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Abstract This paper is focused on studying complex Riccati equation and its application. 

Several methods to solve Riccati equations are discussed and it is observed that complex 

Riccati equation is equivalent to complex linear second order ODE under a transformation. 

This paper also discusses the geometrical application of complex Riccati equation in 

solving Frenet-Serret equation problem. 
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1 Introduction 
 

Equation involving derivatives of functions are called differential equation. Differential 

equation is ordinary differential equation (ODE) if and only if it constitutes of only functions 

with respect to only one independent variable, else it is called partial differential equation (PDE) 

[1]. Complex number is the number with representation 𝑥 + 𝑖𝑦 where 𝑥 is the real part, 𝑦 is the 

imaginary part and 𝑖 is the imaginary number √−1. René Descartes coined the term “imaginary” 

in imaginary number as a nonexistent number during his time [2]. 

 Complex analysis is defined as a study of complex functions involving derivatives, 

integrals, series and any relevant theories. Analytic function is function that is differentiable 

over a domain. Hence, in complex analysis, analytic function refers to differentiable function 

over the complex domain [3]. Complex differential equation (CDE) is the differential equation 

with solutions in complex domain. 

 The first order ODE where the unknown function is quadratic is called Riccati equation. 

For a case where the coefficient for the constant term of the equation is zero, it is called 

Bernoulli equation. Meanwhile, Riccati equation that is analytic in complex domain is called 

complex Riccati equation. This research is carried out to seek relationship between the complex 

Riccati equation and the complex linear second order ODE, solving some of the complex 

Riccati equations and learning application of the complex Riccati equation.  

 

 

2          Complex Riccati Equations 
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2.1 General Theory 

 

Complex Riccati equation of the second order is defined as [4] 

 

𝑦′(𝑧) = 𝑓0(𝑧) + 𝑓1(𝑧)𝑦(𝑧) + 𝑓2(𝑧)(𝑦(𝑧))
2
, (2.1) 

 

where 𝑓0, 𝑓1 and 𝑓2 are analytic functions of 𝑧 in the complex domain. 

 

Now, consider a complex linear second order ODE 

 

𝑤′′(𝑧) + 𝑃(𝑧)𝑤′(𝑧) + 𝑄(𝑧)𝑤(𝑧) = 0, (2.2) 

 

where 𝑃 and 𝑄 are analytic in the complex domain. 

 

It can be shown that complex Riccati equation (2.1) is equivalent to the complex linear second 

order ODE (2.2) under a transformation. First, consider the equation 

 

𝑦(𝑧) =
𝑤′(𝑧)

𝑓2(𝑧)𝑤(𝑧)
 . (2.3) 

 

Equation (2.3) is differentiated both sides to yield 

 

𝑦′(𝑧) =
𝑤′(𝑧)

−𝑓2(𝑧)
(

1

𝑤(𝑧)
)
′

+
1

𝑤(𝑧)
(

𝑤′(𝑧)

−𝑓2(𝑧)
)

′

 
 

𝑦′(𝑧) =
(𝑤′(𝑧))2

𝑓2(𝑧)(𝑤(𝑧))2
−

𝑤′′(𝑧)

𝑤(𝑧)𝑓2
+

𝑤′(𝑧)

𝑤(𝑧)(𝑓2(𝑧))
2𝑓2

′(𝑧)
 . (2.4) 

 

Equations (2.3) and (2.4) are then substituted back into (2.1) to obtain 

 

(𝑤′(𝑧))2

𝑓2(𝑧)(𝑤(𝑧))2
−

𝑤′′(𝑧)

𝑤(𝑧)𝑓2
+

𝑤′(𝑧)

𝑤(𝑧)(𝑓2(𝑧))
2𝑓2

′(𝑧)
= 𝑓0(𝑧) −

𝑓1(𝑧)𝑤′(𝑧)

𝑓2(𝑧)𝑤(𝑧)
+

(𝑤′(𝑧))2

𝑓2(𝑧)(𝑤(𝑧))2
  

−
𝑤′′(𝑧)

