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Abstract  
This paper solves one-dimensional nonlinear partial differential equation (PDE), the Burgers 
equation using classical and exponential finite difference methods (CFDM and EFDM) in both 
explicit and implicit schemes. The accuracy of numerical methods is evaluated by comparing 
numerical approximations with analytical solutions computed using the method of separation of 
variables (SOV). Hopf-Cole transformation is first implemented to linearize the problem to solve 
it using analytical and explicit numerical methods. The implicit numerical schemes require an 
iterative procedure to solve the system of nonlinear equations. Overall, both CFDM and EFDM 
show good accuracy in approximating the exact solution of Burgers equation.  
Keywords Burgers equation; classical finite difference method; exponential finite difference 
method  
 
 
1 Introduction 
The partial differential equation (PDE) represents the relationship between the multivariable 
function and its partial derivatives. It has a vital role in science and engineering. Since it often 
takes a considerable effort to solve nonlinear PDE analytically to obtain its exact solutions, the 
numerical approach plays a crucial role in approximating solutions of nonlinear PDE with less 
effort in computation cost and time. Burgers equation is a notable nonlinear PDE contributing to 
the study in different fields such as turbulence, traffic flow, heat conduction, acoustics, etc. 
Burgers equation can be considered a hyperbolic or parabolic problem with nonlinear 
propagation effects and diffusive effects, depending on its diffusion coefficients [1]. It is chosen 
in this study as it is a fundamental problem in various fields. Besides, it can be solved using 
analytical and numerical methods, making it easier to evaluate the accuracy of the numerical 
methods.  
 Classical and exponential finite difference methods (CFDM and EFDM) are applied in the 
paper to approximate exact solutions of the Burgers equation. The finite difference method (FDM) 
is a well-known numerical approach in solving ordinary and partial differential equations. 
Bhattacharya [2] introduced EFDM to solve the one-dimensional unsteady state heat conduction 
problem. FDM has explicit and implicit schemes that differ in terms of computation effort and 
stability. The explicit technique can be applied to linear problems but is only conditionally stable. 
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The implicit scheme can be applied directly to nonlinear problems and is numerically stable [3]. 
Therefore, Hopf-Cole transformation is used to linearize the Burgers equation before applying 
the explicit scheme. Linearization is also required to solve the problem analytically using the 
method of separation of variables (SOV). Implicitly solving nonlinear problems will lead to a 
system of equations that need to be solved using an iterative procedure, in this case, the 
Newton’s method. This paper aims to obtain numerical approximations of one-dimensional 
nonlinear Burgers equation using CFDM and EFDM in both explicit and implicit schemes to 
evaluate their accuracy and compare their performance. The performance of CFDM and EFDM is 
assessed by generating the error norms of the methods.   
 
2 Literature Review  
2.1 Burgers Equation and Its Previous Work 
The equation  

     

is first proposed by Bateman [4] to represent fluid motion which is approaching the inviscid limit. 
𝑢, 𝑣, 𝑥, 𝑡 refer to fluid velocity, kinematic viscosity, spatial coordinate, and temporal coordinate, 
respectively. Burgers [5] later analyzed the model for turbulent flow; the equation is then known 
as Burgers equation to appreciate his contribution. When  is nonzero, the equation is known as 
the viscous Burgers equation, which generally gives a smooth solution.  
 Independent studies by Hopf and Cole proposed the transformation of the nonlinear 
Burgers equation into a linear heat equation. Hopf [6] evaluated the one-dimensional Burgers 
equation by introducing a new dependent variable to the equation, whereas Cole [7] studied the 
linear transformation of Burgers equation with given initial conditions in the shock wave and 
turbulence theory. The technique is then known as Hopf-Cole transformation, as expressed below. 

    

Burgers equation can then be solved analytically as a linear problem to obtain its exact solution. 
SOV is an analytical approach to solve the Burgers equation. The method is used in problems with 
constant coefficients, which have a finite domain [8].   
 Many numerical techniques have been used to solve the Burgers equation [9-11]. The 
well-known finite difference scheme is also applied to approximate solutions of Burgers equation. 
Exact-explicit FDM is proposed to solve the one-dimensional Burgers equation and proved its good 
accuracy under refined grid size [12]. Besides, Yokus and Kaya [13] highlighted that FDM is stable 
and can solve the time-fractional Burgers equation.  
 
