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Abstract Analytical solutions are obtained for a one-dimensional advection–diffusion equation 

with variable coefficients in a longitudinal finite initially solute free domain. The first investigates 

temporally dependent solute dispersion in a homogeneous domain along a uniform flow with 

uniform continuous input. The second investigate temporally dependent solute dispersion in a 

homogeneous domain along a uniform flow with input condition of increasing nature. The 

Laplace transformation technique is used to obtain analytical solutions. Throughout the process, a 

new time variable is introduced. With the support of graphs obtained using MATLAB, the effects 

of dispersion dependence on time on solute transport are investigated separately. 
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1.        Introduction 

 

Diffusion is the mechanism by which molecules move across a concentration gradient, and 

it is a process that occurs in all living things. Diffusion occurs in liquids and gases because 

molecules can travel freely. As a result, concentration gradients regulate diffusive transport is, 

(Mahajan, 2010).  𝑗�̅�  =  𝐷𝑑
′ ∇𝐶 , where 𝑗𝑑  denotes the diffusive flux, 𝐷𝑑

′  the effective diffusion 

coefficient which accounts for porosity and tortuosity, and ∇𝐶 the concentration gradient. In the 

earlier analytical solutions, the solute dispersion parameter and velocity have been considered 

constant in a homogeneous medium. The basic approach was to reduce the advection-diffusion 

equation, into a diffusion equation by eliminating the advection term. It was done either by 

introducing moving coordinates (A.F. Van et al., 2018). Laplace transform is used for solving 

differential and integral equations. The solution of the advection diffusion equation is a long-

standing problem and many analytical and numerical methods have been introduced to model 

accurately the interaction between advective and diffusive processes. Either analytical or numerical 

solutions, aid in understanding the contaminant or pollutant concentration distribution behavior 

through an open medium such as air, rivers, lakes, and a porous medium such as an aquifer, based 

on which remedial processes to reduce or eliminate damages can be implemented (Kumar et al., 

2009). 



Ragendra and Mat Isa (2021) Proc. Sci. Math. 4:104-113 

 

 

 
105 

                The major cause of deterioration of the hydro-environment in surface water sources and 

aquifers is the immiscible solute or tracer particles of contaminants. The origins of such 

contaminants derive from the actions of humans on earth. Besides that, due to diffusion and 

advection that degrades the hydro-environment, there is rising concern in understanding and 

assessing the contaminants solvent particles transport along the medium. It is important to solve the 

equation of advection diffusion in real cases.  

               In that order, for a general case of temporally dependent dispersion along temporally 

dependent flow, this one-dimensional equation is solved where dispersion is not proportional to the 

velocity, with respect to a homogeneous first type initial state, non-homogeneous first and third 

type input conditions, and homogeneous flux type condition at the far end of the semi-infinite 

medium type condition. The alternatives are obtained as basic instances for other cases of 

temporally dependent dispersion along uniform flow, uniform dispersion along unstable flow and 

uniform dispersion along uniform flow. The analytical solutions are contrasted with each other in 

each of the four cases (Kumar et al., 2010). The advection diffusion equation is a transport equation 

that combines advective and diffusive processes in species transfer. Advection occurs when a solute 

is carried along with the fluid's bulk flow (Fulford et al., 2002).  

 

               Assume the mass flux 𝐽 to be due to both diffusion and advection, so 𝐽=𝐽𝑑+𝐽𝑎. 𝑥 is the 

rate of movement of mass per unit time per unit area through the cross section at 𝑥. Let 𝑣(𝑥,𝑡) denote 

the fluid velocity. Solute particles will move at the same velocity as the mixture when diffusion is 

absence. The total mass of solute that is transported through the cross-section is the volume of 

mixture moving past the cross-section in a time Δ𝑥 multiplied concentration. This volume is 𝑣𝐴Δ𝑡. 

Thus, the mass flux due solely to advection is given by, 
𝜕𝐶

𝜕𝑡
 +  𝑣

𝜕𝐶

𝜕𝑋
=  𝐷 

𝜕2𝐶

𝜕𝑋2
 

                

               The objectives of this study are to solve analytically the temporally dependent dispersion 

in non-uniform flow of uniform input and input condition of increasing nature. Finally, interpret 

the analytical solution of the temporally dependent dispersion of non-uniform flow in diffusion–

advection into graph. 

