

Vol. 4, 2021, page 43-57

43

Graph Neural Network: A Mathematical Overview And Its Application For

Simulation Of Dynamic Viscosity Of Nanofluids

1Mohamad Redzuan Firdaus Fozi 2Tahir Ahmad

1,2
Department of Mathematical Sciences

Faculty of Science, Universiti Teknologi Malaysia,

81310 Johor Bahru, Johor, Malaysia.

e-mail: 1redzuan1998@graduate.utm.my 2tahir@utm.my

Abstract Graph Neural Network (GNN) is a type of Artificial Neural Network that is used

to predict the performance of a system. Two types of GNN are used in this research, namely,

GraphSAGE, and Artificial Neural Network-Multilayer Perceptron (ANN-MLP). The

ANN-MLP with Levenberg-Marquardt training algorithm is used to calculate the flow of

nanofluids in porous media. The data used to train the model are obtained from literature.

The hidden neurons are chosen for the neural network are carefully selected by analyzing

the value of R2. The GNN can be used to simulate the dynamic viscosity of nanofluid. The

simulation offers valuable of information on characteristics of the nanofluid.

Keywords Neural Network; Graph Neural Network; Artificial Neural Network;

nanofluids; dynamic viscosity; Levernberg-Marquardt

1 Introduction

Zhou et. al [1] states that a graph is a kind of data structure that can model a set of data into

vertices(nodes), and their relationships as edges. The graph has played a huge role in machine

learning, and artificial intelligence due to the rise of Industrial Revolution 4 (IR4.0). Researchers

who incorporate graph with machine learning receive many attentions as the graph has shown

great potential, as it can be used in dealing with a large amount of data or systems such as data

related to social sciences (social networks), and natural sciences (physics, chemistry, and biology).

On the other hand, Neural Network is used mainly for forecasting. It mimics neurons in the human

brain [6] whereby, input and output data are correlated for forecasting purposes.Graph Neural

Network(GNN) is a combination of graph and neural network. Graph transforms datasets into

nodes (vertices) and their relationships as edges [1]. Concerning simulation for dynamic viscosity

of nanofluids, there have many types of neural networks that have been used such as multilayer-

perceptron. However, only a few researchers have employed GNN.

 Graph Neural Network is one of the computing techniques used in many areas. Irfan et.

al [2] states that the dynamic viscosity of nanofluids is important in oil and gases particularly in

oil recovery. Ahmadi et. al [3] reported that one of the techniques used in oil recovery is artificial

intelligence, and it has been claimed to be effective in modeling the dynamic viscosity of

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

44

nanofluids. Ramezanizadeh et. al [4] and Ahmadi et.al [5] claimed that it can be integrated with

multilayer-perceptron, regression forest, and others.

The use of multilayer-perceptron, random forest have been reported in the literature.

However, almost no literature available on the application of GNN on the dynamic viscosity of

nanofluids. This research will investigate the possibility of using GNN for nanofluid-related

problems.

This research involves the study of mathematical structure, namely, graph neural network.

This includes coding the graph neural network model to simulate the dynamic viscosity of

nanofluids. Published data will be used to verify the model.

Mathematical research in the area of artificial intelligence and machine learning has

generated many discoveries for future use in many fields such as in oil and gas-related industries.

In this research, Graph Neural Network (GNN) is developed for such purpose. The new model

promises great potential and its possibility is endless.

2 Literature Review

2.1 Some Concepts of Graph Neural Network

 Graph models a set of objects as nodes and their relationship as edges [1]. The history of

graph theory begins with the published paper by Leonhard Euler on the famous Seven Bridges of

Konigsberg in 1736. There are two types of graphs; directed and undirected graphs. The former

contains symmetrically edges between two vertices [7], and the latter is symmetrically [8]. A graph

G is a pair (N, E) where N is a set of nodes and E is a set of edges. Every node has at least an edge

[9].

 Neural Network is a computing technique that was inspired by neuron structure and

function in the brain [6] whereby the nodes are the dendrites and the output is the axon terminal

such that its signal is transferred by myelinated axons [6]. Zell [10] states, in artificial neural

networks, the inputs or signals are real numbers and the connections are transfer functions.

