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Abstract  
One dimensional time fractional diffusion equation with source term is investigated in this study. 
Terms involving anomalous diffusion and the fractional derivative is defined using Grünwald 
Letnikov formula. The Keller box finite difference scheme to solve the spatiotemporal governing 
equation is developed implicitly with second order accuracy. Here, the stability of the scheme is 
carried out using well-known Von Neumann stability method. It is proven that the Keller box 
scheme for the governing equation is unconditionally stable with order of the time fractional 
derivative is taken between 0 and 1.   
Keywords: Time fractional differential equation; Keller box method; Grünwald Letnikov formula; 
Von Neumann method. 
 

 
1 Introduction 
Over the last few decades, fractional differential equation (FDE) has grabbed the eye of 
numerous researchers as its both principle and applications are strong and developing [1]. Not 
only in pure and applied mathematics, but the significance of fractional derivatives development 
is also remarkable in physics, chemistry and engineering. For various materials and processes, 
their definition of memory and hereditary properties can be brilliantly provided by using 
fractional differential equation. Ever since the question of the meaning of  !

!"
!#!

 if 𝜂 = $
%
 has been 

raised by L’Hopital in 1695 [2], many definitions of a fractional derivative, new derivatives and 
fractional integrals have arisen. Each of them has different fundamentals that makes the 
definitions varies [1]. Two of the popular fractional derivatives are Riemann-Liouville and Caputo 
definitions.  

This study is focused on fractional differential equations problems with time fractional 
diffusion equation. The finite difference scheme to solve these problems is developed implicitly 
based on Keller box method and the stability of the scheme is analysed. Central difference 
scheme is used that yields a second order accuracy in both time and space. Definition of 
fractional derivative like Grünwald-Letnikov formula is used to discretise the time fraction. 
Stability of the scheme is analysed by using Vonn-Neumann method. 
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2 Literature Review  
Derivation of time fractional diffusional equation is from considering continuous time random 
walk problems, and they are in general non-Markovian process [3]. Some analytical solutions for 
time fractional differential equations problem have been constructed in [4] and [5] where time-
fractional diffusion wave equation is considered. In both studies, the Green function and their 
properties are taken in terms of Fox function. In terms of wright function, Gorenflo et al. [6] and 
Gorenflo et al. [7] obtained the scale-invariant solution by using the similarity method and the 
method of Laplace transform.  

First devised by Keller and Cebeci [8], Keller box method is based on a developed new 
accurate finite difference method for parabolic partial differential equation. One of the 
fundamental concepts for this method is to write the first order system of the governing partial 
differential equations [8]. A study analysed a steady boundary layer flow and heat transfer over 
a stretching sheet with Newtonian heating in which the heat transfer from the surface is 
proportional to the local surface temperature [9]. Equations with nonlinear boundaries are 
converted into ordinary differential equations, which are then numerically solved by Keller box 
method. 

Osman and Langlands [10] in their study, discretised the fractional diffusion equation by 
using Keller box method and a modified L1 scheme (ML1) based on Oldham and Spanier [11] to 
approximate the Riemann-Liouville fractional derivative. The closed form analytic solutions are 
either do not exist or involve special functions that are hard to evaluate causes developing 
numerical techniques to find approximate solutions of fractional partial differential equation is 
important. They developed a method that can be used for a more general equations such as 
fractional cable equation [12]. The numerical method developed could be modified to include a 
source term 𝑓(𝑥, 𝑡) which then be solved on the finite spatial domain 0 ≤ 𝑥 ≤ 𝐿  and for times 
0 ≤ 𝑡 ≤ 𝑇. The accuracy was found to be in order 1 + 𝛾 in time and second order in space. 

