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Abstract In this study, the nonlinear time-dependent singular initial value problem is 

considered. The homotopy perturbation method (HPM) is applied to obtain the solution 

of the nonhomogeneous time-dependent Emden – Fowler type equation. A new algorithm 

based on HPM to overcome the difficulty of the singular nonlinear problem is developed. 

Then, the algorithm is utilized and discussed in detail to obtain the approximate analytical 

solution of the time-dependent Emden – Fowler type equation. The analytical results of 

the problem are obtained by the help of MAPLE software. The analysis shown that the 

HPM is an effective, easy, and accurate method to solve non-linear and singular problems. 

 

Keywords Homotopy Perturbation Method; Time-dependent Emden–Fowler equation; 

Approximate solution. 

 

1 Introduction 
 

A semi-analytical method known as the Homotopy Perturbation Method (HPM) is utilized to solve 

a nonlinear differential equation. The present approach can be used to solve a nonlinear ordinary 

differential equation, a nonlinear partial differential equation, and a coupled nonlinear system of 

partial differential equations. In this paper, the HPM is used to obtain the approximate analytical 

solutions of the time-dependent Emden-Fowler type equations. A stable new algorithm based on 

HPM to overcome a set of the singular point at x = 0 is implemented. The analysis is accompanied 

by any linear and nonlinear time-dependent singular initial value questions. The findings show 

that HPM is very powerful and efficient method to solve the mentioned equations. 

 

2 Literature Review 

 

2.1 Nonlinear Singular Initial Value Problems 

 
For solving linear and nonlinear differential as well as integral equations, the HPM was first 

suggested by He (1999) and He (2000). The method, which is a coupling of the conventional 

perturbation method and homotopy in topology, deforms continuously to a simple problem that 
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can be solved easily. The HPM was applied to solve the integro-differential equation of Volterra 

(El-Shahed, 2005); nonlinear oscillators (He, 2004); bifurcation of nonlinear problems (He, 

2005a); bifurcation of delay differential equations (He, 2005b); nonlinear wave equations (He, 

2005b); boundary value problems (He, 2006); quadratic Riccati differential equation of fractional 

order (Golbabai and Sayevand, 2010; Odibat and Momani, 2008); singular differential equations 

(Chowdhury and Hashim, 2007; Yıldırım and Ozi, 2007) and other fields (Abbasbandy, 2006; 

Ariel, 2010; He, 2003; Siddiqui et al., 2006). Many improvements have been made on HPM in 

recent years to overcome various forms of differential equations (Ghorbani and Saberi-Nadjafi, 

2008; Lu, 2009; Odibat, 2007; Siddiqui et al., 2009). 

Wazwaz (2002) implemented a new differential operator to solve singular Lane-Emden 

equations by using a convenient modification of the Adomian decomposition process. Hosseini 

and Nasabzadeh (2007) solved a unique singular ODE and new operator has been expanded. In 

Hosseini and Jafari (2009), Adomian decomposition method has been used for nearly all forms of 

singular differential equations. 

To apply a new reliable modification according to the given operator on the HPM has 

been shown in Hosseini and Jafari (2009). The latest improvement reveals that the sequence 

solution converges quickly as compared to the standard HPM. The solutions of HPM valid for 

only a small-time span as comparing to the solution of MHPM. MHPM is used to extend the 

validity domains by recursively applying the HPM over successive time intervals. The solution of 

HPM for linear BVPs of heat problems indicate a great result that quickly converges to the exact 

solution. The results obtained show that this recently improved method introduces a powerful 

improvement in solving single nonlinear problems. HPM may be concluded to be a very powerful 

and efficient tool for solving a wide range of initial and boundary value problems. 

