It is believed that susceptible individuals becoming 
infected is the only way to exit the susceptible class, 𝑆(𝑡). The infected individuals can move to 
the treatment class, 𝑇(𝑡). After the infected individuals getting the treatment, the treated 
individuals move to the recovered class, 𝑅(𝑡), and recovered from the disease. It is also assumed 
that some infected people recovered without any treatment and gained immunity. 
 
3     Analysis of the model 
3.1 Disease-free equilibrium point (DFEP) 
Disease-free equilibrium point (DFEP) of the Equation (2) – Equation (5) is assumed that there is no 
infection or disease. Therefore 𝐼 = 0, and there is no individual treated, 𝑇 = 0 and recovered, 𝑅 =
0. The disease-free equilibrium point (DFEP) is denoted as 𝐸! and determine if the classes affected 
are either exposed or infectious. There is exactly one DFEP for systems and denoted by: 
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3.2 Existence of endemic equilibrium (EEP) 
Endemic equilibrium point (EEP) denoted as 𝐸" = (𝑆∗, 𝐼∗, 𝑇∗, 𝑅∗) can be obtained when the 
disease cannot be eliminated, 𝐼 ≠ 0. 
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3.3 Basic Reproduction Number, 𝑅₀ 
Next, derivation of the basic reproduction number, 𝑅₀ for Equation 1 – Equation 4 is by using the 
Next-Generation Matrix Method. The disease-free equilibrium point (DFEP) is used to calculate the 
value of 𝑅₀. It tells us whether the population is at risk or save from the disease. When 𝑅₀	 > 	1, 
the occurrence of the disease will increase. When 𝑅₀	 < 	1, the occurrence of the disease will 
decrease, and the disease will eventually be eliminated. When 𝑅₀	 = 	1, the disease occurrence will 
remain constant [5]. The sub-model that are only consider diseases compartment are 𝐼 and 𝑇. 
 
At 𝐸! = 3$
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Next, inverse of 𝑉 is computed. 
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(11) 

 
 

The basic reproduction number, 𝑅₀ is the largest eigenvalue of matrix 𝐺. 
Therefore,  

 
 

(12) 

 
 
The disease-free equilibrium point (DFEP) is locally asymptotically stable if 𝑅₀	 < 	1	and unstable if 
𝑅₀	 > 	1. 
 
3.4 Stability analysis of the model at DFEP 
Equation 1 – Equation 4 are a non-linear mathematical model. The system needs to be linearized 
by using the Jacobian matrix to determine the stability of the system at DFEP, 𝐸!.  
 
The Jacobian matrix of the reduced system is as follows: 
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𝑅$ 	< 	1implies that the disease dies out at disease-free equilibrium point (DFEP) is true. 
Therefore, we can conclude that the Equation 1 – Equation 4 at disease-free equilibrium point 
(DFEP) is stable. 
 
3.5 Stability analysis of the model at EEP 
 

The endemic equilibrium point (EEP), 𝐸" = (𝑆∗, 𝐼∗, 𝑇∗, 𝑅∗) , is locally asymptotically stable 
if 𝑅! > 1 and unstable if 𝑅! < 1. The Jacobian matrix is computed to understand the stability of 
the system at EEP. 
 
The Jacobian matrix of the systems of Equation 1 – Equation 4 at 𝐸" = (𝑆∗, 𝐼∗, 𝑇∗, 𝑅∗)	is given by 
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The characteristic polynomials are obtained as follows 
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Since 𝑎" > 0, 𝑎' > 0, 𝑎( > 0, 𝑎) > 0 and 𝑎"𝑎' − 𝑎( > 0, so it meets the Routh-Hurwitz Criterion 
method. Hence, EEP is asymptotically stable. 
 
 
4          Numerical Simulation 
In this section, numerical results of the Susceptible-Infected-Treatment-Recovered (SITR) model are 
presented. The system is simulated with the initial conditions are assumed as 𝑆(0)	 = 	415, 𝐼(0)	 =
	180, 𝑇(0)	 = 	110, 𝑅(0)	 = 	50. We consider all the parameters are in per day. The time 
constraints is assumed as 0	 ≤ 	𝑡	 ≤ 	1000 in days. Table 1 shows the estimated parameters for 
Susceptible-Infected-Treatment-Recovered (SITR) model [6]. 
 

