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Abstract – In this work the forced vibration of rectangular membranes with moving 

boundaries has been carried out. This research is including the nonhomogeneous problems 

which is a time dependent boundary value problem. The method of eigenfunctions is used in 

this study to solve the problem. The aim of this study is to solve the problem of forced vibration 

of rectangular membranes with moving boundaries by using the method of eigenfunctions and 

then to plot a graph for solution in two dimensions. A computer algorithm has been written to 

plot the graph of solution. The graph of solution that was developed during the research will 

help researchers to understand the effect of 𝑡 as time step, a as length of rectangular 

membranes, b as width of rectangular membranes and 𝑐 as wave speed on the graph of the 

rectangular membranes when the value of 𝑡, 𝑎, 𝑏 and 𝑐 is increased. 
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1           Introduction 

Nowadays, the wave equations have been very popular among mathematicians and also 

physicians. It can be seen in many situations such as electromagnetic waves and sea waves. 

The vibration membrane also was related to the wave equation. Myinth-U and Debnath [1] 

have studied that for deriving the vibrating membrane, there are certain assumptions that 

should be made which is the membrane is flexible and elastic, there is no elongation of a 

single segment of the membrane, the tension in the membrane is large, the minimal diameter 

of the membrane is large, the slope of the displayed membrane at any point is small than the 

unity and there is only pure transverse vibration.  

From previous studies, there are numerous studies that involve the wave equation and 

also the vibration membrane. Amjad and Khan [2] have studied about the forced vibration 

analysis of rectangular membranes with clamped edges. During their study, they have 

analysed the fundamental frequency and its variation based on their dimensions of the 

membrane, density and tension in the membrane. They also analysed the effect of aspect 

ratio on the natural frequencies of the membrane. 

According to Haertel and Rodriguez [3], their research focus on how to solve the 

vibrating membrane problem based on the basic Newton’s principles and also some 

simulations. Their aims are to show that the same results can be achieved with much less 

mathematical effort, based only on Newton’s principles and linear elastic forces. There are 
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also another interesting articles that related to the wave equations and also vibrating 

membrane. The interesting article is about the Fourier solution of the wave equation for a star-

like-shaped vibrating membrane by Caratelli, Natalini and Ricci [4]. In their article, their aims 

are to show how they modify some classical formulas and also they have does some derivation 

of the methods to compute the coefficients of Fourier type expansions representing solutions 

of the classical wave equation in complex domains. 

In this research, we will show the method to solve the problems of forced vibration of 

rectangular membranes which is a non-homogeneous problem. The problems were 

considered as the time-dependent boundary value problems. The method that was used to 

solve the problem later is known as the method of eigenfunctions. This method is closely 

related to the method of separation of variables which is aimed for finding a particular solution 

of a differential equation. 

 

2           Problem Statement 

In this paper, we will discuss on the problems of a forced vibration of a rectangular membrane 
with moving boundaries. The problem here is to determine the displacement function 𝑢 which 
satisfies 

      𝑢𝑡𝑡 − 𝑐2∇2𝑢 = 𝐹(𝑥, 𝑦, 𝑡),       0 < 𝑥 < 𝑎,   0 < 𝑦 < 𝑏,                                                                    (2.1)  

          𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),           0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏,                                                                 (2.2) 

         𝑢𝑡(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦),           0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏,                                                                    (2.3)    

           𝑢(0, 𝑦, 𝑡) = 𝑝1(𝑦, 𝑡),           0 ≤ 𝑦 ≤ 𝑏,   𝑡 ≥ 0,                                                                           (2.4) 

           𝑢(𝑎, 𝑦, 𝑡) = 𝑝2(𝑦, 𝑡),          0 ≤ 𝑦 ≤ 𝑏,    𝑡 ≥ 0,                                                                           (2.5)     

           𝑢(𝑥, 0, 𝑡) = 𝑞1(𝑥, 𝑡),          0 ≤ 𝑥 ≤ 𝑎,    𝑡 ≥ 0,                                                                              (2.6) 