𝑤(𝑧)𝑓2
+

𝑤′(𝑧)

𝑤(𝑧)(𝑓2(𝑧))
2𝑓2

′(𝑧)
= 𝑓0(𝑧) −

𝑓1(𝑧)𝑤
′(𝑧)

𝑓2(𝑧)𝑤(𝑧)
 . (2.5) 

 

Multiply both sides of (2.5) with (𝑓2(𝑧)𝑤(𝑧))2, we get 

 

𝑤(𝑧)𝑤′(𝑧)𝑓2
′(𝑧) − 𝑤(𝑧)𝑓2(𝑧)𝑤

′′(𝑧)

= (𝑓2(𝑧))
2
(𝑤(𝑧))

2
𝑓0(𝑧) − 𝑓1(𝑧)𝑓2(𝑧)𝑤(𝑧)𝑤′(𝑧) 

 

𝑤′′(𝑧) + (−
𝑓2

′(𝑧)

𝑓2(𝑧)
− 𝑓1(𝑧))𝑤′(𝑧) + (𝑓0(𝑧)𝑓2(𝑧))𝑤(𝑧) = 0 . (2.6) 
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Equation (2.6) is the complex linear second order ODE generated from (2.1) under 

transformation (2.3).  

This is the equation of the form (2.2) where 

 

𝑃(𝑧) = −
𝑓2

′(𝑧)

𝑓2(𝑧)
− 𝑓1(𝑧) 

and 

 

𝑄(𝑧) = 𝑓0(𝑧)𝑓2(𝑧).  

 

 

 

 

Another transformation can be made to obtain complex Riccati equation from complex linear 

second order ODE (2.2). Consider the transformation 

 

𝑦(𝑧) = −
𝑤′(𝑧)

𝑤(𝑧)
 . (2.7) 

 

Differentiate (2.7), gives 

 

𝑦′(𝑧) =
(𝑤′(𝑧))2 − 𝑤(𝑧)𝑤′′(𝑧)

(𝑤(𝑧))2
  

(𝑦(𝑧))2 − 𝑦′(𝑧) =
𝑤′′(𝑧)

𝑤(𝑧)
. (2.8) 

 

Now, divide both sides of (2.2) with 𝑤(𝑧) to yield 

 
𝑤′′(𝑧)

𝑤(𝑧)
+ 𝑃(𝑧)

𝑤′(𝑧)

𝑤(𝑧)
+ 𝑄(𝑧) = 0. (2.9) 

 

Finally, substitute (2.7) and (2.8) into (2.9) to obtain 

 

(𝑦(𝑧))2 − 𝑦′(𝑧) − 𝑃(𝑧)𝑦(𝑧) + 𝑄(𝑧) = 0  

𝑦′(𝑧) = 𝑄(𝑧) − 𝑃(𝑧)𝑦(𝑧) + (𝑦(𝑧))2. (2.10) 

 

Equation (2.10) is the obtained complex Riccati equation from (2.2) by transformation (2.7). 

Since both complex Riccati equation and complex linear second order ODE have relationships 

under certain transformations, it has been shown that complex Riccati equation is equivalent to 

the complex linear second order ODE. 

 

2.2 Bernoulli Equation 

 



Samia’an and Murid (2021) Proc. Sci. Math. 4:114-123 

 

 

 
117 

General Bernoulli equation is defined as 

 

𝑦′(𝑧) = 𝑓1(𝑧)𝑦(𝑧) + 𝑓2(𝑧)(𝑦(𝑧))
𝑛
, (2.11) 

 

where 𝑓1 and 𝑓2 are analytic in complex domain and 𝑛 ≠ 0,1. 