 

2.2 Nonlinear Emden-Fowler Type Equation 

 
The Emden-Fowler type of equation is a singular initial value problem related to a second-order 

ordinary differential equation (ODE). This equation is widely used in mathematical physics and 

astrophysics to model many phenomena, such as thermal explosions, stellar structure, gas 

spherical cloud thermal activity, isothermal gas spheres, and thermionic currents, the attraction of 

its molecules and subject to the classical laws of thermodynamics. The Emden-Fowler type 

equations have significant applications in many fields of the scientific and in technical world 

where a variety of forms of these functions have been investigated by researchers. Many methods 

including numerical and perturbation methods have been used to solve the Emden-Fowler type 

equations. The approximate solutions to the Emden-Fowler type equations have been presented 

by Shawagfeh (1993) and Wazwaz (2005) by using the Adomian decomposition method (ADM). 

Wazwaz (2005) applied ADM to solve the time-dependent Emden–Fowler type of equations.  

Nouh (2004) accelerated the convergence of power series solution of Lane-Emden type 

equations by using Euler-Abel transformation and Padé approximation. Liao (2003) solved Lane-

Emden type equations by applying the HAM. Further, Bataineh (2009), Noorani (2009), and 

Hashim (2007) applied HAM to solve the Emden-Fowler type of equations and the time-dependent 

Emden-Fowler type of equations. In Dehghan and Shakeri (2008); Wawaz (2009); Shang et. al. 

(2009) and Yildirim and Öziş (2009), the variational iteration method (VIM) was used to solve 

the Emden-Fowler type of equations. On the other hand, Parand et. al. (2010) utilized the Hermite 

function collocation (HFC) method to solve these equations. 

To solve nonlinear and singular time-dependent Emden-Fowler type equations with the 

Neumann and Dirichlet boundary conditions, a new modification of the HPM is suggested. First, 

the single problem is transformed into an equivalent integral equation and then apply the HPM to 

obtain an approximate series solution. When computing the successive solution elements, this new 
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modified HPM can be used without unknown constants, and therefore stop solving a series of 

transcendental equations to evaluate the unknown constants. In addition, the proposed method is 

sufficiently efficient to solve the difficulty of the singular point at x=0.  

To solve the Emden-Fowler-types equations, this current study is aim to develop a 

modified HPM. Such nonlinear problems pose difficulties in finding their solutions in the presence 

of singularity at x=0. The recommended solution, which is discussed in this study, is based on the 

HPM. However, before defining the recursive scheme for the solution of the problems, all type of 

boundary conditions can be used in the proposed scheme to obtain an integral equation. For 

solving the nonlinear singular time-dependent Emden-Fowler type equations in this study the 

initial boundary value problem is translated into an equivalent integral in the proposed process. 

Then the HPM will be applied to get an approximate solution to the problem. This technique is 

reliable enough to overcome the difficulty of the singular point at x=0. 

 

 

3 Methodology 

 

3.1 Homotopy Perturbation Method 

 
 

The heat equation can be used to model several problems in mathematical physics and 

astrophysics concerning the diffusion of heat perpendicular to the surface of parallel planes. The 

equation is given as 

𝑦𝑥𝑥  + 
𝑟 

𝑥
 𝑦𝑥 + 𝑎𝑓(𝑥, 𝑡)𝑔(𝑦) + ℎ(𝑥, 𝑡) =  𝑦𝑡 ,    0 < 𝑥 ≤ 𝐿,   0 < 𝑡 < 𝑇,   𝑟 > 0       (1) 

with boundary conditions 

                                                   𝑦(0, 𝑡) =  𝛼 ,                 𝑦′(0, 𝑡) =  0,                                  (2)   

where α is a constant and 𝑓(𝑥, 𝑡)𝑔(𝑦) + ℎ(𝑥, 𝑡) is the nonlinear heat source, 𝑦(𝑥, 𝑡) is the 

temperature, and 𝑡 is the dimensionless time variable. For steady state case consider 

𝑟 = 2     and     ℎ(𝑥, 𝑡) = 0. 

Then the equations (1) and (2) becomes, 

                                              𝑦(0, 𝑡) =  𝛼 ,     𝑦𝑥(0, 𝑡) =  0, 

This equation (3) is known as Emden-Fowler equation, where 𝑓(𝑥)  and  𝑔(𝑦) are two different 

𝑥  and  𝑦 functions. 