 A study used Keller box to obtain a numerical scheme for one-dimensional time 
fractional diffusion equation with functions as boundary values [13]. In this scheme, Grünwald-
Letnikov is used to replace the fractional derivatives term. Two first-order equations are obtained 
from the second order diffusion equation. By using central difference in space and time, a system 
of equations is acquired and represented in a tridiagonal matrix form. Then, this is solved by 
using Thomas algorithm. 
 
3     Mathematical Formulation  
3.1 One Dimensional Time Fractional Diffusion Equation 
The one dimensional time fractional diffusion equation is given by, 
 

𝜕&𝑢(𝑥, 𝑡)
𝜕𝑡'

=
𝜕%𝑢(𝑥, 𝑡)
𝜕𝑥%

+ 𝑓(𝑥, 𝑡),										0 < 𝑥 < 𝐿, 0 < 𝑡 < 𝑇, (1) 

 
where 𝑓(𝑥, 𝑡) is a source term, 𝐿	is maximum length of space 𝑥 and 𝑇	is the maximum time, 𝑡. 
The equation (1) has broad applications in real world applications like chemotaxis and relaxation 
problems. Given the initial condition, 
 

𝑢(𝑥, 0) = 0;  0 ≤ 𝑥 ≤ 𝐿  (2) 
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and the boundary conditions: 
 

   𝑢(0, 𝑡) = 𝑔((𝑡),  
   𝑢(1, 𝑡) = 𝑔$(𝑡);  0 < 𝑡 < 𝑇. (3) 

 
The functions 𝑔(  and 𝑔$	 are known while the function 𝑢  is the unknown function to be 
determined. 
 
3.2 Finite Difference Scheme 
3.2.1 Discretization for the First Case 
For the first case, 𝛼 = 1 is substituted into equation (1). Therefore, equation (1) becomes, 
 

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

=
𝜕%𝑢(𝑥, 𝑡)
𝜕𝑥%

+ 𝑓(𝑥, 𝑡). (4) 

 
Let, 
 

𝜕𝑢(𝑥, 𝑡)
𝜕𝑥

= 𝑣(𝑥, 𝑡),	
 

(5) 

 
then equation (4) becomes, 
 

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

=
𝜕𝑣(𝑥, 𝑡)
𝜕𝑥

+ 𝑓(𝑥, 𝑡). (6) 

 
 
  
 
 
 
 

 
 

Figure 1 Grid points for finite difference of Keller box scheme. 
 

Based on Figure 1, central difference for space is applied in equation (5) using 9𝑛, 𝑖 − $
%
= of the 

segment 𝑣$𝑣%  and central difference in space and time is employed in equation (6) for 
	9𝑛 − $

%
, 𝑖 − $

%
= of rectangle 𝑣$𝑣%𝑣)𝑣*. Therefore, 
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𝑢+, − 𝑢+-$,

𝛥𝑥+
+ 𝑂(𝛥𝑥%) = 𝑣

+-$%

, 	, (7) 

𝑢
+-$%

, − 𝑢
+-$%

,-$

𝛥𝑡,
+ 𝑂(𝛥𝑡%) =

𝑣+
,-$% − 𝑣+-$

,-$%

𝛥𝑥+
+ 𝑂(𝛥𝑥%) + 𝑓

+-$%

,-$%.	 (8) 

 
Assume 

𝑡,-"#
= $

%
(𝑡, + 𝑡,-$)        and     	𝑥+-"#

 = $
%
(𝑥+ − 𝑥+-$) (9) 

 
and neglecting the truncation errors, equations (7) and (8) yield  
 

𝑢+, − 𝑢+-$, −
𝛥𝑥+
2
(𝑣+, + 𝑣+-$, ) = 0, (10) 

𝑢+, + 𝑢+-$, +
𝛥𝑡,
𝛥𝑥+

(𝑣+-$, − 𝑣+,)

= 𝑢+,-$ + 𝑢+-$,-$ +
𝛥𝑡,
𝛥𝑥+

A𝑣+,-$ − 𝑣+-$,-$B + 2𝛥𝑡,𝑓
+-$%

,-$%, 
(11) 

 
respectively. Equations (10) and (11) are represented in the form of tridiagonal matrix and is 
solved using Thomas algorithm. 