2.2 Classical Finite Difference Method and Exponential Finite Difference Method 
Euler first implemented CFDM around 1768 to solve differential equations by numerical 
approximations [14]. There are two finite difference schemes used in solving heat equation, 
namely Forward Time, Centered Space (FTCS) approximation and Backward Time, Centered Space 
(BTCS) approximation [15]. FTCS is explicit by applying the forward difference to the time 
derivative, while BTCS is implicit by using backward time difference to the time derivative. Since 
the explicit scheme is only conditionally stable, the Von Neumann stability analysis can be applied 
to ensure the stability of the FTCS scheme [16]. The implicit finite difference scheme requires an 
iterative approach to solve nonlinear systems of equations. Newton’s method is an iterative 
procedure that can be applied to obtain converging approximations [17]. CFDM has been used in 
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solving many differential equation problems, and it can be further modified to solve problems 
with different properties [18-20].  
 Bhattacharya [2] presented EFDM as an explicit and conditionally stable finite difference 
approach in solving one-dimensional unsteady heat conduction problems in cartesian coordinates. 
The method is then extended to various linear and nonlinear problems [21]. Other than the 
general finite difference schemes mentioned earlier, EFDM implements a discrete operator in its 
algorithm. The method is used to solve the one-dimensional Helmholtz equation for the 
electromagnetic response of layered earth [22]. Explicit EFDM is used to solve the Burgers-Huxley 
equation [23-24]. EFDM in implicit and fully implicit schemes are applied to solve the Newell-
Whitehead-Segel equation to test their consistency and convergence [25]. In general, satisfactory 
results were obtained using EFDM in terms of accuracy, consistency, and convergence.  
  
3     Methodology 
3.1 Formulation of Burgers Equation and its Exact Solutions 
In this paper, Burgers equation with the following initial and boundary conditions is considered  

      (1) 

where , ,  and  represent one-dimensional fluid speed, kinematic viscosity, temporal 
coordinate, and spatial coordinate, respectively. The domain is discretized into  and  for 

,  where  and .  and  are the 

space step and time step. Different coefficients of  are applied in the study to test the 
performance of numerical methods. The physical behavior of the speed of fluid will be affected 
by changing the value of . In this study, three values of  at ,  and  are considered. 

Problem (1) is linearized into a linear heat equation with Neumann boundary conditions 
shown in (3) using Hopf-Cole transformation in (2) to apply explicit numerical methods and SOV.  

                                                          (2) 

   (3) 

 
Using SOV, the exact solutions for  is given by  

 ,  

where  and  . 
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3.2 Numerical Methods 
3.2.1  Classical Finite Difference Method (CFDM) 
Explicit CFDM (e-CFDM) is applied to problem (3). The equation to solve  is expressed as 

  , (4) 

where . Substituting (4) into (2), the numerical approximation of is obtained by the 

equation below.  

   (5) 

 Implicit CFDM (i-CFDM) is applied directly to problem (1). The equation to approximate 
is expressed below.  

   (6) 

 
3.2.2 Exponential Finite Difference Method (EFDM) 
Explicit EFDM (e-EFDM) is applied to problem (3). The equation to solve  is expressed as 

 ,  (7) 

where . Substituting (7) into (2), numerical approximation of is obtained by (5).  

 Implicit EFDM (i-EFDM) and fully implicit EFDM (fi-EFDM) are applied directly to problem 
(1). Equations to approximate using i-EFDM and fi-EFDM are shown in (8) and (9), respectively.  

   (8) 

   (9) 

 
 Von Neumann stability analysis is applied to the explicit numerical methods to ensure e-
CFDM and e-EFDM are stable.  and  have to be restricted to satisfy the stability condition 
shown in (10). 

   (10) 

 
3.2.3 Newton’s method 
Solving problem (1) using i-CFDM, i-EFDM, and fi-EFDM as shown in equations (6), (8), and (9) 
leads to a set of nonlinear equations that are then solved using the Newton’s method. The 
algorithm of the Newton’s method is listed below.  
1. Form  from the set of nonlinear equations where and 

.  