When    𝑓(𝑥) = 1   and    𝑎 = 1  , the equation (3) becomes, 

                                                 𝑦𝑥𝑥 +  
2 

𝑥
  𝑦𝑥 + 𝑔(𝑦) = 0    (4) 

 

                                               𝑦(0, 𝑡) =  1 ,     𝑦𝑥(0, 𝑡) =  0,    

𝑦𝑥𝑥 +  
2 

𝑥
  𝑦𝑥 + 𝑎𝑓(𝑥, 𝑡)𝑔(𝑦) = 0,    (3) 
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This known as Lane -Emden equation. This Equation (4) was used to model a variety of 

phenomena in mathematical physics and astrophysics by reducing to the Lane–Emden equation 

with a given 𝑓(𝑦). 

  

3.2 Basic Idea of Homotopy Pertubation Method  

The homotopy perturbation method is a combination of the classical perturbation 

technique and homotopy technique, which has eliminated the limitations of the traditional 

perturbation methods. This technique can have full advantage of the traditional perturbation 

techniques. To illustrate the basic idea of the homotopy perturbation method for solving nonlinear 

differential equations, the following nonlinear differential equation is considered: 

𝐴(𝑢)− 𝑓 (𝑟)= 0, 𝑟 ∈  𝛺   (5) 

Also considering the boundary conditions of: 

𝐵 (𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟      

 (6) 

where,     𝐴 is a general differential operator 

 𝐵 is a boundary operator 

𝑓(𝑟) as analytical function  

  is the boundary of the domain 𝛺 

The operator A can be, generally divided into two parts of 𝐿 and 𝑁, where 𝐿 is the linear part, 

while 𝑁 is the nonlinear one. To achieve this study goal, the following nonlinear differential 

equation is consider: 

𝐿(𝑢) − 𝑁(𝑢) − 𝑓(𝑟) = 0 (7) 

 

 

 

By the homotopy technique, we construct a homotopy 𝑦(𝑟, 𝑝): Ω × [0,1] → ℜ, which satisfies, 

 

𝐻(𝑣, 𝑝) =  (1 −  𝑝)[𝐿(𝑣) −  𝐿(𝑢0)] +  𝑝 [𝐿(𝑣) +  𝑁(𝑣) −  𝑓(𝑟)] =  0,                        (8) 

 

𝐻(𝑣, 𝑝) =  𝐿(𝑣) −  𝐿(𝑢0) +  𝑝𝐿(𝑢0) +  𝑝 [𝑁(𝑣) −  𝑓(𝑟)] =  0,                                      (9) 

 

where 𝑝 ∈ [0, 1] is an embedding parameter and 𝑢0 is an initial approximation of (5) which 

satisfies the boundary conditions. It follows from (8) and (9) that we will have, 

𝐻(𝑣, 0) = 𝐿(𝑣) −  𝐿(𝑢0),    𝐻(𝑣, 1) =  𝐴(𝑣) − 𝑓(𝑟) (10) 

 

Thus, the changing process of p from zero to unity is just that of 𝑣(𝑟, 𝑝) from 𝑢0(𝑟) to 𝑢(𝑟). In 

topology, this is called deformation and   𝐿(𝑣)–  𝐿(𝑢0) and 𝐿(𝑣) +  𝑁(𝑣)–  𝑓(𝑟)  are said to be 

homotopic in topology.  
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According to the HAM, firstly, the embedding parameter p can be used as a small parameter, 

and assume that the solution of Eq. (8) and Eq. (9) can be expressed as a power series in p, that 

is, 

                                     𝑣 =  𝑣0  +  𝑝𝑣1  +  𝑝2 𝑣2  + ⋯                                                        (11 ) 

 

Setting 𝑝 = 1 results in the approximate solution of (5) ; 

 

                                  𝑢 =  lim
𝑝→1

𝑣  =  𝑣0  +  𝑣1  +  𝑣2  +  …                                                (12) 

The series Equation (12) is convergent for most cases; however, the convergent rate depends upon 

the nonlinear operator 𝐴(𝑣), 

• The second derivative of 𝑁(𝑣) with respect to 𝑉 must be small because the parameter 

may be relatively large; that is, 𝑝 →  1. 