 

Let a transformation exist, that is 

 

𝑢(𝑧) = (𝑦(𝑧))1−𝑛 . (2.12) 

 

Then, it follows that 

 

𝑢′(𝑧) = (1 − 𝑛)(𝑦(𝑧))
−𝑛

𝑦′(𝑧) 

and 

 

𝑦′(𝑧) =  
𝑢′(𝑧)(𝑦(𝑧))𝑛

1 − 𝑛
.  (2.13) 

 

Equation (2.11) is substituted with (2.12) and (2.13) to obtain 

 
𝑢′(𝑧)(𝑦(𝑧))𝑛

1 − 𝑛
= 𝑓1(𝑧)𝑦(𝑧) + 𝑓2(𝑧)(𝑦(𝑧))𝑛  

𝑢′(𝑧) = (1 − 𝑛)(𝑓2(𝑧) + 𝑓1(𝑧)𝑢(𝑧)). (2.14) 

 

Equation (2.14) is the complex linear first order ODE. Let an initial condition 𝑢(𝑧0) = 𝑢0 exists 

where 𝑢0 = 𝑤0
1−𝑛 and 𝑤(𝑧0) = 𝑤0 under transformation (2.12) then a solution exist and it is 

written in the form [4] 

 

𝑢(𝑧) = 𝑒
∫ 𝑓1(𝑠) 𝑑𝑠

𝑧

𝑧0 (𝑢0 + ∫ 𝑓2(𝑡)𝑒
∫ 𝑓1(𝑠) 𝑑𝑠

𝑧

𝑧0 𝑑𝑡
𝑧

𝑧0

). (2.15) 

 

By rearranging the transformation (2.12) in this form 

 

𝑤(𝑧) = (𝑢(𝑧))
1

1−𝑛 , 
 

 

it is then substituted with (2.15) to obtain the final solution 

 

𝑤(𝑧) = (𝑒
∫ 𝑓1(𝑠) 𝑑𝑠

𝑧

𝑧0 (𝑤0
1−𝑛 + ∫ 𝑓2(𝑡)𝑒

∫ 𝑓1(𝑠) 𝑑𝑠
𝑧

𝑧0 𝑑𝑡
𝑧

𝑧0

))

1
1−𝑛

 . (2.16) 

 

Therefore, equation (2.16) is the solution for the Bernoulli equation in (2.11). 

 

Complex Riccati equation (2.1) with 𝑓0 = 0 is a form of Bernoulli equation with 𝑛 = 2. It then 

follows that the solution for this kind of equation is given in the form 
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𝑤(𝑧) = (𝑒
∫ 𝑓1(𝑠) 𝑑𝑠

𝑧

𝑧0 (𝑤0
−1 + ∫ 𝑓2(𝑡)𝑒

∫ 𝑓1(𝑠) 𝑑𝑠
𝑧

𝑧0 𝑑𝑡
𝑧

𝑧0

))

−1

 . (2.17) 

 

 

 

3 Several Examples on Solving Complex Riccati Equation 
 

Example 3.1 Find the general solution to the equation [4, Exercise 4.1, p. 106] 

 

−𝑦′ =
𝑦

𝑧(𝑧2 − 1)
+

1

2
𝑦2. (2.18) 

 

Solution Rearrange the equation (2.18) to match with the general form in (2.1), 

 

𝑦′ = −
𝑦

𝑧(𝑧2 − 1)
−

1

2
𝑦2. 

 

Then, it is found that 𝑓0 = 0, 𝑓1 = −(𝑧(𝑧2 − 1))−1 and 𝑓2 = −
1

2
. This is a form of Bernoulli 

equation with 𝑛 = 2, hence the general solution (2.17) can be used. 

 

𝑤(𝑧) = (𝑒
∫  −

1
𝑠(𝑠2−1)

𝑑𝑠
𝑧

𝑧0 (𝑤0
−1 − ∫

1

2
𝑒

∫  −
1

𝑠(𝑠2−1)
𝑑𝑠

𝑧

𝑧0 𝑑𝑡
𝑧

𝑧0

))

−1

.   