 

2. Temporally dependent dispersion of uniform continuous input. 

 
Diffusion–advection equation in one dimension with variable coefficients is, 

𝜕𝐶

𝜕𝑡
 =  

𝜕

𝜕𝑥
 [[𝐷(𝑥, 𝑡)]

𝜕𝐶

𝜕𝑥
 −  𝑢(𝑥, 𝑡)𝐶],                (1) 

 

For temporally dependent dispersion along uniform flow, 

𝐷(𝑥, 𝑡)  =  𝐷0𝑓(𝑚𝑡),                              (2) 

𝑢(𝑥, 𝑡)  =  𝑢0 .                                          (3) 

Substitute equation (2) and (3) into equation (1) 

  
𝜕𝐶

𝜕𝑡
= [𝐷0𝑓(𝑚𝑡)] 

𝜕2𝐶

𝜕𝑥2  −  𝑢0
𝜕𝐶

𝜕𝑥
 .               (4) 

 

Along with the initial condition and boundary condition as below, 

∁(𝑥, 𝑡)  =  0,     0 ≤ 𝑥 ≤ 𝐿,    𝑡 =  0,  
∁(𝑥, 𝑡)  =  𝑐0,    𝑥 =  0   𝑡 >  0  

 
𝜕∁(𝑥,𝑡)

𝜕𝑥
 =  0,   𝑥 =  𝐿,   𝑡 ≥  0.                    (5) 
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The steps start with introducing a new independent variable by a transformation.  

𝑋 =  ∫
𝑑𝑥

𝑓(𝑚𝑡)
  .                             (6) 

 

Differentiation on both LHS and RHS of equation (6) to get equation (7), 
𝑑𝑋

𝑑𝑥
 =  

1

𝑓(𝑚𝑡)
.                 (7)  

 

By applying chain can be obtained 
𝜕𝐶

𝜕𝑋
, and 

𝜕𝐶

𝜕𝑋
. Substitute it into equation (4) to get,  

𝑓(𝑚𝑡)
𝜕𝐶

𝜕𝑡
 =  𝐷0  

𝜕2𝐶

𝜕𝑋2  − 𝑢0
𝜕𝐶

𝜕𝑋
  .                          (8)  

 

The initial and boundary value problem in new space variable may be expressed as: 

∁(𝑋, 𝑡)  =  0,    0 ≤  𝑋 ≤  𝑋0,    𝑡 = 0;    𝑋0 = 
𝐿

𝑓(𝑚𝑡)
,  

∁(𝑋, 𝑡)  =  𝑐0,    𝑋 =  0   𝑡 >  0, 

 
𝜕∁(𝑥,𝑡)

𝜕𝑋
 =  0,   𝑋 =  𝑋0 ,   𝑡 ≥  0.  

 

To get rid of the time dependent coefficient, the following transformation is used, 

𝑇 =  ∫
𝑑𝑡

𝑓(𝑚𝑡)

𝑡

0
  .                                                                                       (9)  

 

Differentiation on both LHS and RHS of equation (9) yield, 

             
𝑑𝑇

𝑑𝑡
 =  

1

𝑓(𝑚𝑡)
.  .                                                              (10)  

 

Applying chain rule, to find  
𝜕𝐶

𝜕𝑡
, and then we gey,         

  
𝜕𝐶

𝜕𝑇
 =  𝐷0  

𝜕2𝐶

𝜕𝑋2  −  𝑢0
𝜕𝐶

𝜕𝑋
                                                                                                (11) 

 

The initial and boundary condition value problems are below, 

               ∁(𝑋, 𝑇)  =  0,    0 ≤  𝑋 ≤  𝑋0,     𝑇 = 0;    𝑋0 = 
𝐿

𝑓(𝑚𝑡)
,                                                    (12)  

 ∁(𝑋, 𝑇)  =  𝐶0,    𝑋 = 0   𝑇 > 0                                                                                             (13) 

                 
𝜕∁(𝑋,𝑇)

𝜕𝑋
 =  0,   𝑋 =  𝑋0 ,   𝑇 ≥  0.                                                                                         (14)  

 

The most basic method for solving the advection-diffusion equation is to convert equation (11) 

into a diffusion equation by removing the advection term. This is accomplished by including a 

new dependent variable (Ogata & Banks, 1961). 

