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Abstract  
The purpose of this study is to apply the log-linear Poisson autoregressive model in modelling 
the number of confirmed COVID-19 cases in Malaysia from September 2020 until March 2021. 
Two such models using different parameter mean are developed using the maximum likelihood 
method. Model evaluation and validation are done using the Pearson residuals. The adequate 
model with better performance is applied to predict the number of confirmed cases in April 
2021. Satisfying results are obtained from the better model but the unstable number of 
confirmed cases and its extreme changes might affect the accuracy of the model. 
Keywords: Poisson autoregressive model; COVID-19; overdispersion 
 
 
1 Introduction 
The outbreak of the coronavirus disease 2019 (COVID-19) started in December 2019 and quickly 
spreads across the globe. As the number of confirmed cases in Malaysia increased in March 
2020, the government implemented the Movement Control Order (MCO) to restrain the spread 
of the disease. Nonetheless, the number of confirmed cases in Malaysia rises again in 
September 2020 as the relaxation of MCO.  
 According to the data provided by the Ministry of Health, the number of confirmed 
cases in different state varies. This variation causes difficulties in measuring and contrasting the 
difference in the spread of COVID-19 between states. Hence, modelling the number of 
confirmed cases in each state using a suitable model is crucial. Various models have been used 
to model the spread of COVID-19 in various countries, namely the time series model [1,2,3], 
compartmental model [4,5,6], and Poisson regression model [7]. Particularly, the application of 
the Poisson regression model can be restrictive due to its equidispersed assumption, where the 
mean is assumed to be equal to the variance. In practice, the variance of the observations often 
increases more rapidly than the mean and leads to overdispersion that invalidating the Poisson 
distribution. Hence, it seems to be unrealistic to follow the assumption, especially in 
epidemiological studies, where the variance changing is natural corresponding to many 
important processes [8]. 
 Agosto and Giudici [9] propose to employ the log-linear Poisson autoregressive model 
in modelling the number of confirmed COVID-19 cases. Their results show that the model can 
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be applied to any country or region and in any period [9]. This is suitable for modelling the 
number of confirmed cases in each state of Malaysia. Studies also found that inferences on the 
future spread of COVID-19 can be drawn based on the values of the parameters in the model [9, 
10]. Furthermore, the model is able to handle overdispersion in the data [11,12].  
 The objectives of this study are to examine the characteristic of the data of the 
confirmed COVID-19 cases in each state of Malaysia, to model the number of confirmed cases 
in each state of Malaysia using the log-linear Poisson autoregressive model and to evaluate the 
performance of the model.  
 
2     Methodology 
2.1 Log-Linear Poisson Autoregressive Model 
Consider {𝑌!}  as the time series of the number of confirmed COVID-19 cases, where 𝑡 ≥ 0 
represents the time. The log-linear Poisson autoregressive model assumes the number of 
confirmed cases follows the Poisson distribution with mean 𝜆!. Besides, it accommodates both 
positive and negative correlation [12]. In this study, two such models are applied. For 𝑡 ≥ 1, the 
two log-linear Poisson autoregressive models are shown below: 
 

𝑌!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!),										 ln 𝜆! = 𝜔 + 𝛼 ln(1 + 𝑌!"#) + 𝛽 ln 𝜆!"# (1) 
𝑌!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!∗),										 ln 𝜆!∗ = 𝜔 + 𝛼 ln(1 + 𝑌!"#) + 𝛽 ln 𝜇!"# (2) 

 
For the sake of clarity, model (1) and model (2) are referred as Model 1 and Model 2 respectively. 
Model 1 is the model applied in the study of Agosto and Giudici [9], whereas Model 2 is similar 
to Model 1 with a slight modification at the last term on the right-hand side. Instead of 𝜆!"# 
obtained from the model, Model 2 uses the actual mean number of confirmed cases at time 𝑡 −
1, denoted as 𝜇!"#. 

In both models, the value of 𝑌%, 𝜆% and 𝜇% are assumed to be fixed. Particularly, 𝑌% takes 
the value of the first observed number of confirmed cases from the data. While the value of 𝜆% 
in Model 1 is set to be 1. Note that different choices of initial 𝜆% do not affect the results [12]. 
On the other hand, the value of 𝜇% in Model 2 is the mean number of the confirmed cases at 
time 𝑡 = 0. For some states in Malaysia, however, no confirmed cases are observed at the 
beginning of the period and result in 𝜇! = 0 for some 𝑡 ≥ 0. In this case, 𝜇! = 1 is used since 
the value of ln 0 is undefined. 