 

Solving this will yield 

 

𝑤(𝑧) = (𝐾 (
𝑧√𝑧0

2 − 1

𝑧0√𝑧2 − 1
)(𝑤0

−1 −
1

2
𝐾(𝑧 − 𝑧0)(

𝑧√𝑧0
2 − 1

𝑧0√𝑧2 − 1
)))

−1

 (2.19) 

 

where 𝐾 is written as 

 

𝐾 = 𝑒
𝑖 Arg 𝑧−

1
2
(Arg(𝑧−1)+Arg(𝑧+1))−(𝑖 Arg𝑧0−

1
2
(𝑖 Arg(𝑧0−1)+𝑖 Arg( 𝑧0+1))

. 
 

 

Therefore, equation (2.19) is the general solution of (2.18). 

 

Example 3.2 The equation [4, Exercise 4.1, p. 106] 

 

𝑦′ = 1 − 𝑦2  

 

has a solution that approaches infinity when 𝑧 = 0. Does the equation have finite solutions? 

 

Solution This is a complex Riccati equation with 𝑓0 = 1 , 𝑓1 = 0  and 𝑓2 = −1 . Then, 

transformation (2.3) can be employed to convert this equation into this form of complex linear 

second order ODE with constant coefficients 
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𝑤′′ − 𝑤 = 0.  

 

The general solution for this equation is 

 

𝑤 = 𝑐1𝑒
𝑧 + 𝑐2𝑒

−𝑧.  

 

Then, the solution is transformed back into the form 

 

𝑦 =
𝑐1𝑒

𝑧 + 𝑐2𝑒
−𝑧

−𝑐1𝑒
𝑧 + 𝑐2𝑒

−𝑧
, 

 

 

where 𝑐1 and 𝑐2 are arbitrary constants that can be solved for some initial conditions. 

 

 

 

 

A limit exists when 𝑧 approaches 0, that is 

 

lim
𝑧→0

𝑦 =
𝑐1 + 𝑐2

−𝑐1 + 𝑐2
. 

 

 

Set 𝑐1 = 𝑐2 and the solution will be inifinte, else it will be finite. Hence, finite solutions exist. 

 

4 Geometrical Application: Frenet-Serret Equation 
 

Consider a finite curve Γ in three-dimensional space with parameters of arc length 𝑠, radius of 

curvature 𝑅(𝑠) and radius of torsion 𝑇(𝑠). 𝑋, 𝑌 and 𝑍 are the running coordinates where each 

axis involved move along the positive axes on the right-hand screw. Let a moving trihedral of 

the unit vectors 𝐱1(𝑠), 𝐱𝟐(𝑠) and 𝐱3(𝑠) along the tangent, principle normal and binormal vectors 

of Γ respectively exists [4]. Then the moving trihedral along the curve is represented by Figure 

4.1 [8]. 

 

 
Diagram 4.1: Moving trihedral along the curve Γ. 

 

Define Γ by the equation 

 

𝐱 = 𝐠(𝑠),  
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then 𝐱1 = 𝐠′(𝑠) is the tangent vector and 𝐱1′ = 𝐠′′(𝑠) is the curvature vector. 

 

 

 

 

Radius of curvature is written as [6] 

 

𝑅(𝑠) =
1

𝜅
, 

 

 

where 𝜅 is the nonzero curvature |𝐠′′(𝑠)| and the radius of torsion is given by 

 

𝑇(𝑠) =
1

𝜏
 , 

 

 

where 𝜏 is the torsion. 