• The norm of 
𝐿−1𝜕𝑁

𝜕𝑉
 must be smaller than one so that the series converges. 

4 Results and Discussion 

 

4.1 Alternative approach of HPM 

Using the time-dependent Emden–Fowler equation as a model problem, we will present a stable 

new algorithm for dealing with time-dependent singular initial value problems (IVPs) in a practical 

and efficient method. The HPM will be used in a straightforward fashion, but with a new 

differential operator L option. While it is well recognised that HPM starts by separating the 

problem's linear and nonlinear components, this method does not always provide sufficient results 

in singular IVPs. However, a minor adjustment is needed to avoid the singularity condition at 𝑥 =
0. Defining the operator L in terms of the second order derivatives, 𝑦𝑥𝑥  +  𝑟𝑦𝑥 𝑥⁄ , found in the 

problem is an alternative solution. 

 

From Eq. (1), we can create a homotopy that satisfies the following relation. 

 

𝑦𝑥𝑥  +  
𝑟 

𝑥
 𝑦𝑥  −  𝑦

0𝑥𝑥
 −  

𝑟 

𝑥
 𝑦

0𝑥
 +  𝑝 (𝑦

0𝑥𝑥
 +

𝑟 

𝑥
 𝑦

0𝑥
 +  𝑎𝑓(𝑥, 𝑡)𝑔(𝑦) +  ℎ(𝑥, 𝑡) 

− 𝑦𝑡 =  0                                                                                                                                            (13)    

where 𝑝 ∈  [0, 1] is an embedding parameter and 𝑦0 is an initial approximation which satisfies 
the boundary conditions. Let us consider the solution form of Equation (13) as 
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    𝑦(𝑥) =  𝑢0(𝑥, 𝑡) +  𝑝𝑢1(𝑥, 𝑡) +  𝑝2 𝑢2(𝑥, 𝑡) +···                                                       (14) 

and the initial approximation 

 𝑦0  =  𝛼 +  ∫ 𝑥−𝑟𝑥

0 ∫ 𝑥𝑟𝑥

0
ℎ(𝑥, 𝑡)𝑑𝑥 𝑑𝑥      

 
 

(15) 
 

Now, by substituting (14) into (13) and substituting (14) into (2) and equating the coefficient 

terms by power of p, we can obtain; 

𝑢0𝑥𝑥
 +  

𝑟 

𝑥
𝑢0𝑥

 −  𝑦0𝑥𝑥
 −  

𝑟 

𝑥
𝑦0𝑥

 =  0,         𝑢0(0, 𝑡) =  𝛼,         𝑢0𝑥
 (0, 𝑡) =  0      (16) 

 

 

𝑢1𝑥𝑥
 + 

𝑟 

𝑥
𝑢1𝑥

 +  𝑦0𝑥𝑥
 +  

𝑟 

𝑥
𝑦0𝑥

 +  𝑎𝑓(𝑥, 𝑡)𝑔(𝑢0) +  ℎ(𝑥, 𝑡) −   𝑢0𝑡
=  0,     

𝑢1(0, 𝑡) =  0, 𝑢1𝑥
 (0, 𝑡) =  0,  

(17) 

 

𝑢2𝑥𝑥
 +  

𝑟 

𝑥
𝑢2𝑥

 +  𝑎𝑓(𝑥, 𝑡)𝑔(𝑢1) −  𝑢1𝑡
 =  0, 𝑢2(0, 𝑡) =  0, 𝑢2𝑥

 (0, 𝑡) =  0,  

 

 (18) 

 

 

𝑢3𝑥𝑥
  +  

𝑟 

𝑥
𝑢3𝑥

+  𝑎𝑓(𝑥, 𝑡)𝑔(𝑢2) −   𝑢2𝑡
 =  0, 𝑢3(0, 𝑡) =  0, 𝑢3𝑥

 (0, 𝑡) =  0 

 

 (19) 

Using the MAPLE package, we can now conveniently solve the above equations for 𝑢0, 𝑢1, 𝑢2, 
𝑢3, and so on. Finally, if a four-term approximation is sufficient, the solution can be written as 

below. 