Between two nodes, there exists a weight that adjusts accordingly when needed during the training

process. The weight is essential in the artificial neural network, as it will determine the most likely

value or weight during simulation. There are many methods to determine the weight, namely,

evaluating mean squared error, evaluating correlation coefficients, and others [4].

 Graph Neural Network (GNN) is a combination of graph and neural network. GNN has

been used in many areas such as social, and natural sciences [1]. It is mainly used for forecasting.

Its main features are nodes as the inputs and outputs, and the relationship between the nodes is

linked together with their weight and transfer functions.

2.2 Model of GNN: GraphSAGE

 For the simulation process, one must know the frameworks of the neural network.

Hamilton et. al [12] introduced GraphSAGE’s framework. It is very useful for a graph that has

many attributes that represent nodes to generate a low-dimensional vector of them. GraphSAGE

generates features from the node’s local neighborhood [1]. This is very useful for unseen nodes

since they can be represented by their local neighborhoods.

2.3 Model of GNN: Multi-Layer Perceptron

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

45

Another type of GNN framework is called multi-layer perceptron. For this research, multilayer

perceptron is chosen as the desired framework as it is easy to use with limited resources. As

compared to GraphSAGE a high-end processor was needed to run the program. Where MLP can

be run using a simple MATLAB program and low-end hardware.

 MLP is a class of feedforward neural networks, where it is composed of several layers of

input, hidden layer, and output. The size of the hidden layer is usually determined by trial and

error. It works similar to GraphSAGE where a feature is determined by its previous feature as a

result of aggregation.

2.4 Previous Research on Nanofluids Dynamic Viscosity Prediction

 In oil recovery, there are three major processes; 1) primary oil recovery, 2) secondary oil

recovery, and 3) enhanced oil recovery (EOR) [2]. Many pieces of research have indicated that

nanofluids or nanoparticles could greatly help in EOR [2]. Nanofluids offer several

physicochemical properties such as thermal conductivity, dynamic viscosity, and others [13].

However, this research investigates the dynamic viscosity of the nanofluids since it influences the

flow of the nanofluids as it moves through porous media [13].

Many variables affect the dynamic viscosity, namely the temperature of the nanofluids, the size

of the nanoparticles, and the volume fraction of the nanofluids. Many types of research have dealt

with these three variables [3, 4, 5]. The respective researchers mainly used multilayer-perceptron

as their desired Neural Network. Ahmadi et. al [3, 4] and Ramezanizadeh et. al [5] claimed that

this Neural Network can simulate the dynamic viscosity with fairly good results.

3 Frameworks of Neural Network Model

3.1 Frameworks of GraphSAGE

 GraphSAGE is used to present every node based on its neighboring nodes that are

parametrized by h.

Figure 1: Graph representation

Recall, every node has its feature vector parametrized by X. Every node is assumed to have the

same size. GraphSAGE runs with k iterations, which means that one iteration is for one node.

Every node is represented by h for k iteration.

Notice the following notation:

 𝑋𝑣 = 𝑁𝑜𝑑𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑜𝑟 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑑𝑒 𝑣

 ℎ𝑣
0 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑛𝑜𝑑𝑒 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑑𝑒 𝑣

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

46

 ℎ𝑣
𝑘 = 𝑁𝑜𝑑𝑒 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑑𝑒 𝑣 𝑎𝑡 𝑡ℎ𝑒 𝑘 −

 𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 𝑧𝑣 = 𝐹𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑑𝑒 𝑣
Every node has its neighbors, and these neighbors define the targeted node. By the combination

of its neighboring nodes embedding vector, then node A is defined. A similar process is executed

for other nodes in the graph.

Figure 2:Process to find target node, A

GraphSAGE consists of sampling and aggregation with a two-step process. It is an iterative

procedure with initialization steps that set the initials’ node embedding vectors to their feature

vectors. (i.e. k start from 1...K) such that,

ℎ𝑣
𝑘−1 = ℎ𝑣

0 = 𝑥𝑣

Figure 2 illustrates the two steps in the algorithm. Based on the figure, the steps are aggregated

and updated.

Aggregate means that the algorithm aggregates neighboring nodes for the targeted node. The

aggregate function denotes as 𝑓𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 . This function comes in many forms such as mean

aggregator, and pool aggregator.