The meaning behind each parameter 𝜔, 𝛼 and 𝛽 have been explained by Agosto and 
Giudici [9]. For instance, 𝜔  denotes the intercept term, while 𝛼  expresses the short-term 
dependence on yesterday’s confirmed cases. Note that ln(1 + 𝑌!"#) is used instead of ln(𝑌!"#) 
for handling zero values. Whereas 𝛽  expresses the long-term dependence on the historical 
confirmed cases of the previous days. Studies show the values of 𝛼  and 𝛽  can reveal the 
underlying trend of the spread of COVID-19 [9,10]. If 𝛽 > 𝛼, then there exists an increasing trend. 
Conversely, a decreasing trend is expected if 𝛼 > 𝛽. In addition, the parameters 𝛼 and 𝛽 subject 
to the conditions where |𝛼 + 𝛽| < 1 if both 𝛼 and 𝛽 have the same sign, or 𝛼& + 𝛽& < 1 if 𝛼 
and 𝛽 have different sign [12]. 
 Fokianos and Tjøstheim [12] have demonstrated that the parameters 𝜔, 𝛼  and 𝛽  in 
Model 1 and Model 2 can be estimated using the method of maximum likelihood. Take Model 1 
as an example, suppose 𝜽 = (𝜔, 𝛼, 𝛽)  represents the three-dimensional vector of the 
parameters and the starting value of 𝜆% is given. Then the likelihood function for 𝜽 in terms of 
the observations 𝑌#, 𝑌&, … , 𝑌' is as followed: 
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𝐿(𝜽) =C
expG−𝜆!(𝜽)H 𝜆!

(!(𝜽)
𝑌!

'

!)#
	 (3) 

 
Taking logarithm at both sides of (3): 
 

ln 𝐿(𝜽) = ln ()
exp-−𝜆!(𝜽)0 𝜆!

(!(𝜽)
𝑌!

'

!)#
2																 

ln 𝐿(𝜽) =J ln expG−𝜆!(𝜽)H + ln 𝜆!
(!(𝜽) − ln𝑌!

'

!)#
 

ln 𝐿(𝜽) =J 𝑌! lnG𝜆!(𝜽)H−𝜆!(𝜽) −J ln𝑌!
'

!)#

'

!)#
	 (4) 

 
Note that ∑ ln𝑌!'

!)#  in (4) is a constant. Hence, (4) is maximized by maximizing: 
 

𝑙(𝜽) =J 𝑌! lnG𝜆!(𝜽)H−𝜆!(𝜽)
'

!)#
 

 
The estimation of parameters in Model 2 is done in the same manner. 
 
2.2 Model Evaluation and Validation 
The difference between each actual and estimated number of confirmed cases from the model 
is measured using Pearson residual. The Pearson residual of Model 1 is given by e* =

(!"+!
,+!

, 

where 𝑌! is the actual number of confirmed cases and 𝜆! is the estimated number of confirmed 
cases from the model. For Model 2, 𝜆!∗ is used instead of 𝜆!. 

The performance of each model in fitting the number of confirmed cases in each state 
of Malaysia is then compared using the mean squared Pearson residual. The mean squared 

Pearson residual is given by ∑ .!"#
!$%
/"0

, where 𝑒!  is the Pearson residual, 𝑁  is the number of 

observances and 𝑝 is the number of parameters in the model, including the intercept. A lower 
mean squared Pearson residual indicates the model performs better than the other. The 
comparison of the model’s performance, for each state, is made to determine the best model 
that can represent the number of confirmed cases in the particular state.  
 Besides, the Pearson residuals are also used to check the model’s adequacy. The model 
is adequate if the sequence of its Pearson residuals is a sequence of white noise with constant 
variance [11,12]. The cumulative periodogram is used to examine whether the Pearson residuals 
consist of white noise. The Pearson residuals is a white noise sequence if the cumulative 
periodogram lies within the 95% confidence interval. 
 