 
3.2.2 Discretization for the Second Case 
Now, the second-order diffusion equation (4) is recalled and the order of 𝛼 is taken between 0 
and 1. 

𝜕'𝑢(𝑥, 𝑡)
𝜕𝑡'

=
𝜕%𝑢(𝑥, 𝑡)
𝜕𝑥%

+ 𝑓(𝑥, 𝑡).  

 
This equation is reduced to a system of two-first order partial differential equations. Let, 

𝜕𝑢(𝑥, 𝑡)
𝜕𝑥

= 𝑣(𝑥, 𝑡). (12) 

 
Then the second-order diffusion equation (4) becomes 

𝜕'𝑢(𝑥, 𝑡)
𝜕𝑡'

=
𝜕𝑣(𝑥, 𝑡)
𝜕𝑥

+ 𝑓(𝑥, 𝑡). (13) 

 
By using central differences of (𝑛, 𝑖 − $

%
) in equation (12) and (𝑛 − $

%
, 𝑖 − $

%
) in equation (13), and 

discretize the time fraction in equation (13) using standard Grünwald-Letnikov formula which is 
defined as, 

𝐷.&( 𝑓(𝑡) = $
/$
D 𝜔0

(')𝑓(𝑡 − 𝑠𝑏)
3%&4

05(
+ 𝑂(𝑏);  𝑡 ≥ 0,	   

 
then, the equations (12) and (13) become 
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respectively. By using the central difference expressions in (9) and neglecting the truncation error 
terms, equations (14) and (15) become, 
 
 
 
 
 
 
 
 
 
The coefficients 𝜔0

(')  are the first coefficients of Taylor series expansions of the function 
(1 − 𝑧)', where 

 
  𝜔(

(') = 1           and       𝜔0
(') = 91 − &6$

0
=𝜔0-$

(') .  
 
The series in (17) is expanded and simplified as 
 

𝑢+, + 𝑢+-$, +
𝛥𝑡,'

𝛥𝑥+
(𝑣+-$, − 𝑣+,)

= 𝛼A𝑢+,-$ + 𝑢+-$,-$B +
𝛥𝑡,'

𝛥𝑥+
A𝑣+,-$ − 𝑣+-$,-$B 	−D𝜔0

(')𝑢+,-0
,

05%

		

																																		−D𝜔0
(')

,

05%

𝑢+-$,-0	 + 2𝛥𝑡,&𝑓
+-$%

,-$%. 

(
(18) 

 
The system of equations (16) and (18) is represented in the form of tridiagonal matrix and is 
solved using Thomas algorithm. For simplification, let ℎ = Δ𝑥 and 𝑚 = Δ𝑡. 

Newton’s method is used to linearize the nonlinear system of equations (16) and (18). 
Linearizing these equations yield, 

 
 𝛿𝑢+ − 𝛿𝑢+-$ −

8
%
(𝛿𝑣+ + 𝛿𝑣+-$) = −𝑢+ + 𝑢+-$ +

8
%
(𝑣+ + 𝑣+-$), (19) 

𝛿𝑢+ + 𝛿𝑢+-$ +
𝑚
ℎ
A𝛿𝑣+-$ − 𝛿𝑣+ B = 𝐺,-$ − 𝑢+ − 𝑢+-$ −

𝑚'

ℎ
(𝑣+-$ − 𝑣+), (20) 

 

𝑢+, − 𝑢+-$,

𝛥𝑥+
+ 𝑂(𝛥𝑥%) = 𝑣+-$ %9

, , (14) 

𝜕'𝑢(𝑥+ , 𝑡,)
𝜕𝑡'