𝑎𝑣 = 𝑓𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒({ℎ𝑢| 𝑢 ∈ 𝑁(𝑣)})

The targeted node, v depends on the aggregation of all nodes u, and the resultant is denoted as 𝑎𝑣.

The current node v is then be updated using a combination of both aggregated node and its

previous representations. It will be updated using the aggregated node plus the previous

representation of the current node.

ℎ𝑣
𝑘 = 𝑓𝑢𝑝𝑑𝑎𝑡𝑒(𝑎𝑣 , ℎ𝑣

𝑘−1)

The above equation updates node v based on its neighborhood aggregated representations and

node v’s previous representation.

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

47

Figure 3: Target node is node A

Figure 3 shows, node A is selected as the targeted node. The following Figure 4 illustrates how

node A (target node) is constructed.

Figure 4:Process in obtaining targeted node

The process starts from the outer to the inner layers. In Figure 4 Node B is the neighbor of node

A (target node). The algorithm starts by aggregating from nodes B, C, and D. However, node B,

has its neighbors which are nodes A and C. Therefore, the algorithm aggregates these nodes first.

This aggregation process is determined by the number of parameters K. For example, K=2 implies

the aggregation starts from node A neighbor and the neighbor of its neighbor. (i.e. A has neighbor

B, and B has neighbor C and A).

3.1 Formulation of ANN-MLP

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

48

Figure 5: Steps of derivation for the Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm composes of four major parts (1) the steepest descent method,

(2) Newton’s method, (3) Gauss-Newton’s method, and (4) Levenberg-Marquardt algorithm. All

these parts are interconnected with each other.

Sum square error (SSE) is used to evaluate error during the training process. It is calculated as

follows.

 𝐸(𝑥, 𝑤) =
1

2
∑
𝑝
1 ∑ 𝑒𝑝,𝑚

2𝑚
1 (1)

where

x is the input vector,

w is weight vector,

ep,m is the training error at output m and is defined as

 𝑒𝑝,𝑚 = 𝑑𝑝,𝑚 − 𝑜𝑝,𝑚 (2)

such that

d is the desired output vector

o is the actual output vector

3.1.1 Steepest Descent Method

The steepest descent algorithm uses the first-order derivation. To find minima in error space, the

derivation on E with respect to w is determined. It is denoted as g.

 𝑔 =
𝛿𝐸(𝑥,𝑤)

𝛿𝑤
= [

𝛿𝐸

𝛿𝑤1

𝛿𝐸

𝛿𝑤2

𝛿𝐸

𝛿𝑤3
…

𝛿𝐸

𝛿𝑊𝑁
] (3)

The weight, w is defined as

 𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑔𝑘 (4)

where

𝛼 is a learning constant (step size)

3.1.2 Newton’s Method

Newton’s method assumes that gradient components, g, as a function of weight and each of them

is a linearly independent

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

49

{

𝑔1 = 𝐹1(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑁
𝑔2 = 𝐹2(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑁

⋮
𝑔𝑁 = 𝐹𝑁(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑁

 (5)

and by employing the Taylor’s series

{

 𝑔1 = 𝑔1,0 +

𝛿𝑔1

𝛿𝑤1
Δ𝑤1 +

𝛿𝑔1

𝛿𝑤2
Δ𝑤2 +⋯+

𝛿𝑔1

𝛿𝑤𝑁
Δ𝑤𝑁

𝑔2 = 𝑔2,0 +
𝛿𝑔2

𝛿𝑤1
Δ𝑤1 +

𝛿𝑔2

𝛿𝑤2
Δ𝑤2 +⋯+

𝛿𝑔2

𝛿𝑤𝑁
Δ𝑤𝑁

⋮

𝑔𝑁 = 𝑔𝑁,0 +
𝛿𝑔𝑁

𝛿𝑤1
Δ𝑤1 +

𝛿𝑔𝑁

𝛿𝑤2
Δ𝑤2 +⋯+

𝛿𝑔𝑁

𝛿𝑤𝑁
Δ𝑤𝑁

 (6)

Hence,

𝛿𝑔𝑖

𝛿𝑤𝑗
=

𝛿(
𝛿𝐸

𝛿𝑤𝑖
)