3          Results and Discussion 
3.1 Exploratory Data Analysis 
The data of the number of confirmed COVID-19 cases in each state and each federal territory of 
Malaysia is retrieved from the official website of the Ministry of Health Malaysia. For the sake 
of brevity, the federal territories (Kuala Lumpur, Putrajaya and Labuan) are also referred as the 
states of Malaysia throughout the rest of this study. The data ranged from 1 September 2020 
until 31 March 2021, a total of 212 daily observations for each state. Table 1 shows some 
descriptive statistics of the number of confirmed cases in each state. The table is sorted based 
on the maximum cases in descending order.  
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According to Table 1, the maximum number of confirmed cases for each state ranges 

from 29 to 3285, indicating different severity in the states. Observe that the variance is greater 
than the mean in all states. To have a better insight, the index of dispersion, 𝐷 for each state is 

included in the last column of the table, where 𝐷 = 1"

2
. If 𝐷 = 1, then the data is equidispersed; 

if 𝐷 > 1, then the data is overdispersed; if	0 ≤ 𝐷 < 1, then the data is underdispersed. Clearly, 
the data for all states are overdispersed.  

 
Table 1: Summary of data statistics by state 

 

State Maximum 
cases Mean Variance Index of dispersion 

Selangor 3285 537.297 295190.760 549.399 
Negeri Sembilan 1392 76.571 14208.493 185.560 
Perak 1215 59.939 10961.243 182.874 
Sabah 1199 256.033 39795.075 155.429 
Johor 1103 191.057 61767.902 323.296 
Kuala Lumpur 783 166.165 34811.693 209.501 
Sarawak 426 74.014 9973.502 134.751 
Kedah 397 38.769 2620.065 67.582 
Melaka 344 29.623 3362.653 113.516 
Penang 337 75.156 5311.848 70.678 
Pahang 288 18.377 1000.663 54.451 
Kelantan 257 28.726 1458.948 50.788 
Terengganu 179 16.410 911.456 55.541 
Labuan 105 11.208 350.146 31.242 
Putrajaya 39 4.929 58.019 11.770 
Perlis 29 1.406 15.873 11.292 

  
3.2 Model Evaluation 
Model 1 and Model 2 are fitted to the data of the number of confirmed cases from 1 September 
2020 until 31 March 2021, for every state in Malaysia. The models are estimated using the 
maximum likelihood method and the results are available by the authors. Generally, both 
models fit the number of confirmed cases well, except for some extreme changes in the number 
of confirmed cases in some states. Overall, most of the estimations of both models are close to 
each other. Hence, the model with better performance is determined by comparing the mean 
squared Pearson residual of the two models. The respective mean squared Pearson residual is 
shown in Table 2; the lower mean squared Pearson residual in each state is shaded in green. 
 

Table 2: Mean squared Pearson residual of each model for the respective state 
 

 Perlis Kedah Penang Perak Selangor 
Kuala 
Lumpur Putrajaya 

Negeri 
Sembilan 

Model 1 5.003 26.021 37.149 63.148 104.334 66.126 2.134 112.148 
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Model 2 5.945 24.597 46.117 79.112 109.441 94.331 2.843 116.816 
 

 Melaka Johor Kelantan Terengganu Pahang Sarawak Labuan Sabah 
Model 1 39.926 39.042 12.205 8.298 33.525 14.532 20.468 31.292 
Model 2 41.919 50.655 13.866 10.001 33.432 16.504 24.264 34.700 

 
Based on Table 2, Model 1 achieves a lower mean squared Pearson residual in most 

states. While Model 2 has a lower mean squared Pearson residual in Kedah and Pahang only. 
However, the respective mean squared Pearson residual of both models in Kedah and Pahang 
does not differ much. These suggest Model 1 has better performance than Model 2. 

 
3.3 Model Validation 
Figure 1 shows the cumulative periodogram of Model 1 in Perlis and the cumulative 
periodograms of Model 1 in the rest of the states are shown in Figure 2-Figure 5. Based on Figure 
1, part of the cumulative periodograms of Model 1 in Perlis lie outside the 95% confidence 
interval, indicating Model 1 is not adequate in Perlis. While the cumulative periodograms of 
Model 1 in the rest of the states lie within the 95% confidence interval, indicating its adequacy 
in the states. While Model 2 is only adequate for 6 out of 16 states, the results are available by 
the authors. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Cumulative periodogram of Model 1 in Perlis 
 