 
𝑦 ≃  𝑢0  + 𝑢1  +  𝑢2  + 𝑢3 + ⋯ 

 

 
(20) 

 

According to HPM, the approximate solution of Equation (20) can be expressed as a series of the 

power of p. 

 

 

 

 

4.2     Applications of alternative approach of HPM (MAPLE) 

 
 

The following is a linear nonhomogeneous equation that needs to be solved. 

𝑦𝑥𝑥 +  
2

𝑥
𝑦𝑥 − (5 + 4𝑥2)𝑦 =  𝑦𝑡 + (6 − 5𝑥2 − 4𝑥4)   (21) 
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subject to the boundary conditions, 

𝑦(0, 𝑡) =  𝑒𝑡 ,                 𝑦𝑥(0, 𝑡) =  0. (22) 

 

Having obtained the Homotopy Pertubation equation called zero order deformation, 

 

 

𝐻𝑃𝑀𝐸1 = (1 − 𝑝)(
𝑑2𝑈

𝑑𝑥2
+

2

𝑥

𝑑𝑈

𝑑𝑥
−  

𝑑2

𝑑𝑥2
(𝑒𝑡 + 𝑥2 −

1

4
𝑥4 −

2

21
𝑥6) −

2

𝑥

𝑑

𝑑𝑥
(𝑒𝑡 + 𝑥2 

                            −
1

4
𝑥4 −

2

21
𝑥6))  + 𝑝(

𝑑2𝑈

𝑑𝑥2
+

2

𝑥

𝑑𝑈

𝑑𝑥
− 𝑈(5 + 4𝑥2) − (6 − 5𝑥2 − 4𝑥4) 

                            −
𝑑𝑈

𝑑𝑡
)                                                                                                                   (23) 

 
 
By assuming the initial approximation, we obtain, 

𝑝0 : 
∂2

∂x2
𝑢0(𝑥, 𝑡) +  

2
𝜕

𝜕𝑥
𝑢0(𝑥, 𝑡)

𝑥
− 2 + 3𝑥2 +

20

7
𝑥4 −

2 (2𝑥 − 𝑥3 −
4
7 𝑥5)

𝑥
= 0 

𝑝1 : 
∂2

∂x2
𝑢1(𝑥, 𝑡) +  

2
𝜕

𝜕𝑥
𝑢1(𝑥, 𝑡)

𝑥
− 4 + 2𝑥2 +

8

7
𝑥4 −

2 (2𝑥 − 𝑥3 −
4
7 𝑥5)

𝑥

− 𝑢0(𝑥, 𝑡)(4𝑥2 + 5) −
𝜕

𝜕𝑡
𝑢0(𝑥, 𝑡) = 0 

𝑝2 : 
∂2

∂x2
𝑢2(𝑥, 𝑡) +  

2
𝜕

𝜕𝑥
𝑢2(𝑥, 𝑡)

𝑥
− 𝑢1(𝑥, 𝑡)(4𝑥2 + 5) −

𝜕

𝜕𝑡
𝑢1(𝑥, 𝑡) = 0 

𝑝3 : 
∂2

∂x2
𝑢3(𝑥, 𝑡) +  

2
𝜕

𝜕𝑥
𝑢3(𝑥, 𝑡)

𝑥
− 𝑢2(𝑥, 𝑡)(4𝑥2 + 5) −

𝜕

𝜕𝑡
𝑢2(𝑥, 𝑡) = 0 

𝑝4 : 
∂2

∂x2
𝑢4(𝑥, 𝑡) +  

2
𝜕

𝜕𝑥
𝑢4(𝑥, 𝑡)

𝑥
− 𝑢3(𝑥, 𝑡)(4𝑥2 + 5) −

𝜕

𝜕𝑡
𝑢3(𝑥, 𝑡) = 0                 (24) 

 
 

and boundary condition equations based on coefficient are 

 