𝐶(𝑋, 𝑇)  =  𝐾(𝑋, 𝑇)exp [
𝑢0𝑋

2𝐷0
 −  

𝑢0
2𝑇

4𝐷0
].            (15) 

 

Now, differentiate equation (15) with respect to T and X. It will give us,  

               
𝜕𝐾

𝜕𝑡
 =  𝐷0

𝜕2𝐾

𝜕𝑋2.                                                                  (16) 

 

Based on equation (12) and (15), the initial condition for this problem is, 

             𝐾(𝑋, 𝑇) = 0,    𝑇 =  0,   𝑋 ≥  0.                                                                                  (17) 
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Method of Laplace transform will be used to solve the diffusion equation. Applying the Laplace 

transform into equation (16) and the general solution for the diffusion equation may be obtained 

as, 

�̂�(𝑋, 𝑠) =  𝐶1 𝑒𝑥𝑝 [−√
𝑠

𝐷0
𝑋]  + 𝐶2 𝑒𝑥𝑝 [√

𝑠

𝐷0
𝑋].                                                         (18) 

 

 

 

Substitute both 𝐶1 and 𝐶2 values into equation () yields the solution of this boundary value 

problem, 

 �̂�(𝑋, 𝑠) =
𝐶0

(𝑠 − 𝛼2)

(

 
 

[
 
 
 
 

1 −
  (√

𝑠

𝐷0
−

𝑢0
2𝐷0

)

(√
𝑠

𝐷0
−

𝑢0
2𝐷0

) + (√
𝑠

𝐷0
+ 

𝑢0
2𝐷0 

)(e
2√

𝑠
𝐷0

𝑋
)

]
 
 
 
 

 exp [−√
𝑠

𝐷0
𝑋] +   exp [√

𝑠

𝐷0
𝑋]

)

 
 

(18)  

 

Applying the inverse Laplace transformation on this equation we will get the desired analytical 

solution, ℒ−1[�̂�(𝑋, 𝑠)], 

ℒ−1

[
 
 
 
 

𝐶0

(𝑠 − 𝛼2)

(

 
 

[
 
 
 
 

1 −
  (√

𝑠

𝐷0
−

𝑢0
2𝐷0

)

(√
𝑠

𝐷0
−

𝑢0
2𝐷0

) + (√
𝑠

𝐷0
+ 

𝑢0
2𝐷0 

)(e
2√

𝑠
𝐷0

𝑋
)

]
 
 
 
 

 exp [−√
𝑠

𝐷0
𝑋] +   exp [√

𝑠

𝐷0
𝑋]

)

 
 

]
 
 
 
 

  

 

Applying inverse Laplace transformation on it, will give 𝐾(𝑋, 𝑇)  which hence we can get 𝐶(𝑋, 𝑇). 

Based on (Van Genuchten et al., 1982) and (Atul Kumar et al., 2009) the final solution of temporally 

dependent dispersion of uniform continuous input is, 

 𝐶(𝑋, 𝑇) = 𝐶0𝐴(𝑋, 𝑇),            (19) 

 

where A (X, T) is, 
1

2
 erfc (

𝑋−𝑢0𝑇

2√𝐷0𝑇
) + 

1

2
  exp (

𝑢0𝑋

𝐷0
) erfc (

𝑋+𝑢0𝑇

2√𝐷0𝑇
) +

1

2
 [2 +

𝑢0(2𝑋0−𝑋)

𝐷0
+

𝑢0
2𝑇

𝐷0
]   exp (

𝑢0𝑋0

𝐷0
)  erfc (

(2𝑋0−𝑋)+𝑢0𝑇

2√𝐷0𝑇
) − (

𝑢0
2𝑇

𝜋𝐷0
)
1

2⁄

 exp [
𝑢0𝑋

𝐷0
−

(2𝑋0−𝑋+𝑢0𝑇)2

4𝐷0𝑇
],  

 

𝑋 = 
𝑥

𝑓(𝑚𝑡)
,     𝑋0 = 

𝐿

𝑓(𝑚𝑡)
, 

 

 

 
3 Temporally dependent dispersion of input Condition of Increasing Nature 

The mathematical formulation is the same as in (1) to (5) but, the input condition of increasing 

nature introduced at the origin of the domain will make the boundary condition (6) becomes, 