           𝑢(𝑥, 𝑏, 𝑡) = 𝑞2(𝑥, 𝑡),         0 ≤ 𝑥 ≤ 𝑎,     𝑡 ≥ 0.                                                                            (2.7) 

For this problems, a solution will be in the form 𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝑥, 𝑦, 𝑡) + 𝑣(𝑥, 𝑦, 𝑡) which 

is equation (2.8), where 𝑣 is the new dependent variable to be determined. Before finding 𝑣, 
we must first determine 𝑈. Then after we get 𝑈, we need to find the wave equation for 𝑣 by 
substituting equation (2.1) – (2.7) into 𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝑥, 𝑦, 𝑡) + 𝑣(𝑥, 𝑦, 𝑡). Then, the new problem 

is to find the function 𝑣(𝑥, 𝑦, 𝑡) which satisfies 

                  𝑣𝑡𝑡 − 𝑐2(𝑣𝑥𝑥 + 𝑣𝑦𝑦) = 𝐹̃(𝑥, 𝑦, 𝑡),  

                                      𝑣(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),          𝑣𝑡(𝑥, 𝑦, 0) = 𝑔̃(𝑥, 𝑦),  

                                  𝑣(0, 𝑦, 𝑡) = 0,                       𝑣(𝑎, 𝑦, 𝑡) = 0,  

                                  𝑣(𝑥, 0, 𝑡) = 0,                       𝑣(𝑥, 𝑏, 𝑡) = 0.  

This is an initial boundary value-problem with homogeneous boundary conditions, which can 

be solved by using the method of eigenfunctions. 

 

4           Methodology 

In this research, the method of eigenfunctions is applied to solve the problem of forced 
vibration of rectangular membranes with moving boundaries. In Sub-section 4.1, the method 
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of eigenfunctions in two dimension is shown step by step. In Sub-section 4.2, after the new 
problem for 𝑣 was determined, then the method of eigenfunctions can be applied. 

4.1         Method of Eigenfunctions in Two Dimension 

Consider the nonhomogeneous initial boundary-value problem 

                              𝐿[𝑢] = 𝜌𝑢𝑡𝑡 − 𝐺     in   D                                                                                                 (4.1) 

with prescribed homogeneous boundary conditions on the boundary B of D, and the initial 

conditions 

                            𝑢(𝑥1, 𝑥2, … , 𝑥𝑛, 0) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛),                                                                           (4.2) 

                              𝑢𝑡(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛).                                                                              (4.3) 

Here 𝜌 ≡ 𝜌(𝑥1, 𝑥2, … , 𝑥𝑛) is a real-valued positive continuous function and 𝐺 ≡ 𝐺(𝑥1, 𝑥2, … , 𝑥𝑛) 

is a real-valued continuous function. We assume that the only solution of the associated 

homogeneous problem 

                                                           𝐿[𝑢] = 𝜌𝑢𝑡𝑡                                                                                     (4.4) 

with the prescribed boundary conditions is the trivial solution. Then, if there exists a solution 

of the given problem in Equation (4.1) – (4.3), it can be represented by a series of 

eigenfunctions of the associated eigenvalue problem 

                                                   𝐿[𝜑] + λρφ = 0                                                                                     (4.5) 

with 𝜑 satisfying the boundary conditions given for 𝑢. 

As a specific example, we shall determine the solution of the problem of forced vibration of a 

rectangular membrane of length 𝑎 and width 𝑏. The problem is 

                        𝑢𝑡𝑡 − 𝑐2∇2𝑢 = 𝐹(𝑥, 𝑦, 𝑡)         in        D                                                                      (4.6)      

                                𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),            0 ≤ 𝑥 ≤ 𝑎,    0 ≤ 𝑦 ≤ 𝑏,                                                (4.7) 

                           𝑢𝑡(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦),                 0 ≤ 𝑥 ≤ 𝑎,   0 ≤ 𝑦 ≤ 𝑏,                                             
(4.8) 

                             𝑢(0, 𝑦, 𝑡) = 0,          𝑢(𝑎, 𝑦, 𝑡) = 0,                                                                                (4.9) 

                             𝑢(𝑥, 0, 𝑡) = 0,          𝑢(𝑥, 𝑏, 𝑡) = 0.                                                                              (4.10) 

The associated eigenvalue problem is 

                            ∇2𝜑 + λφ = 0     in    D,  

                                         𝜑 = 0    on the boundary    B of D. 