3.4 Model Prediction 
Model 1 is then used to predict the number of confirmed cases in April 2021. The predictions of 
Model 1 (red line) for the states except Perlis are illustrated in Figure 2-Figure 5. The actual and 
fitted number of confirmed cases from January until March 2021 are included to observe the 
trend. The parameters of Model 1 and the trend prediction for the respective state are shown 
in Table 3. 
 Generally, the predictions from Model 1 are close to the actual number of confirmed 
cases. For instance, Model 1 is able to predict the number of confirmed cases in Kedah, Selangor, 
Kuala Lumpur, Melaka, Johor and Sabah. For Perak and Negeri Sembilan, Model 1 also gives a 
satisfying result of prediction despite fails to fit the sudden spikes during the stage of model 
estimation. Furthermore, Model 1 has less accurate predictions at some spikes of the number 
of confirmed cases in Penang, Putrajaya, Terengganu, Pahang and Sarawak. While the 
predictions on Kelantan are generally lower than its actual number of confirmed cases. 
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Moreover, it seems that Model 1 has poor predictions on the number of confirmed cases in 
Labuan. The unstable number of confirmed cases in Labuan and its extreme changes during a 
short period might affect the accuracy of the model. Nevertheless, the predictions of the states 
are able to follow the actual data. 
 On the other hand, the trend prediction made by comparing the values of 𝛼 and 𝛽 is not 
accurate for some states. In fact, some states do not show an obvious increasing or decreasing 
trend. Hence, comparing the values of the parameters 𝛼 and 𝛽 might not be appropriate to 
predict the spreading trend of COVID-19 in the states of Malaysia. 

Table 3: Parameters of Model 1 and trend prediction for the respective state 
 

 Kedah Penang Perak Selangor 
Kuala 
Lumpur Putrajaya 

Negeri 
Sembilan Melaka 

𝜔 0.6563 0.4268 0.2050 0.4514 0.3345 0.0000 0.2797 0.4670 
𝛼 0.6056 0.3198 0.3038 0.4539 0.2961 0.3805 0.1436 0.4815 
𝛽 0.2406 0.5961 0.6622 0.4821 0.6487 0.6114 0.8045 0.4227 

Trend Decrease Increase Increase Increase Increase Increase Increase Decrease 
 

 Johor Kelantan Terengganu Pahang Sarawak Labuan Sabah 
𝜔 0.2018 0.1276 0.0528 0.4230 0.2324 0.1443 0.3305 
𝛼 0.3467 0.3264 0.4838 0.5274 0.4373 0.1562 0.4769 
𝛽 0.6227 0.6484 0.5070 0.3655 0.5224 0.8138 0.4680 

Trend Increase Increase Increase Decrease Increase Increase Decrease 
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Figure 2: Prediction and cumulative periodogram of Model 1 in Kedah, Penang and Perak 
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Figure 3: Prediction and cumulative periodogram of Model 1 in Selangor, Kuala Lumpur, 
Putrajaya and Negeri Sembilan 
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Figure 4: Prediction and cumulative periodogram of Model 1 in Melaka, Johor, Kelantan and 
Terengganu 
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Figure 5: Prediction and cumulative periodogram of Model 1 in Pahang, Sarawak, Labuan and 
Sabah 
 
4 Conclusion 
To conclude, the data of the confirmed COVID-19 cases in each state of Malaysia is 
overdispersed and an ordinary Poisson model is not suitable for modelling the data. Thus, the 
log-linear Poisson autoregressive model is used to model the data.  

Results find that Model 1 is adequate for modelling the number of confirmed COVID-19 
cases in all states of Malaysia, except Perlis. Besides, Model 1 has generally a better performance 
than Model 2 in modelling the number of confirmed cases in the states of Malaysia during the 
period of 1 September 2020 until 31 March 2021. Therefore, Model 1 is applied to predict the 
number of confirmed cases in all states of Malaysia during April 2021, excluding Perlis as the 
model is not adequate for the state. Although the number of confirmed cases exhibits different 
behaviours between the training period (1 September 2020 until 31 March 2021) and the testing 
period (1 April until 30 April 2021), the model is able to provide reasonable predictions on the 
number of confirmed cases. 

Nevertheless, the unstable number of confirmed cases and its extreme changes might 
affect the accuracy of the model. For instance, Model 1 gives less accurate results in fitting and 
predicting the number of confirmed cases in Labuan, which exhibited a great range of fluctuation 
in the number of confirmed cases. Results also show that comparing the values of the 
parameters 𝛼 and 𝛽 might not be appropriate to predict the spreading trend of COVID-19 in the 
states of Malaysia.  
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