

Analytical Method for Solving the Pollution for A River System

Shah Reza Alexander ^a, Anati Ali^{b*}

^{a,b}Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,
 81310 Johor Bahru, Johor, Malaysia.
 *Corresponding author:²anati@utm.my

Abstract

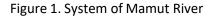
Water pollution is a very serious threat to our environment. The water pollution is possible to be monitored with the use of differential equation to know the amount of the pollution in the river. This study focuses on river problem and interested in knowing the level of pollution in the river. A mathematical model of differential equation of river pollution was investigated. The model was modelled based on the condition of the river. Laplace Transform (LT) method was introduced to solve the model of the river pollution. The use of LT helps to solve the system of river pollution and applying the inverse LT, exact solution of this problem obtained. The methodology that used in this study can be used with little modification for the river pollution model to obtain the result. Therefore, the mathematical model and the result analysis can be used to solve the river pollution problem by comparing the result with the previous research of river pollution.

1 Introduction

Water pollution is a serious threat to our environment. In 2014, The Department of Environment state that 39% of the river in Malaysia slightly contaminated and 9% contaminated [1]. The first step to save the environment is by monitoring the pollution. The water pollution is possible to be monitored withthe use of differential equation to know the amount of the pollution in the river. This study will explore how to apply the system of differential equation to know the amount of pollution in the river. The mathematical model that used in this study involved system of differential equation which will be solved using a LT. This method is introduced to solve model of pollution of a river system. A mathematical model using differential equation has the ability to predict the amount pollution of a river [2]. By applying this LT and solving the system an exact solution can be obtain [3].

2 Mathematical model

Figure 1 shows the schematic diagram that is used to model the river system.



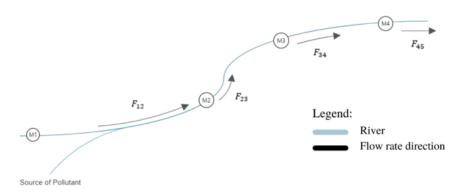


Figure 2 Schematic Diagram of System of River Pollution

The amount of pollution, $x_i(t)$ in *i* at any time $t \ge 0$ where i=2,3,4 will be calculated. From Figure 1, the amount of pollution in M2, M3, and M4 will be calculated. We assume that the volume of water, V_i in *i* or M2, M3, and M4 remains constant. The concentration of the pollutant in *i* at any time is given by,

 $concentration, c_i(t) = \frac{amount of pollution, x_i(t)}{volume of water, V_i}$

Initially, the river assumed to be free from any contaminant. The flow rate, F_{ij} from *i* to *j* is aconstant. The flux of pollutant flowing from *i* into *j* at any time, denoted by $r_{ij}(t)$, is defined by

$$r_{ij} = F_{ij}c_i(t) = F_{ij}\frac{x_i(t)}{V_i}$$

We also observe that,

rate of change of pollutant = input rate – output rate.

The volume of the riverremains constant, and we can assume that the flow rate of the river at M2, M3, and M4 must be equal the flow in and out the river. Therefore, we obtained the following condition:

River at section $M2: F_{12} = F_{23}$, $M3: F_{23} = F_{34}$, $M4: F_{34} = F_{45}$. Thus, $F_{12} = F_{23} = F_{34} = F_{45}$.

Then we will obtain the following first order ordinary differential equation for the system,

$$\frac{dx_2}{dt} = F_{12} + \rho(t) - \frac{F_{23}}{V_2} x_2(t)$$
(1)

$$\frac{dx_3}{dt} = \frac{F_{23}}{V_2} x_2(t) - \frac{F_{34}}{V_3} x_3(t)$$
(2)

$$\frac{dx_4}{dt} = \frac{F_{34}}{V_3} x_3(t) - \frac{F_{45}}{V_4} x_4(t)$$
(3)

with the initial condition $x_i(0) = 0$, i = 2,3,4

 $\rho(t)$ is defined on interval $0 \le t \le b$ and $F_{12}, F_{23}, F_{34}, F_{45}, V_2, V_3$, and V_4 are constant while $x_2(t), x_3(t)$, and $x_4(t)$ are the amount of pollutant in river sections, M2, M3, and M4. The left-hand side of the equation represent the time rate of change of amount of pollutant in each section, M2, M3, and M4.