We have just shown that the separated equations for the wave equation are 

          𝑇′′ + λ𝑐2𝑇 = 0,                                                                                                                  

(4.11) 

             ∇2𝑈 + λ𝑈 = 0,                                                                                                                 

(4.12) 
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where, in this case, ∇2𝑈 = 𝑈𝑥𝑥 + 𝑈𝑦𝑦. Let λ = 𝛼2. Then the solution of Equation (3.10) is 

                               𝑇(𝑡) = 𝐴(𝑐𝑜𝑠 (𝛼𝑐𝑡)) + 𝐵(𝑠𝑖𝑛 (𝛼𝑐𝑡))           

Now we look for a nontrivial solution of Equation (3.11) in the form 

                          𝑈(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦).   

Substituting this into Equation (3.11) yields 

                        𝑋′′ − 𝜇𝑋 = 0,               𝑌′′ + (λ + μ)Y = 0. 

If we let 𝜇 = −𝛽2, then the solutions of these equations take the form 

                              𝑋(𝑥) = 𝐶 (cos(𝛽𝑥)) + 𝐷(sin(𝛽𝑥)). 

                                 𝑌(𝑦) = 𝐸 (𝑐𝑜𝑠  (𝛾𝑦)) + 𝐹 (sin  (𝛾𝑦)),  

where 

                               𝛾2 = (λ + μ) = α2 − 𝛽2. 

The homogeneous boundary conditions in 𝑥 require that 𝐶 = 0 and 

                     𝐷 (sin(𝛽𝑎)) = 0 

which implies that 𝛽 = (
𝑚𝜋

𝑎
) 𝑤𝑖𝑡ℎ 𝐷 ≠ 0. Similarly, the homogeneous boundary conditions in 

𝑦 require that 𝐸 = 0 and 

                     𝐹 (sin(𝛾𝑏)) = 0 

which implies that 𝛾 = (
𝑛𝜋

𝑏
) with 𝐹 ≠ 0. Noting that 𝑚 and 𝑛 are independent integers, we 

obtain the displacement function in the form 

𝑢(𝑥, 𝑦, 𝑡) = ∑  ∑ (𝑎𝑚𝑛
∞
𝑛=1

∞
𝑚=1 cos 𝛼𝑚𝑛 𝑐𝑡 + 𝑏𝑚𝑛𝑠𝑖𝑛 𝛼𝑚𝑛𝑐𝑡) sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
)                        

(4.13) 

where 𝛼𝑚𝑛 = (
𝑚2𝜋2

𝑎2 ) + (
𝑛2𝜋2

𝑏2 ) , 𝛼𝑚𝑛 and 𝑏𝑚𝑛 are constants. 

The eigenvalues for this problem are given by 

                                        𝛼𝑚𝑛 = (
𝑚2𝜋2

𝑎2 +
𝑛2𝜋2

𝑏2 ) ,        𝑚, 𝑛 = 1,2,3, …  

and the corresponding eigenfunctions are 

                             𝜑𝑚𝑛(𝑥, 𝑦) = sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
).  

Thus, we assume the solution 
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                              𝑢(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑢𝑚𝑛
∞
𝑛=1

∞
𝑚=1 (𝑡) sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
)  

and the forcing function 

                              𝐹(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝐹𝑚𝑛
∞
𝑛=1

∞
𝑚=1 (𝑡) sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
).  

Here 𝐹𝑚𝑛(𝑡) are given by 

                             𝐹𝑚𝑛(𝑡) =
4

𝑎𝑏
∫ ∫ 𝐹(𝑥, 𝑦, 𝑡) sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) 𝑑𝑥𝑑𝑦.