2. Set the initial guess . 
3. Begin the iteration with the formula given as 
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 ,                              

where  is the Jacobian matrix. 
  The Newton’s method is applied repeatedly at every time step to compute the final 
solutions. At each time step, the initial guess is taken from the solution at the previous time step. 
In this case, a stopping criterion is set, that is when , the process is terminated. For 

instance, , the tolerance is set to be a sufficiently small number, , to ensure the accuracy 
of the solution and avoid unnecessary computation time.  
 
3.3 Performance Evaluation 
The performance of numerical approaches is analyzed based on their accuracy compared to the 
exact solution. Three measures are considered: relative error (RE), Euclidean norm, , and 
maximum norm, . The formulas are shown below.  

    

    

     

 
 
4          Results and Discussion 
4.1 Numerical Output of e-CFDM and e-EFDM  
Problem (1) is reduced to (3) and solved using e-CFDM and e-EFDM for  at  and 

 for  40, 60, and 80. Error norms of the methods are tabulated in Table 1 
below. The error norms decrease significantly as  increases.  
 

Table 1: and  norm of explicit methods for  and  at  
 e-CFDM e-EFDM 

    
20 2.88E-05 4.07E-05 2.88E-05 4.07E-05 
40 5.81E-06 8.22E-06 5.81E-06 8.21E-06 
50 3.06E-06 4.33E-06 3.05E-06 4.32E-06 
80 7.65E-08 1.08E-07 7.06E-08 1.00E-07 

 
Next, the problem is solved with  and ( ) at different values of .   

Error norms of the methods are summarized in Table 2. Figures 1 and 2 illustrate the exact 
solutions at different . The curves take the general form of sine waves with maximum speed 
located at the center of . The speed of the fluid is maximum at the initial time  and 
decreases as time increases.  

Table 2:  and  norm of explicit methods for ,  and  
 e-CFDM e-EFDM 
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0.05 1.33E-04 1.88E-04 1.33E-04 1.88E-04 
0.10 5.46E-05 7.73E-05 5.49E-05 7.76E-05 
0.15 2.26E-05 3.23E-05 2.24E-05 3.19E-05 
0.25 5.75E-06 8.17E-06 5.68E-06 8.05E-06 
1.00 5.90E-08 8.35E-08 5.90E-08 8.34E-08 
1.20 1.15E-08 1.63E-08 1.15E-08 1.63E-08 

 

                      
    Figure 1: Exact solutions for  at                        Figure 2: Exact solutions for  at         
                   , 0.10, 0.15, 0.25                                              , 1.2 

 
The problem is solved with  and  at different , considering  for 0.1 and 
0.01. Error norms of the methods are summarized in Table 3.  
 
Table 3:  and  norm of explicit methods for  and 0.01 at  and  

     
 e-CFDM e-EFDM e-CFDM e-EFDM 

        
0.5 1.51E-04 2.11E-04 1.55E-04 2.20E-04 3.97E-02 1.05E-01 3.96E-02 1.04E-01 
1.0 6.42E-05 9.44E-05 6.67E-05 9.87E-05 4.79E-03 1.15E-02 4.74E-03 1.14E-02 
1.5 1.87E-05 2.76E-05 2.00E-05 2.91E-05 1.41E-03 5.20E-03 1.41E-03 5.26E-03 

 
e-CFDM and e-EFDM have similar performance in solving linear heat equation (3) at 

different  and . The differences between their error norms are generally small; neither of the 
two methods shows dominance by having the smallest error norms at all conditions tested. 

 
4.2 Numerical Output of i-CFDM, i-EFDM, and fi-EFDM 
Application of the Newton’s method at each time step drastically increases computation time of 
implicit methods. Since the technique is always stable, a larger time step could approximate 
solutions since there is no stability condition to fulfil. Problem (1) applied directly into implicit 
methods for  at  and  for  40, 60, and 80. norm of the 
methods is tabulated in Table 4. The error norms decrease as  increases.  
 