𝛿𝑤𝑗
=

𝛿2𝐸

𝛿𝑤𝑖𝛿𝑤𝑗
 (7)

Combining Eq. 7 with Eq. 6, it

{

 𝑔1 = 𝑔1,0 +

𝛿2𝐸

𝛿𝑤1
2 Δ𝑤1 +

𝛿2𝐸

𝛿𝑤1𝛿𝑤2
Δ𝑤2 +⋯+

𝛿2𝐸

𝛿𝑤1𝛿𝑤𝑁
Δ𝑤𝑁

𝑔2 = 𝑔2,0 +
𝛿2𝐸

𝛿𝑤2𝛿𝑤1
Δ𝑤1 +

𝛿2𝐸

𝛿𝑤2
2 Δ𝑤2 +⋯+

𝛿2𝐸

𝛿𝑤2𝛿𝑤𝑁
Δ𝑤𝑁

⋮

𝑔𝑁 = 𝑔𝑁,0 +
𝛿2𝐸

𝛿𝑤𝑛𝛿𝑤1
Δ𝑤1 +

𝛿2𝐸

𝛿𝑤𝑁𝛿𝑤2
Δ𝑤2 +⋯+

𝛿2𝐸

𝛿𝑤𝑁
2 Δ𝑤𝑁

 (8)

To find minima of the total error function, E, each element of gradient vector, g, must be zero.

Hence, the left-hand sides of Eq. 8 are zeroes.

{

 0 = 𝑔1,0 +

𝛿2𝐸

𝛿𝑤1
2 Δ𝑤1 +

𝛿2𝐸

𝛿𝑤1𝛿𝑤2
Δ𝑤2 +⋯+

𝛿2𝐸

𝛿𝑤1𝛿𝑤𝑁
Δ𝑤𝑁

0 = 𝑔2,0 +
𝛿2𝐸

𝛿𝑤2𝛿𝑤1
Δ𝑤1 +

𝛿2𝐸

𝛿𝑤2
2 Δ𝑤2 +⋯+

𝛿2𝐸

𝛿𝑤2𝛿𝑤𝑁
Δ𝑤𝑁

⋮

0 = 𝑔𝑁,0 +
𝛿2𝐸

𝛿𝑤𝑛𝛿𝑤1
Δ𝑤1 +

𝛿2𝐸

𝛿𝑤𝑁𝛿𝑤2
Δ𝑤2 +⋯+

𝛿2𝐸

𝛿𝑤𝑁
2 Δ𝑤𝑁

 (9)

Combining Eq. 3, with Eq. 9, the equation become

{

 −

𝛿𝐸

𝛿𝑤1
= −𝑔1 = 𝑔1,0 +

𝛿2𝐸

𝛿𝑤1
2 Δ𝑤1 +

𝛿2𝐸

𝛿𝑤1𝛿𝑤2
Δ𝑤2 +⋯+

𝛿2𝐸

𝛿𝑤1𝛿𝑤𝑁
Δ𝑤𝑁

−
𝛿𝐸

𝛿𝑤2
= −𝑔2 = 𝑔2,0 +

𝛿2𝐸

𝛿𝑤2𝛿𝑤1
Δ𝑤1 +

𝛿2𝐸

𝛿𝑤2
2 Δ𝑤2 +⋯+

𝛿2𝐸

𝛿𝑤2𝛿𝑤𝑁
Δ𝑤𝑁

⋮

−
𝛿𝐸

𝛿𝑤𝑁
= −𝑔𝑁 = 𝑔𝑁,0 +

𝛿2𝐸

𝛿𝑤𝑛𝛿𝑤1
Δ𝑤1 +

𝛿2𝐸

𝛿𝑤𝑁𝛿𝑤2
Δ𝑤2 +⋯+

𝛿2𝐸

𝛿𝑤𝑁
2 Δ𝑤𝑁

 (10)

Eq. 10, could be written as matrix form

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

50

[

−𝑔1
−𝑔2
⋮

−𝑔𝑁

] =

[

 −

𝛿𝐸

𝛿𝑤1

−
𝛿𝐸

𝛿𝑤2
⋮

−
𝛿𝐸

𝛿𝑤𝑁]