𝑏

0

𝑎

0
  

Note that 𝑢 automatically satisfies the homogeneous boundary conditions. Now inserting 

𝑢(𝑥, 𝑦, 𝑡) and 𝐹(𝑥, 𝑦, 𝑡) in Equation (4.6), we obtain 

                   𝑢𝑚𝑛̈ + 𝑐2𝛼𝑚𝑛
2 = 𝐹𝑚𝑛,  

where 𝛼𝑚𝑛
2 = (

𝑚𝜋

𝑎
)

2
+ (

𝑛𝜋

𝑏
)

2
. We have assumed that 𝑢 is twice continuously differentiable with 

respect to 𝑡. Thus, the solution of the preceeding ordinary differential equation takes the form 

                     𝑢𝑚𝑛(𝑡) = 𝐴𝑚𝑛 cos(𝛼𝑚𝑛𝑐𝑡) + 𝐵𝑚𝑛 sin(𝛼𝑚𝑛𝑐𝑡) +
1

𝛼𝑚𝑛𝑐
∫ 𝐹𝑚𝑛

𝑡

0
(𝜏) sin[𝛼𝑚𝑛𝑐(𝑡 − 𝜏)] 𝑑𝜏.  

The first initial condition gives 

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) = ∑ ∑ 𝐴𝑚𝑛

∞

𝑛=1

∞

𝑚=1

sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
). 

Assuming that 𝑓(𝑥, 𝑦) is continuous in 𝑥 and 𝑦, the coefficient 𝐴𝑚𝑛 of the double Fourier series 

is given by 

                                         𝐴𝑚𝑛 =
4

𝑎𝑏
∫ ∫ 𝑓(𝑥, 𝑦) sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) 𝑑𝑥𝑑𝑦.

𝑏

0

𝑎

0
  

Similarly, from the remaining initial condition, we have 

𝑢𝑡(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦) = ∑ ∑ 𝐵𝑚𝑛

∞

𝑛=1

∞

𝑚=1

(𝛼𝑚𝑛𝑐) sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
), 

and hence, for continuous 𝑔(𝑥, 𝑦), 

𝐵𝑚𝑛 =
4

𝑎𝑏𝛼𝑚𝑛𝑐
∫ ∫ 𝑔(𝑥, 𝑦) sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) 𝑑𝑥𝑑𝑦.

𝑏

0

𝑎

0

 

The solution of the given initial boundary-value problem is therefore given by 

𝑢(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑢𝑚𝑛

∞

𝑛=1

∞

𝑚=1

(𝑡) sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
). 

4.2         Time-Dependent Boundary-Value Problems 

We consider the forced vibration of a rectangular membrane with moving boundaries. 

The problem here is to determine the displacement function 𝑢 which satisfies 

      𝑢𝑡𝑡 − 𝑐2∇2𝑢 = 𝐹(𝑥, 𝑦, 𝑡),      0 < 𝑥 < 𝑎,    0 < 𝑦 < 𝑏,                                                                (4.11) 

          𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),           0 ≤ 𝑥 ≤ 𝑎,   0 ≤ 𝑦 ≤ 𝑏,                                                                 (4.12) 
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         𝑢𝑡(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦),          0 ≤ 𝑥 ≤ 𝑎,    0 ≤ 𝑦 ≤ 𝑏,                                                                    (4.13) 

            𝑢(0, 𝑦, 𝑡) = 𝑝1(𝑦, 𝑡),          0 ≤ 𝑦 ≤ 𝑏,    𝑡 ≥ 0,                                                                              (4.14) 

          𝑢(𝑎, 𝑦, 𝑡) = 𝑝2(𝑦, 𝑡),           0 ≤ 𝑦 ≤ 𝑏,    𝑡 ≥ 0,                                                                             (4.15) 

           𝑢(𝑥, 0, 𝑡) = 𝑞1(𝑥, 𝑡),            0 ≤ 𝑥 ≤ 𝑎,    𝑡 ≥ 0,                                                                           (4.16) 