Table 4:  and  norm of implicit methods for  and  at  
 i-CFDM i-EFDM fi-EFDM 
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20 8.32E-05 1.18E-04 1.14E-04 1.62E-04 1.14E-04 1.62E-04 
40 4.40E-05 6.22E-05 7.49E-05 1.06E-04 7.50E-05 1.06E-04 
50 3.93E-05 5.56E-05 7.02E-05 9.93E-05 7.03E-05 9.95E-05 
80 3.42E-05 4.84E-05 6.51E-05 9.21E-05 6.52E-05 9.23E-05 

 
Then, the problem is solved for , 0.1 and 0.01 with  and  at 

different values of . Error norms of the methods are tabulated in Tables 5, 6, and 7, respectively. 
Figures 3, 4, and 5 illustrate the approximations using i-EFDM as time increases for , 0.1 
and 0.01 with  and . The behavior of the physical state of the fluid changes as 
the kinematic viscosity changes. As  decreases, the curve of  no longer follows the general 
form of the sine wave by having its highest speed at the center of . The peak of  moves 
towards the right as  decreases.  

 
Table 5:  and  norm of implicit methods for ,  and  

 i-CFDM i-EFDM fi-EFDM 
      

0.05 3.38E-04 4.83E-04 5.94E-04 8.39E-04 6.02E-04 8.55E-04 
0.10 4.11E-04 5.81E-04 7.28E-04 1.03E-03 7.32E-04 1.04E-03 
0.15 3.75E-04 5.31E-04 6.65E-04 9.43E-04 6.69E-04 9.47E-04 
0.25 2.32E-04 3.28E-04 4.13E-04 5.84E-04 4.14E-04 5.86E-04 
1.00 5.67E-07 8.01E-07 1.02E-06 1.44E-06 1.02E-06 1.44E-06 
1.20 9.46E-08 1.34E-07 1.70E-07 2.40E-07 1.70E-07 2.41E-07 

 
Table 6:  and  norm of implicit methods for ,  and  

 i-CFDM i-EFDM fi-EFDM 
      

0.5 3.85E-04 7.32E-04 3.95E-04 7.69E-04 4.31E-04 7.93E-04 
1.0 3.12E-04 5.46E-04 3.28E-04 5.81E-04 3.56E-04 6.12E-04 
1.5 2.02E-04 3.19E-04 2.16E-04 3.44E-04 2.35E-04 3.68E-04 

 
Table 7:  and  norm of implicit methods for ,  and  

 i-CFDM i-EFDM fi-EFDM 
      

0.5 2.42E-02 1.66E-01 2.41E-02 1.65E-01 2.43E-02 1.66E-01 
1.0 1.34E-02 8.36E-02 1.34E-02 8.36E-02 1.34E-02 8.37E-02 
1.5 5.72E-03 2.80E-02 5.71E-03 2.80E-02 5.73E-03 2.80E-02 
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Figure 3: Solutions of i-EFDM for ,  and          

                 

 
Figure 4: Solutions of i-EFDM for ,  and  

 

 
Figure 5: Solutions of i-EFDM for ,  and   

i-CFDM gives the lowest error norms when  is set at  which outperforms i-EFDM and 
fi-EFDM. Then, when  is decreased to and , the difference between error norms of i-
CFDM, i-EFDM, and fi-EFDM also reduces. Overall, i-CFDM outperforms in this study. i-EFDM and 
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fi-EFDM have similar accuracy, where the i-EFDM has the better approximations with smaller 
deviations compared to that of fi-EFDM in all conditions tested. 
 
5 Conclusion 
Both CFDM and EFDM in explicit and implicit schemes have good performance with consistent 
accuracy at different conditions being tested. The explicit scheme can generate results in a much 
shorter time when compared to the implicit scheme. There are two requirements to implement 
the explicit scheme: linearization of the problem and stability analysis. When these two 
requirements are met, the explicit scheme is preferred over the implicit scheme as it can generate 
approximations with tiny errors in seconds. However, an implicit scheme would be another 
alternative to directly apply to the nonlinear problem when the abovementioned requirements 
are unmet. There is no restriction in deciding time step and space step since the method is 
numerically stable. Still, a bigger mesh size or time step would affect the accuracy of the results. 
Also, the choice of time step and space step significantly affects the computation time. A wise 
decision has to be made to optimize both accuracy and computational effort.   

In future work, more test problems of different nature can be considered. More advanced 
problems with higher dimensions or more terms can be considered to be applied in the numerical 
methods. Efforts to modify the CFDM and EFDM to fit more complex problems would contribute 
to numerical analysis in science and engineering. There may be a possibility to alter the methods 
with other numerical approaches to improve its accuracy.  
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