		=
1

	2𝛥𝑡,'
D𝜔0

(&)𝑢+-$ %9
,-0

,

05(

+ 𝑂(𝛥𝑡)	

																									=
𝑣+
,-$ %9 − 𝑣+-$

,-$ %9

𝛥𝑥+
+ 𝑂(𝛥𝑥%) + 𝑓

+-$ %9
,-$ %9 , 

 
(15) 

𝑢+, − 𝑢+-$, −
𝛥𝑥+
2
(𝑣+, + 𝑣+-$, ) = 0, (16) 

1
2𝛥𝑡,'

OD𝜔0
(')𝑢+,-0

,

05(

+D𝜔0
(&)𝑢+-$,-0

,

05(

P

=
1

2𝛥𝑥+
A𝑣+, + 𝑣+,-$ − 𝑣+-$, − 𝑣+-$,-$B + 	𝑓

+-$ %9
,-$ %9 .	 

 
(17) 
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where 
 

 𝐺,-$ = 𝛼A𝑢+,-$ + 𝑢+-$,-$B + :$

8
A𝑣+,-$ − 𝑣+-$,-$B	

−D𝜔0
(')𝑢+,-0

,

05%

−D𝜔0
(')

,

05%

𝑢+-$,-0	 + 2𝑚'𝑓
+-$%

,-$%. 
 

 
The linear system (19) and (20) is solved by using the block-elimination method that involves 
forward and backward sweeps.  
 
4 Results and Discussion 
4.1 Stability of Fractional Implicit Keller Box Method 
The stability of fractional implicit Keller box method developed is analysed using Von Neumann 
method following the work from Chen et al. [14]. The system of equations (16) and (18) is 
rewritten with no source term for simplicity. By letting 𝑈+, and 𝑉+, as the approximate solutions 
of difference equations and the errors, then 
 

𝑢+, = 𝑈+, + 𝜀+,,  
  

𝑣+, = 𝑉+, + 𝑧+,. (21) 
 
Hence, substituting (21) into equations (16) and (18) yields, 
 

𝑈+, + 𝜀+, − 𝑈+-$, − 𝜀+-$, −
ℎ
2
(𝑉+, + 𝑧+, + 𝑉+-$, + 𝑧+-$, ) = 0,	 (22) 

𝑈+, + 𝜀+, + 𝑈+-$, + 𝜀+-$, +
𝑚'

ℎ
(𝑉+-$, + 𝑧+-$, − 𝑉+, − 𝑧+,)

= 𝛼A𝑈+,-$ + 𝜀+,-$ + 𝑈+-$,-$ + 𝜀+-$,-$B			

      	+	:
$

8
A𝑉+,-$ + 𝑧+,-$ − 𝑉+-$,-$ − 𝑧+-$,-$B		

      	−D 𝜔0
(')(𝑈+,-0

,

05%
+ 𝜀+,-0) −D 𝜔0

(')
,

05%
(𝑈+-$,-0	 + 𝜀+-$,-0). 

(23) 

 
Since 𝑈+, and 𝑉+, are the approximate solutions, therefore it satisfies the difference equations. 
Then, 
 

𝑈+, − 𝑈+-$, −
ℎ
2
(𝑉+, + 𝑉+-$, ) = 0,	 (24) 

𝑈+, − 𝑈+-$, +
𝑚'

ℎ
(𝑉+-$, − 𝑉+,) = 𝛼A𝑈+,-$ + 𝑈+-$,-$B +

𝑚'

ℎ
A𝑉+,-$ − 𝑉+-$,-$B		

                   					−D 𝜔0
(')𝑈+,-0

,

05%
−D 𝜔0

(')
,

05%
𝑈+-$,-0	

. 
(25) 

 
Subtracting equations (24) and (25) from equations (22) and (23) respectively give, 
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𝜀+, − 𝜀+-$, −
ℎ
2
(𝑧+, + 𝑧+-$, ) = 0. (26) 