           𝑢(𝑥, 𝑏, 𝑡) = 𝑞2(𝑥, 𝑡),            0 ≤ 𝑥 ≤ 𝑎,    𝑡 ≥ 0.                                                                         (4.17) 

For such problems, we seek a solution 

                  𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝑥, 𝑦, 𝑡) + 𝑣(𝑥, 𝑦, 𝑡),                                                                                   (4.18) 

where 𝑣 is the new dependent variable to be determined. Before finding 𝑣, we must first 

determine 𝑈. If we substitute equation (4.18) into equations (4.11) – (4.17), we respectively 

obtain 

𝑣𝑡𝑡 − 𝑐2(𝑣𝑥𝑥 + 𝑣𝑦𝑦) = 𝐹 − 𝑈𝑡𝑡 + 𝑐2(𝑈𝑥𝑥 + 𝑈𝑦𝑦) = 𝐹̃(𝑥, 𝑦, 𝑡) 

 

 

and 

𝑣(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) − 𝑈(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦), 

𝑣𝑡(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦) − 𝑈𝑡(𝑥, 𝑦, 0) = 𝑔̃(𝑥, 𝑦), 

𝑣(0, 𝑦, 𝑡) = 𝑝1(𝑦, 𝑡) − 𝑈(0, 𝑦, 𝑡) = 𝑝1̃(𝑦, 𝑡), 

𝑣(𝑎, 𝑦, 𝑡) = 𝑝2(𝑦, 𝑡) − 𝑈(𝑎, 𝑦, 𝑡) = 𝑝2̃(𝑦, 𝑡) 

𝑣(𝑥, 0, 𝑡) = 𝑞1(𝑥, 𝑡) − 𝑈(𝑥, 0, 𝑡) = 𝑞1̃(𝑥, 𝑡), 

𝑣(𝑥, 𝑏, 𝑡) = 𝑞2(𝑥, 𝑡) − 𝑈(𝑥, 𝑏, 𝑡) = 𝑞2 ̃(𝑥, 𝑡). 

In order to make the conditions on 𝑣 homogeneous, we set 

𝑝1̃ = 𝑝2̃ = 𝑞1̃ = 𝑞2 ̃ = 0, 

so that 

                 𝑈(0, 𝑦, 𝑡) = 𝑝1(𝑦, 𝑡),     𝑈(𝑎, 𝑦, 𝑡) = 𝑝2(𝑦, 𝑡),                                                                     (4.19)   

                 𝑈(𝑥, 0, 𝑡) = 𝑞1(𝑥, 𝑡),     𝑈(𝑥, 𝑏, 𝑡) = 𝑞2(𝑥, 𝑡).                                                                    (4.20) 

In order that the boundary conditions be compatible, we assume that the prescribed functions 

take the forms  

                𝑝1(𝑦, 𝑡) = 𝜑(𝑦)𝑝1
∗(𝑦, 𝑡),     𝑝2(𝑦, 𝑡) = 𝜑(𝑦)𝑝2

∗(𝑦, 𝑡),                  

                𝑞1(𝑥, 𝑡) = 𝜇(𝑥)𝑞1
∗(𝑥, 𝑡),      𝑞2(𝑥, 𝑡) = 𝜇(𝑥)𝑞2

∗(𝑥, 𝑡),  

where the function 𝜑 must vanish at the end points 𝑦 = 0, 𝑦 = 𝑏 and the function 𝜇 must vanish 

at 𝑥 = 0, 𝑥 = 𝑏. Thus, 𝑈(𝑥, 𝑦, 𝑡) which satisfies equations (4.19) – (4.20) takes the form 

𝑈(𝑥, 𝑦, 𝑡) = 𝜑(𝑦) [𝑝1
∗ +

𝑥

𝑎
(𝑝2

∗ + 𝑝1
∗)] + 𝜇(𝑥) [𝑞1

∗ +
𝑦

𝑏
(𝑞2

∗ + 𝑞1
∗)]. 