Boundary Conditions 1 𝑝0 =  𝑢0(𝑐, 𝑡) = 𝑒𝑡, 𝐷1(𝑢0)(𝑐, 𝑡) = 0 

Boundary Conditions 2 𝑝1 =  𝑢1(𝑐, 𝑡) = 𝑒𝑡, 𝐷1(𝑢1)(𝑐, 𝑡) = 0 

Boundary Conditions 3 𝑝2 =  𝑢2(𝑐, 𝑡) = 𝑒𝑡, 𝐷1(𝑢2)(𝑐, 𝑡) = 0 

Boundary Conditions 4 𝑝3 =  𝑢3(𝑐, 𝑡) = 𝑒𝑡, 𝐷1(𝑢3)(𝑐, 𝑡) = 0 

Boundary Conditions 5 𝑝4 =  𝑢4(𝑐, 𝑡) = 𝑒𝑡, 𝐷1(𝑢4)(𝑐, 𝑡) = 0                               (25) 
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Actually, 𝑢(0, 𝑡) is sub with 𝑢(𝑐, 𝑡) because if using 𝑥 = 0 the pdsolve will generate error of 

'numeric division zero.' 

 

By Equations (24) and boundary equations (25), it can be solved with pdsolve in MAPLE, and we 

obtain the following solutions for 𝑢0, 𝑢1, 𝑢2, 𝑢3 and 𝑢4. 

 

 

Then, we combine all 𝑢0, 𝑢1, 𝑢2, 𝑢3 and 𝑢4 as follow 

 

𝑦 ≅  𝑢0  +  𝑢1  + 𝑢2  +  𝑢3 + 𝑢4 

 

 

and will get,  

 

𝑢(𝑥, 𝑡) = 𝑒𝑡 + 𝑥2 −
114

24845813
𝑥14 −

40

14745843
𝑥16 −

58

19262251
𝑥12 −

19

24338822
𝑥18 

                      −
1

163960010
𝑥22 −

13

118280278
𝑥20 + 𝑥2𝑒𝑡 +

1

2
𝑥4𝑒𝑡 +

1

6
𝑥6𝑒𝑡 +

1

24
𝑥8𝑒𝑡 

                      +
151

128700
𝑒𝑡𝑥12 +

47

128700
𝑥10𝑒𝑡 +

1

238680
𝑥16𝑒𝑡 +

1785

16929134
𝑥14𝑒𝑡 

 

or 

 

𝑦(𝑥, 𝑡) ≅  𝑥2 +  𝑒𝑡 (1 + 𝑥2 +
𝑥4

2!
+

𝑥6

3!
+

𝑥8

4!
+ ⋯ ) 

 

 

(26) 

 

 

 

Since the number of denominators is much larger than the numerator, we assume that the equation is 

equal to zero. According to HPM, the approximate solution of equation can be expressed as a series 

of the power of p. In the limit of infinitely many terms, this will result in the closed-form solution. 

 

Thus, finally, the approximate solution in a series form is, 

𝑦(𝑥, 𝑡) =  𝑥2 + 𝑒𝑥2+𝑡 

 

 

(27) 

 
 

 

5          Conclusion 

 

Overall, the present study is about solving time dependent singular IVPs, we 

provide an efficient technique based on the HPM. The Adomian's Decomposition Method 
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is used to compare with the resulting solutions. The example shows that the solution of 

the current method is the same as those obtained by Adomian's decomposition, proving 

the validity and accuracy of the procedure. We also notice the efficiency of the method, 

which gives quite pleasing results in terms of power series. The HPM offers many 

advantages and characteristics out over Adomian's decomposition method. The primary 

advantage of this method is that it overcomes the difficulties related to obtaining Adomian 

polynomials, and the calculations in HPM are simple and clear. Because of its 

dependability and reductions in computation size, the HPM has recently become widely 

used in many fields of research and engineering to solve these types of problems. The 

homotopy-perturbation approach is defined to be a useful tool for both linear and 

nonlinear time-dependent singular IVPs. 
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