=

[

𝛿2𝐸

𝛿𝑤1
2

𝛿2𝐸

𝛿𝑤1𝛿𝑤2
…

𝛿2𝐸

𝛿𝑤1𝛿𝑤𝑁
𝛿2𝐸

𝛿𝑤2𝛿𝑤1

𝛿2𝐸

𝛿𝑤2
2 …

𝛿2𝐸

𝛿𝑤2𝛿𝑤𝑁
… … ⋱ …
𝛿2𝐸

𝛿𝑤𝑁𝛿𝑤1

𝛿2𝐸

𝛿𝑤𝑁𝛿𝑤2
…

𝛿2𝐸

𝛿𝑤𝑁
2]

× [

Δ𝑤1
Δ𝑤2
⋮

Δ𝑤𝑁

]

(11)

where the square matrix is called Hessian matrix, H

𝐻 =

[

𝛿2𝐸

𝛿𝑤1
2

𝛿2𝐸

𝛿𝑤1𝛿𝑤2
…

𝛿2𝐸

𝛿𝑤1𝛿𝑤𝑁

𝛿2𝐸

𝛿𝑤2𝛿𝑤1

𝛿2𝐸

𝛿𝑤2
2 …

𝛿2𝐸

𝛿𝑤2𝛿𝑤𝑁

… … ⋱ …
𝛿2𝐸

𝛿𝑤𝑁𝛿𝑤1

𝛿2𝐸

𝛿𝑤𝑁𝛿𝑤2
…

𝛿2𝐸

𝛿𝑤𝑁
2]

 (12)

By combining Eq.3 and Eq.12 with Eq. 11, then

 −𝑔 = 𝐻Δ𝑤 (13)

and,

 Δ𝑤 = −𝐻−1𝑔 (14)

Therefore, the update rule for weight, w, is

 𝑤𝑘+1 = 𝑤𝑘 −𝐻𝑘
−1𝑔𝑘 (15)

3.1.3 Gauss-Newton’s Method

In Newton’s method, one can see that calculation for the Hessian matrix is complicated as it deals

with second-order derivatives. Jacobian matrix is introduced to solve the problem.

𝐽 =

[

𝛿𝑒1,1

𝛿𝑤1

𝛿𝑒1,1

𝛿𝑤2
…

𝛿𝑒1,1

𝛿𝑤𝑁
𝛿𝑒1,2

𝛿𝑤1

𝛿𝑒1,2

𝛿𝑤2
…

𝛿𝑒1,2

𝛿𝑤𝑁
… … … …

𝛿𝑒1,𝑀

𝛿𝑤1

𝛿𝑒1,𝑀

𝛿𝑤2
…

𝛿𝑒1,𝑀

𝛿𝑤𝑁
… … … …
𝛿𝑒𝑝,1

𝛿𝑤1

𝛿𝑒𝑝,1

𝛿𝑤2
…

𝛿𝑒𝑝,1

𝛿𝑤𝑁
𝛿𝑒𝑝,2

𝛿𝑤1

𝛿𝑒𝑝,2

𝛿𝑤2
…

𝛿𝑒𝑝,2

𝛿𝑤𝑁
… … … …

𝛿𝑒𝑝,𝑚

𝛿𝑤1

𝛿𝑒𝑝,𝑚

𝛿𝑤2
…

𝛿𝑒𝑝,𝑚

𝛿𝑤𝑁]

 (16)

By integrating Eq.1 and Eq.3, the elements of gradient vector, g, become

𝑔𝑖 =

𝛿𝐸

𝛿𝑤𝑖
=

𝛿[
1

2
∑
𝑝
1 ∑ 𝑒𝑝,𝑚

2𝑚
1]

𝛿𝑤𝑖
= ∑

𝑝
1 ∑ (

𝛿𝑒𝑝,𝑚

𝛿𝑤𝑖
𝑒𝑝,𝑚)

𝑚
1 (17)

Combining Eq.16 and Eq.17, the relationship between J and g is

 𝑔 = 𝐽𝑒 (18)

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

51

where

e is an error vector in the form of

𝑒 =

[

𝑒1,1
𝑒1,2
…
𝑒1,𝑀
…
𝑒𝑝,1
𝑒𝑝,2
…
𝑒𝑝,𝑚]