Generally, in Equation (1) the first term is the water that flows from river M1 into river M2. The second term, $\rho(t)$ indicates the source of pollutant enters river M2. The last term indicates the mixture of water with the pollutant flows out from river M2 entering river M3. In Equation (2), the mixture of polluted water from river M2 entering river M3 is represented by the first term on the right-hand side of the equation. The last term on the right-hand side representing the mixture of polluted water flows out from river M3. Then, the mixture flows into river M4 which is represented by the first term on the right-hand side of Equation (3). The last term on the right-hand side of Equation (3) represents the polluted water that flows out from river M4 to another river section.

In this study, we assume that the pollutant is introduced from the source of pollutant to section M2 with a linear concentration. Thus $\rho(t)=ct$, where c is a constant. Then, we let that c=100.

2.1 Analytical Solution

Definition 1. [4] The Laplace transform *f(s)* is defined as,

Shah Reza Alexander & Anati Ali. (2021) Proc. Sci. Math. 3:214-222

$$\mathcal{L}[f(x)] = \int_0^\infty f(t) e^{-st} dt,$$

Where *s* can be either real or complex.

Theorem 1. [5] The Laplace Transform of the derivative defined as,

$$\mathcal{L}[f^{(n)}(t)] = s^n F(s) - s^n F(s) - s^{n-1} f(0) - s^{n-2} f(0) - \dots - f^{(n-1)}(0).$$

The Laplace Transform applied into Equation (1), Equation (2), and Equation (3) and we obtained these following equations,

$$\mathcal{L}\left[\frac{dx_2}{dt}\right] = \mathcal{L}[F_{12}] + \mathcal{L}[\rho(t)] - \frac{F_{23}}{V_2}\mathcal{L}[x_2(t)],$$

$$\mathcal{L}\left[\frac{dx_3}{dt}\right] = \frac{F_{23}}{V_2}\mathcal{L}[x_2(t)] - \frac{F_{34}}{V_3}\mathcal{L}[x_3(t)]$$

$$\mathcal{L}\left[\frac{dx_3}{dt}\right] = \frac{F_{34}}{V_3}\mathcal{L}[x_3(t)] - \frac{F_{45}}{V_4}\mathcal{L}[x_4(t)]$$

Then, by using the differential property of Laplace Transform, we get,

$$s \mathcal{L}[x_2] - x_2(0) = \mathcal{L}[F_{12}] + \mathcal{L}[\rho(t)] - \frac{F_{23}}{V_2} \mathcal{L}[x_2(t)],$$

$$s \mathcal{L}[x_3] - x_3(0) = \frac{F_{23}}{V_2} \mathcal{L}[x_2(t)] - \frac{F_{34}}{V_3} \mathcal{L}[x_3(t)],$$

$$s \mathcal{L}[x_4] - x_4(0) = \frac{F_{34}}{V_3} \mathcal{L}[x_3(t)] - \frac{F_{45}}{V_4} \mathcal{L}[x_4(t)]$$

The unknown function $x_i(t)$, i = 2,3,4 can obtain by solving the above equation and applying inverse Laplace Transform. We assume that,

$$\begin{split} F_{12} &= F_{23} = F_{34} = \ F_{45} = 10m^3 \\ V_2 &= 500m^3, \\ V_3 &= 600m^3, \text{ and} \\ V_4 &= 550m^3. \end{split}$$

Then, the system of first order ordinary differential equation becomes,

$$\frac{dx_2}{dt} = 10 + 100t - \frac{10}{500}x_2(t)$$
$$\frac{dx_3}{dt} = \frac{10}{500}x_2(t) - \frac{10}{600}x_3(t)$$
$$\frac{dx_4}{dt} = \frac{10}{600}x_3(t) - \frac{10}{550}x_4(t)$$

By using Laplace Transform and we get,

$$x_2(s) = \frac{-249500}{s} + \frac{5000}{s^2} + \frac{12475000}{50s+1}$$

$$x_3(s) = -\frac{659400}{s} + \frac{6000}{s^2} + \frac{129384000}{60s+1} - \frac{74850000}{50s+1}$$

$$x_4(s) = -\frac{906950}{s} + \frac{5500}{s^2} + \frac{686125000}{50s+1} + \frac{1423224000}{60s+1} - \frac{2009477250}{55s+1}$$