 

Torsion 𝜏 is written as [7] 

 

𝜏 = −𝐍 ∙ 𝐁′,  

 

where 𝐍  is the principle normal vector and 𝐁  is the binormal vector. Since 𝐱𝟐(𝑠) = 𝐍  and 

𝐱3(𝑠) = 𝐁, so this can also be written as 

 

𝜏 = −𝐱𝟐 ∙ 𝐱3′. (4.1) 

 

The normal vector is defined by [4] 

 

𝐱2 =
𝐠′′(𝑠)

|𝐠′′(𝑠)|
 (4.2) 

 

and the binormal vector is a cross product of tangent and principle normal vectors, that is 

 

𝐱3 = 𝐱1 × 𝐱2. (4.3) 

 

Since 𝐱1(𝑠), 𝐱𝟐(𝑠) and 𝐱3(𝑠) are mutually orthogonal, then 𝐱1 ∙ 𝐱𝟐 = 𝐱1 ∙ 𝐱3 = 𝐱𝟐 ∙ 𝐱3 = 0 and 

𝐱1 ∙ 𝐱1 = 𝐱𝟐 ∙ 𝐱𝟐 = 𝐱3 ∙ 𝐱3 = 1.  

 

From (4.1), 𝐱3
′ can be determined, that is 

 

−𝐱𝟐 ∙ 𝐱3
′ =  𝜏  

(−𝐱𝟐 ∙ −𝐱𝟐) ∙ 𝐱3
′ = −𝐱𝟐 ∙  𝜏  

𝐱3
′ = − 𝜏 ∙ 𝐱𝟐  

𝐱3
′ = −

𝐱𝟐

𝑇(𝑠)
 .  

 

Since 𝐱1′ = 𝐠′′(𝑠), then substitute this into (4.2) to get 
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𝐱1
′ =

𝐱2

𝑅(𝑠)
 .  

 

𝐱1
′ and 𝐱3

′ are then used to find 𝐱2
′. From (4.3), 

 

𝐱3 = 𝐱1 × 𝐱2  

−𝐱2 = 𝐱3 × 𝐱1  

−𝐱2′ = 𝐱3 × 𝐱1′ + 𝐱1 × 𝐱3′  

−𝐱2′ = 𝐱3 ×
𝐱2

𝑅(𝑠)
+ 𝐱1 × −

𝐱𝟐

𝑇(𝑠)
 

 

𝐱2
′ = −

𝐱1

𝑅(𝑠)
+

𝐱3

𝑇(𝑠)
 .  

 

Frenet-Serret equation is the system generated by 𝐱1
′, 𝐱2

′ and 𝐱3
′. Consider 

Then the Frenet-Serret equation is written as 

 

𝐱′ =

[
 
 
 
 
 
 0 

1

𝑅(𝑠)
0 

−
1

𝑅(𝑠)
 0

1

𝑇(𝑠)

 0 −
1

𝑇(𝑠)
0 

]
 
 
 
 
 
 

𝐱. (4.4) 

 

Suppose the vector components 𝐱𝑖 ∈ 𝐱 be 𝐱𝑖𝑗, then the unitary matrix 𝒰(𝑠) is written as 

 

𝒰(𝑠) = [

𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

𝑥31 𝑥32 𝑥33

]. (4.5) 

 

Multiplying both sides of (4.4) with arbitrary matrix is possible as long as the original equation 

is valid. Similarly, it is possible to obtain a unitary system of scalar ODEs for the first column of 

(4.5), that is 

 

[

𝑥11′

𝑥21′

𝑥31′

] =

[
 
 
 
 
 
 0 

1

𝑅(𝑠)
0 

−
1

𝑅(𝑠)
 0

1

𝑇(𝑠)

 0 −
1

𝑇(𝑠)
0 

]
 
 
 
 
 
 

[

𝑥11

𝑥21

𝑥31

]. (4.6) 

 

Sum of the squares in any column of 𝒰(𝑠) is 1, therefore 𝑢 and 𝑣 can be written in the form of 

 

𝑢 =
𝑥11 + 𝑖𝑥21

1 − 𝑥31
=

1 + 𝑥31

𝑥11 − 𝑖𝑥21
  

𝐱 = [

𝐱1

𝐱2

𝐱3

] and 𝐱′ = [

𝐱1′

𝐱2′

𝐱3′

].  
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−
1

𝑣
=

𝑥11 − 𝑖𝑥21

1 − 𝑥31
=

1 + 𝑥31

𝑥11 + 𝑖𝑥21
 .  