−𝐷0𝑓(𝑚, 𝑡)
𝜕𝐶

𝜕𝑥
 +  𝑢0𝐶 =  𝑢0𝐶0.                                                   (20) 

 

Substitute equation (7) into equation (20), 



Ragendra and Mat Isa (2021) Proc. Sci. Math. 4:104-113 

 

 

 
108 

                        −𝐷0
𝜕𝐶

𝜕𝑋
+ 𝑢0𝐶 =  𝑢0𝐶0   𝑋 = 0 , 𝑇 > 0 .   (21) 

 

The condition above in equation (12) is reduced into new dependent variable K using equation (15) 

and (17), here we get,   

−𝐷0 (
𝜕𝐾

𝜕𝑋
 exp [

𝑢0𝑥

2𝐷0
 − 

𝑢0
2𝑡

4𝐷0
] +

𝑢0

2𝐷0
𝐾 exp [

𝑢0𝑥

2𝐷0
 −  

𝑢0
2𝑡

4𝐷0
]) + 𝑢0 (𝐾 exp [

𝑢0𝑥

2𝐷0
 −  

𝑢0
2𝑡

4𝐷0
]) = 𝑢0𝐶0     (22) 

 

Factorize equation (17) and substitute value of X = 0 and the boundary condition to get, 

   (−𝐷0
𝜕𝐾

𝜕𝑋
 −  

𝑢0

2
𝐾 )  =  𝑢0𝐶0𝑒

𝛼2𝑡 ;    𝑡 > 0, 𝑋 = 0,                               (23) 

 where,  𝛼2  =  
𝑢0

2𝑡

4𝐷0
 . 

 

Applying Laplace transformation into the equation (23) 

ℒ  (−𝐷0
𝜕𝐾

𝜕𝑋
 − 

𝑢0

2
𝐾 )  =  ℒ(𝑢0𝐶0𝑒

𝛼2𝑡 ).                                                         (24) 

 

While the second boundary condition  
𝜕∁

𝜕𝑥
 =  0;  𝑋 →  𝑋0, 𝑡 ≥ 0 is same as case 1 Hence, it 

becomes, 

   
𝜕𝐾

𝜕𝑋
 + (

𝑢0

2𝐷0
)𝐾 =  0;   𝑋 = 𝑋0, 𝑡 ≥ 0.                                                             (25) 

 

Applying Laplace transformation into the equation (25) 

ℒ  [
𝜕𝐾

𝜕𝑋
 +  (

𝑢0

2𝐷0
)𝐾 ] =  ℒ(0).                                                                         (26) 

 

will reduce both Laplace equation (24) and (26) to an ordinary second order boundary value 

problem, which comprises of the following two equations, 

(−𝐷0
𝜕�̂�

𝜕𝑋
 − 

𝑢0

2
�̂� )  =  

𝑢0𝐶0

𝑠 − 𝛼2 ;   𝑋 = 0,                                              (27) 

( 
𝜕�̂�

𝜕𝑋
 + 

𝑢0

2𝐷0
�̂� )  =  0;   𝑋 →  𝑋0.                                                           (28) 

 

Same as case 1, where 𝐶3 and 𝐶4 are arbitrary constants that can be specifies using equations  The 

boundary condition at 𝑋 → 𝑋0 leads to, 

              �̂�(𝑋, 𝑠)  =  𝐶3 exp [−√
𝑠

𝐷0
𝑋]  + 𝐶4 exp [√

𝑠

𝐷0
𝑋] .                                 (29) 

 

Hence, substitute 𝐶3 and 𝐶4 values that obtained in equation (28) and the particular solution of this 

boundary value problem may obtained as, 

�̂�(𝑋, 𝑠) = (
2𝑢0𝐶0(√

𝑠

𝐷0
+ 

𝑢0
2𝐷0

)

(𝑠 − 𝛼2)(3𝑠+ 
𝑢0𝑠√𝐷0

2
+

𝑢0
2 √

𝑠

𝐷0
− 

3𝑢0
2

4𝐷0
 )

)exp [−𝑋√
𝑠

𝐷0
]  

+ (
2𝑢0𝐶0(√

𝑠

𝐷0
− 

𝑢0
2𝐷0

)

(𝑠 − 𝛼2)(exp[2𝑋√
𝑠

𝐷0
])( 

𝑢0√𝑠𝐷0
2

−
𝑢0
2 √

𝑠

𝐷0
− 

𝑢0
2

4𝐷0
−𝑠+𝑢0)

)exp [𝑋√
𝑠

𝐷0
].  