Table 1: Description and estimation of parameters [6] 
 

Parameters Description Values 
Λ Recruitment rate of 𝑆(𝑡) class 15 
𝛽 Transmission rate of 𝑆(𝑡) class 0.0005 
𝛾 Treatment rate of I(𝑡) class 0.1 
𝛼 Recovery rate of T(𝑡) class 0.003 
𝛿 Recovery rate of I(𝑡) class without treatment 0.006 
𝜇# Death rate due to infection 0.042 
𝜇 Natural death rate 0.04 

 
The value of 𝛾 will be adjusted to investigate the effect of treatment for influenza-infected 

individuals. For the first simulation, we choose	𝛾 = 0.1.  
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Figure 2: Graph of Individual Population Dynamics for Treatment Rate of Infected Individuals, 

 𝛾 = 0.1. 
 

From Figure 2, the number of infected individuals decreases due to receiving the 
treatment. Individuals who received the treatment is increasing but after some time decreases. 
The basic reproduction number, 𝑅!, obtained for 𝛾 = 0.1 is 0.9973 less than 1. Therefore, the 
disease-free equilibrium point (DFEP) is locally asymptotically stable and there is a decline in the 
number of cases. 
 
Then, for the second simulation, the value of 𝛾 = 0.1 is changed to 𝛾 = 0.02.  
 

 
Figure 3: Graph of Individual Population Dynamics for Treatment Rate of Infected Individuals, 

 𝛾 = 0.02. 
 
Based on Figure 3, the disease-free equilibrium point (DFEP) is unstable since the value of 
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𝑅₀	 = 	1.7361 > 1. The graph in Figure 3 shows that the number of infected individuals slightly 
increases but drastically decreases as the number of susceptible individuals increases. Thus, the 
number of cases will increase, such as at the start of an epidemic. 
 
Next, for the third simulation, the value of 𝛾 is changed to 𝛾 = 0.3.  
 

 
Figure 4: Graph of Individual Population Dynamics for Treatment Rate of Infected Individuals, 

 𝛾 = 0.3. 
 

Figure 4 shows that the number of influenza-infected individuals decreases as the number 
of treated individuals increases at the initial time but then gradually decreases. The numerical 
simulation in Figure 4 gives 𝑅₀	 = 	0.4832	 < 	1. Therefore, the disease-free equilibrium point 
(DFEP) is locally asymptotically stable since the basic reproduction number, 𝑅₀ is less than 1. 

Based on these three figures, there are significant differences that can be seen for each 
class. From Figure 2, it can be observed that the susceptible individuals decreased gradually but 
started to increase at 𝑡 = 20. These are those individuals who are not infected. However, they could 
become infected. The number of infected individuals reduced due to receiving the treatment. 

In Figure 3, for the susceptible class, when the 𝛾 value is reduced near to zero, the number 
of susceptible individuals drop drastically. In contrast, the number of infected individuals is 
relatively higher than in Figure 2 and Figure 4. The number of treated individuals in Figure 3 is 
steadily decreasing is due to the value of 𝛾, which is the treatment rate of infected individuals is 
reduced, causing that the number of infected individuals does not get the treatment.  

In Figure 4, when the 𝛾 value increases, the number of susceptible individuals is slightly 
higher and remains stable. The graph in Figure 4 also shows that the number of infected individuals 
decreases and, over time, can be decreased near to zero. The number of infected individuals who 
received the treatment is relatively higher and also declining because fewer infected individuals 
need the treatment and cured of the disease then entered the recovered class. 

Table 2 shows the values of the basic reproduction number, 𝑅!, for 𝛾 = 0.1, 𝛾 = 0.02 
and 𝛾 = 0.3. 

Table 2: The value of 𝑅! 
Value of 𝛾 𝑅! 

0.1 0.9973 



Nurul Hidayah Usman & Fuaada Mohd Siam. (2021) Proc. Sci. Math. 3:101-110 

          

 
 110 

0.02 1.7361 
0.3 0.4832 

 
It can be observed that whenever the value of 𝛾 is increases, the basic reproduction number, 𝑅!, 
decreases. Hence, the number of infected individuals also decreases since the number of influenza-
infected individuals getting the treatment is increases. 
 
5  Conclusion 

In this paper, an extended Susceptible-Infected-Recovered (SIR) model for an influenza 
epidemic model is constructed. We incorporate the new compartment, the individuals who 
received the treatment, 𝑇(𝑡), in the model. The Susceptible-Infected-Treatment-Recovered (SITR) 
model stability is tested by using the Routh Hurwitz Criterion method. With the aid of the following 
generation method, the primary reproduction number is obtained, and the dynamics of the model 
is derived. The outbreak of the disease is expected to continue if 𝑅! > 1. But when 𝑅! < 1., the 
occurrence of the disease will decrease, and the disease will successfully be eradicated in the 
population. When 𝑅! = 1, the condition will remain constant. Numerical simulations are also 
conducted to test the analysis of the system. The results show that the effect of treatment on 
infected-influenza individuals, such as medication or vaccination, can help to reduce the number of 
infected individuals. 
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