𝜀+, + 𝜀+-$, +
𝑚'

ℎ
(𝑧+-$, − 𝑧+,) = 𝛼A𝜀+,-$ + 𝜀+-$,-$B +

𝑚'

ℎ
A𝑧+,-$ − 𝑧+-$,-$B		

																																																										−D𝜔0
(')𝜀+,-0

,

05%

−D𝜔0
(')

,

05%

𝜀+-$,-0	 ,	
(27) 

 
where, 
 

𝜀(, = 𝜀,, = 0       and       𝑧(, = 𝑧< = 0,    for 𝑛 = 1, 2, … ,𝑁. (28) 
 
Proposition 1 [13] The coefficient 𝜔0

(') (𝑠 = 0,1, …) satisfies 
  
(1) 𝜔(

(')=1;   𝜔$
(') = −𝛼;   𝜔0

(') < 0,  𝑠 = 1, 2, …	; 

(2) D 𝜔0
(&)

=

05(
= 1; −D 𝜔0

(')
,

05$
< 1,      ∀𝑛 ∈ 𝑁6.  

 
The error functions 𝜀(𝑖ℎ) = 𝜀+  and 𝑧(𝑖ℎ) = 𝑧+  where, 𝑖 = 0,1, … , 𝐽 are represented as Fourier 
series respectively,  

    𝜀+ =D 𝐴>𝑒√-$@+8
<

>5(
,  

 

    𝑧+ =D 𝐵>𝑒√-$@+8
<

>5(
, 

 
where 𝑞 is a real number. For the purpose of studying the propagation of errors, the 
summation and constant 𝐴>  and 𝐵>  are omitted. Now, supposed that the solution of equations 
(26), (27) and (28) are in the form, 
 

𝜀+, = 𝑒√-$@#𝑒A.	
     					= 𝑒√-$@+8𝑒A,:	

     = 𝜉,𝑒√-$@+8 , 
(29) 

 
𝑧+, = 𝜁,𝑒√-$@+8 , (30) 

 
where 𝛽 is a complex number. When 𝑛 = 0, the solutions are reduced to 𝑒√-$@+8, where 𝜉( =
1 and 𝜁( = 1. By substituting (29) and (30) into equations (26) and (27) respectively,  
 

𝜉,𝑒√-$@+8 − 𝜉,𝑒√-$@(+-$)8 −
8
%
(𝜁,𝑒√-$@+8 + 𝜁,𝑒√-$@(+-$)8) = 0, (31) 

𝜉,𝑒√-$@+8 + 𝜉,𝑒√-$@(+-$)8 +
𝑚'

ℎ
9𝜁,𝑒√-$@(+-$)8 − 𝜁,𝑒√-$@+8=

= 𝛼 9𝜉,-$𝑒√-$@+8 + 𝜉,-$𝑒√-$@(+-$)8=	
(32) 
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     +:$

8
9𝜁,-$𝑒√-$@+8 − 𝜁,-$𝑒√-$@(+-$)8=		

                  −D 𝜔0
(')𝜉,-0𝑒√-$@+8

,

05%
−D 𝜔0

(')
,

05%
𝜉,-0𝑒√-$@(+-$)8. 

 
Simplifying equations (31) and (32), 
 

							𝜉, =
ℎ
2
(1 + 𝑒-√-$@8)
A1−𝑒-√-$@8B

𝜁,. (33) 

𝜉, −
𝑚'

ℎ
𝜁,
91 − 𝑒- √-$@8=

91 + 𝑒- √-$@8=
= 𝛼𝜉,-$ +

𝑚'

ℎ
91 − 𝑒- √-$@8=

91 + 𝑒- √-$@8=
𝜁,-$	

																																																																	−D𝜔0
(')𝜉,-0

,

05%

.	