 

Applying the inverse Laplace transformation on this equation we will get the desired 𝐾(𝑋, 𝑇) 
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ℒ−1 (�̂�(, 𝑠))  =  ℒ−1

[
 
 
 
 (

2𝑢0𝐶0(√
𝑠

𝐷0
+ 

𝑢0
2𝐷0

)

(𝑠 − 𝛼2)(3𝑠+ 
𝑢0𝑠√𝐷0

2
+

𝑢0
2 √

𝑠

𝐷0
− 

3𝑢0
2

4𝐷0
 )

)exp [−𝑋√
𝑠

𝐷0
] +

 (
2𝑢0𝐶0(√

𝑠

𝐷0
− 

𝑢0
2𝐷0

)

(𝑠 − 𝛼2)(exp[2𝑋√
𝑠

𝐷0
])( 

𝑢0√𝑠𝐷0
2

−
𝑢0
2 √

𝑠

𝐷0
− 

𝑢0
2

4𝐷0
−𝑠+𝑢0)

)exp [𝑋√
𝑠

𝐷0
]

]
 
 
 
.  

 

Applying inverse Laplace transformation on it, will give 𝐾(𝑋, 𝑇)  which hence we can get 𝐶(𝑋, 𝑇).  

based on (Van Genuchten et al., 1982) and (Atul Kumar et al., 2009) the final solution of temporally 

dependent dispersion of input condition of increasing nature, 

                                      𝐶(𝑋, 𝑇) = 𝐶0𝐴(𝑋, 𝑇)                                                                                  (29) 

where A (X, T) is, 

1

2
 𝑒𝑟𝑓𝑐 (

𝑋−𝑢0𝑇

2√𝐷0𝑇
) + (

𝑢0
2𝑇

𝜋𝐷0
)
1

2⁄

 𝑒𝑥𝑝 (−
(𝑋+𝑢0𝑇)2

4𝐷0𝑇
) −   

1

2
(1 +

𝑢0𝑋

𝐷0
+

𝑢0
2𝑇

𝐷0
)  𝑒𝑥𝑝 (

𝑢0𝑋

𝐷0
) 𝑒𝑟𝑓𝑐 (

𝑋−𝑢0𝑇

2√𝐷0𝑇
) + (

4𝑢0
2𝑇

𝜋𝐷0
)
1

2⁄

[1 +
𝑢0

4𝐷0
(2𝑋0 − 𝑋 + 𝑢0𝑇)] 𝑒𝑥𝑝 [

𝑢0𝑋0

𝐷0
−

(2)

4𝐷0𝑇
] −

(
𝑢0

𝐷0
) [(2𝑋0 − 𝑋) +

3𝑢0
2𝑇

2
+

4𝑢0

𝐷0
(2𝑋0 − 𝑋 + 𝑢0𝑇)2] [𝑒𝑥𝑝 (

𝑢0𝑋0

𝐷0
)  𝑒𝑟𝑓𝑐 (

(2𝑋0−𝑋)−𝑢0𝑇

2√𝐷0𝑇
)].   

𝑋 = 
𝑥

𝑓(𝑚𝑡)
,     𝑋0 = 

𝐿

𝑓(𝑚𝑡)
,       

 

4          RESULTS AND DISCUSSION 

 

As a result, the findings for both situations produced using MATLAB by doing the coding 

to construct the graphs.  

 
4.1 Temporally dependent dispersion of uniform continuous input. 

 

The curves in Figure 1, Figure 2, and Figure 3 are drawn for the concentration values are 

evaluated in a finite domain 0 ≤ 𝑥 ≤ 1  with 𝐿=1.0 km for input values 𝐶0 = 1.0 , 𝑢0 =
0.11(km/year) , and 𝑎 = 1.0( km)−1 is taken. The value of 𝑚(year)−1 = 0.1 is chosen for all the 

curves. Figure 1 curves drawn with manipulating times 𝑡 (years), Figure 2 drawn by manipulating 

D values while figure 3 drawn by manipulating 𝐷0 values. 