By applying the inverse Laplace Transform, we obtain,

$$\begin{aligned} x_2(t) &= -249500 + 5000t + 249500e^{-(\frac{t}{50})} \\ x_3(t) &= -659400 + 6000t + 2156400e^{-(\frac{t}{60})} - 1497000e^{-(\frac{t}{50})} \\ x_4(t) &= -906950 + 5500t + 13722500e^{-(\frac{t}{50})} + 23720400e^{-(\frac{t}{60})} \\ &- 36535950e^{-(\frac{t}{55})} \end{aligned}$$

Therefore, the exact amount of pollution at any time, $t \ge 0$ can be calculated.

3. Result and Discussion

The amount of pollution in the river is obtained by solving the ordinary differential equation of the river system using Laplace Transform and Inver Laplace Transform. Table 1 shows the amount of pollution at time, $t \le 40$.

		Amount of Pollution (m^3)			
(day)	t	x ₂	<i>x</i> ₃	x ₄	
	1	59.5689	0.42	0.00	
		9004	9081	1922	
	2	216.965	3.00	0.02	
		0685	8668	6065	
	3	470.251	9.62	0.12	
		1293	4218	3261	
	4	817.528	22.0	0.37	
		4235	9198	399	
	5	1256.93	42.1	0.88	
		58	6091	6719	

Table 1. Amount of Pollution at Time, $t \le 40$.

Shah Reza Alexander & Anati Ali. (2021) Proc. Sci. Math. 3:214-222

	C		1796.64		71.5		1 70
	6	8961	1786.64	1449	/1.5	6302	1.79
	7	8901	2404.87	1445	111.	0302	3.26
	,	9732	2404.07	7726	111.	2439	5.20
	8	5752	3109.87	1120	164.	2100	5.46
	Ū	5347	0100107	4931	10.11	8189	5110
	9		3899.91		231.		8.61
		7747		1739		8546	
	1		4773.32		313.		12.9
0		2893		2542		3906	
	1		5728.44		412.		18.6
1		0092		1165		7451	
	1		6763.65		529.		26.0
2		1336		0879		8765	
	1		7877.37		665.		35.4
3		0658		442		5797	
	1		9068.04		822.		47.0
4	4	3493	40224.4	3999	1001	805	64.2
-	1	4606	10334.1	122	1001	C 172	61.2
5	1	4606	11674 1	.132	1202	6473	70.2
6	T	8475	11674.1	.76	1202	335	78.3
0	1	0475	13086.6	.70	1428	333	98.6
7	T	9553	13080.0	.358	1420	2191	98.0
	1	5555	14570.2		1678	2151	122.
8	-	4335	11070.2	.951	10/0	4764	122.
_	1		16123.4		1955	-	150.
9		216		.522		2538	
	2		17744.8		2259		182.
0		5149		.009		3203	
	2		19433.1		2590		219.
1		8154		.307		0505	
	2		21187.0		2950		260.
2		8706		.271		8271	
	2		23005.2	= 10	3339		308.
3		6955	24005.4	.713	2750	0391	264
	2	5626	24886.4		3759	0000	361.
4	2	5626	2020.2	.41	4210	0822	420
5	2	996	26829.3	.097	4210	3569	420.
5	2	990	28832.8	.097	4692	5309	486.
6	2	7672	20032.0	.477	4032	2689	400.
	2	/0/2	30895.6		5207	2005	559.
7	2	8897	50055.0	.212	5207	2274	555.
-	2		33016.6		5754		639.
8	-	6143		.935		6451	
<u> </u>		0110				0101	