The problem then is to find the function 𝑣(𝑥, 𝑦, 𝑡) which satisfies 
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                    𝑣𝑡𝑡 − 𝑐2(𝑣𝑥𝑥 + 𝑣𝑦𝑦) = 𝐹̃(𝑥, 𝑦, 𝑡),  

                                      𝑣(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),          𝑣𝑡(𝑥, 𝑦, 0) = 𝑔̃(𝑥, 𝑦), 

                                       𝑣(0, 𝑦, 𝑡) = 0,                      𝑣(𝑎, 𝑦, 𝑡) = 0,  

                                       𝑣(𝑥, 0, 𝑡) = 0,                      𝑣(𝑥, 𝑏, 𝑡) = 0.  

This is an initial boundary-value problem with homogeneous boundary condition, which has 

already been solved on Sub section 4.1.1. 

 

 

 

 

 

 

5           Example and Discussion of Problem of Forced Vibration 

                         𝑢𝑡𝑡 − 𝑐2(𝑢𝑥𝑥 + 𝑢𝑦𝑦) = 0,  

                                         𝑢(𝑥, 𝑦, 0) = 0,     𝑢𝑡(𝑥, 𝑦, 0) =
𝑦

𝑏
sin (

𝜋𝑥

𝑎
),  

                                         𝑢(0, 𝑦, 𝑡) = 0,        𝑢(𝑎, 𝑦, 𝑡) = 0,  

                                         𝑢(𝑥, 0, 𝑡) = 0,        𝑢(𝑥, 𝑏, 𝑡) = sin (
𝜋𝑥

𝑎
) sin(𝑡).  

Solution:  𝑢(𝑥, 𝑦, 𝑡) =
𝑦

𝑏
sin (

𝜋𝑥

𝑎
) sin(𝑡) + ∑ ∑ 𝑣𝑚𝑛

∞
𝑛=1

∞
𝑚=1 (𝑡) sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
), 

where 𝑣𝑚𝑛(𝑡) =
2(−1)𝑛

𝛼𝑚𝑛𝑐𝑎3(1−𝑎2𝑐2)
(𝑎2 − 𝑐2𝜋2)(sin(𝛼𝑚𝑛𝑐𝑡) − 𝑎𝑐 sin(𝑡)). 
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Figure 5.1: The graph solution for Example 1 with the same value of 𝑎 = 3, 𝑏 = 1, 𝑐 = 3 and 

the value of 𝑡 is changed with 𝑡 = 1,2,3, … ,6. 

 

 

 

 

   

   

 

Figure 5.2: The graph of solution for Example 1 as 𝑎 = 3, and the value of 𝑏 is changed 

which is 𝑏 = 1,2, … ,6 and 𝑐 = 3, 𝑡 = 1. 
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Figure 5.3: The graph of solution for Example 1 as the value of 𝑎 is changed which is 𝑎 =

3, 4, 5,6,7,8 and 𝑏 = 1, 𝑐 = 3, 𝑡 = 1. 

 

 

 

 

 

   

   

 

Figure 5.4: The graph of solution for Example 1 as 𝑎 = 3, 𝑏 = 1, and the value of 𝑐 is 

changed which the value of 𝑐 = 3,4,5,6,7,8 and 𝑡 = 1. 
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5.1       Discussion 

From Figure 5.1, Figure 5,2 and Figure 5.3, it was observed that when the value of 𝑡, 𝑎 

and 𝑏 is increased, the graph also starts to show the disturbances. But then the value of 𝑐 is 

increased, the graph does not show any obvious disturbances. According to Amjad and Khan 

(2018), they have mentioned in their studies that when one of the values of 𝑎 or 𝑏 is increases, 

then the fundamental frequency will become decreases and then become constant. 

 

6           Conclusion 

As a conclusion, it obvious that when the value of 𝑡, 𝑎 and 𝑏 is increases, the graph 

also starts to show the disturbances as well, while when the value of 𝑐 is increases, the graph 

does not show any disturbances. This show that 𝑡, 𝑎 and 𝑏 have a great impact on the graph 

disturbances. 
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