 
 

(34) 

 
Rearranging (33) becomes, 

𝜁, =
2
ℎ
O
1 − 𝑒-√-$@8

1+𝑒-√-$@8
P 𝜉,. (35) 

 
Substituting (35) into equation (34), then 
 

𝜉, − 2𝑆' O
1 − 𝑒-√-$@8

1+𝑒-√-$@8
P
%

𝜉, = 𝛼𝜉,-$ + 2𝑆' O
1 − 𝑒-√-$@8

1+𝑒-√-$@8
P
%

𝜉,-$ 

    −D 𝜔0
(')𝜉,-0

,

05%
, 

(36) 

 
where 

𝑆' =
𝑚'

ℎ%
	.  

 
Using the Euler identities, 
 

𝑒√-$@8 = cos(𝑞ℎ) + √−1 sin(𝑞ℎ), 
 

𝑒-√-$@8 = cos(𝑞ℎ) − √−1 sin(𝑞ℎ), 
 
therefore equation (36) becomes, 
 

𝜉, =
(𝛼 − 𝜇)𝜉,-$ −D 𝜔0

(')𝜉,-0
,

05%
(1 + 𝜇)

	, 
 

(37) 

 
where 
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𝜇 =
2𝑆 sin%(𝑞ℎ)

(1 + cos(𝑞ℎ))%
≥ 0. 

 
(38) 

 
Proposition 2 [13] The solution of equation (37) is assumed to be 𝜉, for 𝑛 = 1, 2, … ,𝑁. 
 

|𝜉,| ≤ |𝜉(| for 𝑛 = 1, 2, … ,𝑁. 
 
Proof Mathematical induction is used to prove Proposition 2 according to several studies 
[1,2]. Starting with 𝑛 = 1 from equation (37), 
 

𝜉$ =
(𝛼 − 𝜇)𝜉(
(1 + 𝜇)

. 
 

(39) 

 
Since 𝜇 ≥ 0 and 0 < 𝛼 < 1, then 

|𝜉$| ≤
(𝛼 − 𝜇)
(1 + 𝜇)

|𝜉(| ≤ |𝜉(|. 

Assume that, 
|𝜉:| ≤ |𝜉(|,	for 𝑚 = 1, 2,… , 𝑛 − 1, 

 
then from equation (37) and by applying Proposition 1, it is obtained 
 

|𝜉,| ≤
(𝛼 − 𝜇)
(1 + 𝜇)

|𝜉,-$| +
1

1 + 𝜇
D|𝜔0

(')|	|𝜉,-0|
,

05%

	

									≤ i
(𝛼 − 𝜇)
(1 + 𝜇)

+
1

1 + 𝜇
D|𝜔0

(')|
,

05%

j |𝜉(|	

									≤ i
(𝛼 − 𝜇)
(1 + 𝜇)

+
1

1 + 𝜇
D9|𝜔0

(')| − |𝜔$
(')|=

,

05%

j |𝜉(|	

									= i
(𝛼 − 𝜇)
(1 + 𝜇)

+
1

1 + 𝜇
O−D𝜔0

(') − 𝛼
,

05%

Pj |𝜉(|	

								≤ k
(𝛼 − 𝜇)
(1 + 𝜇)

+
1

1 + 𝜇
(1 − 𝛼)l |𝜉(|	

								=
1 − 𝜇
1 + 𝜇

|𝜉(| 

≤ |𝜉(|.  (40) 
 

Hence, it is proven that |𝜉,| ≤
$-B
$6B

|𝜉(| ≤ |𝜉(|. According to Von Neumann’s method, this gives 

the stability requirement for the solution of the difference equation (16) and (18) to be 
unconditionally stable. 
 
5 Conclusion 
The finite difference scheme to solve one dimensional time fractional diffusion equation is 
developed in this study. The scheme is based on Keller box method. The system of equations 
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then can be linearized using Newton’s method and then solved using block elimination. The 
stability of the scheme is investigated. It is proven that the scheme build is unconditionally stable. 
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