Shah Reza Alexander & Anati Ali. (2021) Proc. Sci. Math. 3:214-222

	2	35194.6	633	6 727.
9		4246	.241	9376
	3	37428.5	695	1 824.
0		0321	.695	5222

	Amount of Pollution (m^3)			
t (day)	<i>x</i> ₂	<i>x</i> ₃	x4	
31	39717.13718	7601.831	929.818	
32	42059.4598	8287.149	1044.245	
33	44454.40796	9008.123	1168.224	
34	46900.9396	9765.198	1302.175	
35	49398.0333	10558.79	1446.519	
36	51944.68786	11389.28	1601.674	
37	54539.92192	12257.05	1768.058	
38	57182.77354	13162.42	1946.087	
39	59872.29982	14105.71	2136.176	
40	62607.57655	15087.22	2338.735	

The data from Table 1 is calculated for 40 days for all sections, M1, M2, and M3 for the river. Figure 2, Figure 3, and Figure 4. show the amount of pollution in each section of the river.

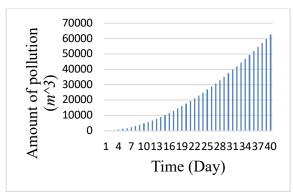


Figure 2. Amount of Pollution at M2

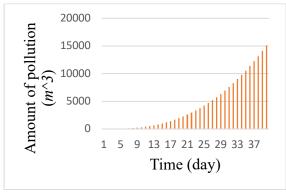


Figure 3. Amount of Pollution at M3

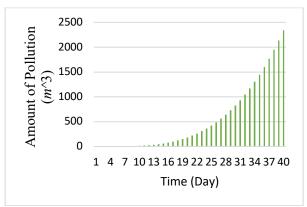


Figure 4. Amount of Pollution at M4

Figure 2 shows that the amount of pollution for section M2 is increases from $56.569m^3$ on day 1 to more than $60000m^3$ on day 40. Figure 3 and 4 also shows that the amount of pollution for section M3 and M4 increase linearly with the time.

Based on the result from Table 1, it shows that M2 has the highest value of amount of pollution compared to M3 and M4. Tthe pollution enters section M2 at linear rate, thus the pollution concentration in section M2 increases linearly as time increases. As there are flow from section M2 into sections M3 and M4, this pollution concentration will also enter these sections. It is seen that there are linear increase of pollution concentration in sections M3 and M4 as time increases, but at a slower rate. On day 1, 56.569 m^3 pollution concentration M2 enters section M2. 0.72% of the pollution concentration from section M2 enters section M3. Only 0.03% enters section M4. In section M2, it is predicted that the pollution concentration will be over than $1000m^3$ in five days. For section M3, it will take 15 days for the pollution to increase to that value. Fortunately, the pollution at section M4 will not reach that value within 30 days. The pollution at section M4 it will take 32 days for the pollution increase over than $1000m^3$.

4 Conclusion

Many rivers in Malaysia are polluted and this problem can be solved with the use of Ordinary Differential Equation which helps to calculate the exact amount of pollution in the river. The conclusion of the findings of this study are based on the result obtained. To obtain

the result, mathematical model for river pollution is modelled based on the condition of Mamut river, Sabah. The river divided into three sections which are M2, M3, and M4 and the amount of pollution will be calculated for each section.

Laplace Transform and Inverse Laplace Transform used to solve the mathematical model for the river pollution. By solving the mathematical model using Laplace Transform and Inverse Laplace Transform, the exact solution or the result is obtained. M2 has the highest amount of pollution followed by M3 and M4. This is because, the distance between the source of pollutant and M2 was closer compared to M3 and M4. Therefore, the mathematical model that formulated in this study is suitable to solve the problem of river pollution. This method easily implemented, and it is simple to calculate the exact solution for the system.

References

- [1] Department of Environment Malaysia (DOE). (2014). *The study on pollution prevention and water quality improvement of Sg. Melaka*. Malaysia: Government of Malaysia, Ministry of Natural Resources and Environment.
- [2] Bennett, C. (2001). River Quality Modeling Using Differential Equations. Rose-Hulman Undergraduate Mathematics Journal, 2(1), 1.
- [3] Ordokhani, Y. (2016). An analytical method for solving the model of pollution for a system of lakes.
- [4] Yang CH. and Hou J. (2013). Numerical solution of integro-differential equations of fractional order by Laplace decomposition method.
- [5] Kazem, S. (2013). Exact solution of some linear fractional differential equations by Laplace transform. International Journal of Nonlinear Science, 16(1), 3-11.