 

Besides that, we were able to analyze that, at lower time period, the decrease in the 

concentration value is greater when the distance increases while at higher time period, the decrease 

in the concentration value is relatively smaller as the distance increases from Figure 1. Moreover, 

at lower D, the decrease in the concentration value is greater when the distance increases while at 

higher D, the decrease in the concentration value is relatively smaller as the distance increases from 

Figure 2. At last, at lower 𝐷0, the decrease in the concentration value is greater when the distance 

increases while at higher 𝐷0, the decrease in the concentration value is relatively smaller as the 

distance increases from figure 3. 
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Figure 3: Temporally dependent solute 

dispersion along uniform flow of uniform input 

with 𝐷0 = 0.21, 
0.51, 0.81, and 1.01  . 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

4.2 Temporally dependent dispersion of uniform continuous input. 

 

The curves in Figure 4, Figure 5, and Figure 6 are drawn for the concentration values are 

evaluated in a finite domain 0 ≤ 𝑥 ≤ 1  with 𝐿=1.0 km for input values 𝐶0 = 1.0 , 𝑢0 =
0.11(km/year) , and 𝑎 = 1.0( km)−1 is taken. The value of 𝑚(year)−1 = 0.1 is chosen for all the 

curves. Figure 4 curves drawn with manipulating times 𝑡 (years), Figure 5 drawn by manipulating 

D values while figure 6 drawn by manipulating 𝐷0 values. 

 

 Moreover, we were able to analyze that, at lower time period, the initial concentration value 

is smaller while at higher time period, the initial concentration value is larger from Figure 4. We 

can analyze that, at lower D, the decrease in the concentration value is greater when the distance 

increases while at higher D, the decrease in the concentration value is relatively smaller as the 

distance increases. At 0.4214km the concentration of both curve is equal at 0.1007 from Figure5. 

At last, we were able to analyze that, at lower 𝐷0, the decrease in the concentration value is greater 

_______= 𝐷 = 𝐷0exp(−𝑚𝑡) = 0.19,  

-----------= 𝐷 =  𝐷0exp(𝑚𝑡) = 0.23,   

………...= 𝐷 = 𝐷0 = 0.21 . 

 

Figure 1: Temporally dependent solute dispersion 

along uniform flow of uniform input with 𝑡 (years) 

=0.1, 0.4, 0.7, and 1.0. 

 

Figure 2: Temporally dependent solute 

dispersion along uniform flow of uniform input 

with 𝐷 =  𝐷0exp(−𝑚𝑡), 𝐷0exp(𝑚𝑡), and 𝐷0 
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when the distance increases while at higher 𝐷0, the decrease in the concentration value is relatively 

smaller as the distance increases from Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Conclusion 

 

In temporally dependent dispersion along uniform, analytical solutions to a one-

dimensional diffusion–advection equation with variable coefficients and two sets of 

boundary conditions (one set of input condition is uniform, while the other is of increasing 

nature, and the second condition in each set is homogeneous of flux type) have been 

obtained in an initially solute free finite domain. The application of a new transformation 

to the diffusion–advection equation, which introduces another spatial variable, allows the 

Laplace transformation approach to be used to obtain analytical solutions. A two-level 

Figure 5: Temporally dependent solute 

dispersion along uniform flow of input of 

increasing nature with 𝐷 = 𝐷0exp(−𝑚𝑡), and 

𝐷0exp(𝑚𝑡) 

 

Figure 3: Temporally dependent solute dispersion 

along uniform flow of input of increasing nature 

with 𝐷0 = 0.21, 
0.51, 0.81, and 1.01  . 

 

Figure 4: Temporally dependent solute 

dispersion along uniform flow of input of 

increasing nature with 𝑡 (years) =0.1, 0.4, 0.7, 

and 1.0. 
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explicit finite difference approach was also used to get numerical solutions. The 

corresponding analytical and numerical answers were also compared, and there was a lot 

of agreement between them. The numerical solution of the same problem with dispersion 

varying with velocity was compared to the analytical solution of uniform input. Such 

analytical solutions could be used to validate numerical solutions in more realistic 

dispersion problems, making it easier to assess the transport of pollutants' solute 

concentrations away from their source through soil, aquifers and oil reservoirs. 
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