 

Then 𝑥11, 𝑥21 and 𝑥31 can be expressed in terms of 𝑢 and 𝑣, that is 

 

𝑥11 =
𝑢𝑣 − 1

𝑢 + 𝑣
, (4.7) 

𝑥21 =
𝑖(𝑢𝑣 + 1)

𝑢 + 𝑣
 

and 

(4.8) 

𝑥31 =
𝑢 − 𝑣

𝑢 + 𝑣
 . (4.9) 

 

 

 

 

 

Differentiate 𝑥11, 𝑥21 and 𝑥31 to yield 

 

𝑥11
′ =

(𝑣2 + 𝑢𝑣 + 1)𝑢′ + 𝑣′

(𝑢 + 𝑣)2
 , (4.10) 

𝑥21
′ = 𝑖

(𝑢2 + 𝑢𝑣 − 1)𝑣′ + 𝑢′

(𝑢 + 𝑣)2
 

and 

(4.11) 

𝑥31
′ =

2𝑢𝑢′ − 2𝑣𝑣′

(𝑢 + 𝑣)2
 . (4.12) 

 

Substitute (4.7) ,(4.8),(4.9),(4.10),(4.11) and (4.12) into the system (4.6) to get 

 

(𝑣2 + 𝑢𝑣 + 1)𝑢′ + 𝑣′

(𝑢 + 𝑣)2
=

𝑖(𝑢𝑣 + 1)

𝑅(𝑢 + 𝑣)
 , (4.13) 

(𝑢2 + 𝑢𝑣 − 1)𝑣′ + 𝑢′

(𝑢 + 𝑣)2
=

𝑖(𝑢𝑣 − 1)

𝑅(𝑢 + 𝑣)
+

𝑢𝑣 + 1

𝑇(𝑢 + 𝑣)
 

and 

 

2𝑢𝑢′ − 2𝑣𝑣′

(𝑢 + 𝑣)2
= −

𝑢 − 𝑣

𝑇(𝑢 + 𝑣)
 . (4.14) 

 

Rearrange (4.13) and (4.14) 

 

(𝑣2 + 𝑢𝑣 + 1)𝑢′ =
𝑖(𝑢𝑣 + 1)(𝑢 + 𝑣)2

𝑅
− 𝑣′, (4.15) 

𝑣′ =
𝑢2 − 𝑣2 + 𝑢𝑢′

2𝑣(1 + 𝑇)
 . (4.16) 

 

Finally, the result is obtained from (4.15) and (4.16), that is 
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(𝑣2 + 𝑢𝑣 + 1)𝑢′ =
𝑖(𝑢𝑣 + 1)(𝑢 + 𝑣)2

𝑅
−

𝑢2 − 𝑣2 + 𝑢𝑢′

2𝑣(1 + 𝑇)
  

𝑢′ = −
1

2
(

1

𝑅(𝑠)
−

𝑖

𝑇(𝑠)
) −

1

2
(

1

𝑅(𝑠)
+

𝑖

𝑇(𝑠)
) 𝑢2. (4.17) 

 

From the Frenet frame, complex Riccati equation (4.17) can be obtained. If 𝑅(𝑠) and 𝑇(𝑠) are 

given, then by using complex Riccati equation, the Frenet frame can be determined. Conversely, 

it is possible to determine 𝑅(𝑠) and 𝑇(𝑠) using 𝐱1(𝑠), 𝐱𝟐(𝑠) and 𝐱3(𝑠). 

 

 

5 Conclusion 
 

Solutions for certain forms of complex Riccati equation have been discussed in this 

study. Under a certain transformation, complex Riccati equation is equivalent to a general 

complex linear second order ODE. Geometric application of Riccati equation, that is solving 

Frenet frame problem, particularly in differential geometry also demonstrated in this study, 

where from the radius of curvature and torsion along with vector equation, the Riccati equation 

can be determined.  
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