 (19)

Integrating Eq.1 and Eq.11, the Hessian matrix is

𝐻𝑖𝑗 =

𝛿2𝐸

𝛿𝑤𝑖𝛿𝑤𝑗
=

𝛿2[
1

2
∑
𝑝
1 ∑ 𝑒𝑝,𝑚

2𝑚
1]

𝛿𝑤𝑖𝛿𝑤𝑗
= ∑

𝑝
1 ∑ (

𝛿𝑒𝑝,𝑚

𝛿𝑤𝑖

𝛿𝑒𝑝,𝑚

𝛿𝑤𝑗
+ 𝑠𝑖𝑗)

𝑚
1 (20)

The basic assumption of Newton’s method is Sij is closed to zero, then the relationship between H

and J is written as

 𝐻 = 𝐽𝑇𝐽 (21)

By combining Eq. 15, Eq.19, and Eq.21, the update rule for weight for Gauss-Newton’s algorithm

is,

 𝑤𝑘+1 = 𝑤𝑘 − (𝐽𝑘
𝑇𝐽𝑘)

−1
𝐽𝑘𝑒𝑘 (22)

3.1.4 Levenberg-Marquardt algorithm

The problem with the Gauss-Newton algorithm is that JT J may not always be invertible. To

overcome this problem another approximation is

 𝐻 = 𝐽𝑇𝐽 + 𝜇𝐼 (23)

such that

µ is combination coefficient (positive)

I is an identity matrix

One can notice that the main diagonal is always positive, thus it will always invertible. So, by

combining Eq.23 with Eq.22, update rule for weight, w, for Levenberg-Marquardt algorithm is

 𝑤𝑘+1 = 𝑤𝑘 − (𝐽𝑘
𝑇𝐽𝑘 + 𝜇𝐼)

−1
𝐽𝑘𝑒𝑘 (24)

4 Results and Discussion

4.1 Dynamics viscosity of nanofluids with respect to volume fraction

 After the model is trained, it is then used to determine the dynamic viscosity of nanofluids.

It is made to justify whether the model is well trained or not. The result can give insight into

dynamicity of viscosity of nanofluids with respect to other parameters such as the influences of

the temperature of the nanofluids, the volume of the nanofluids, and the size of the nanoparticles.

Moreover, the properties of the nanofluids as it flows through porous media are gathered.

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

52

Figure 6: Viscosity vs Volume fraction plots

Figure 14 shows the graph of volume fraction vs viscosity for 0.01%-13%. The curve shows a

relatively constant from 0.01% until approximately 5% of volume fraction. This shows that

volume fraction in that range has relatively low importance that affects viscosity. The curve

steadily increase in viscosity from 5% until 10% volume fraction. This indicates that the volume

fraction in that range starts to influence the viscosity of the nanofluids. The curve greatly increase

with respect to viscosity from 10% to 13% volume fraction. Thus, the volume fraction in that

range affects viscosity. Therefore, the hypothesis made earlier is verified; i.e. increase in volume

fraction leads to increasing in viscosity of nanofluid.

4.2 Dynamics viscosity of nanofluids with respect to temperature

Figure 7: Viscosity vs Temperature plots

Figure 15 shows, the graph of viscosity vs temperature. When the temperature in between 25 to

70 degrees Celsius, the viscosity decreases as the temperature increases and concur to Lee J.H et

al.s’[20] claim. When the temperature is between 70 to 150 degrees Celsius, a great increasing in

viscosity as the temperature increase is detected. There exists a critical point where the viscosity

increases with temperature. This effect is called the hysteresis phenomenon. [23]

4.3 Dynamics viscosity of nanofluids with respect to size of nanoparticles

0

5

10

15

20

25

0 5 10 15
R

el
at

iv
e

V
is

co
si

ty
Volume Fraction (%)

Viscosity vs Volume Fraction

0

0.5

1

1.5

2

2.5

0.0000 50.0000 100.0000 150.0000

R
el

at
iv

e
V

is
co

si
ty

Temperature

Viscosity vs Temperature

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

53

Figure 7: Viscosity vs Size plots

Figure 16 shows the relation between viscosity and size. The size of nanoparticles used are

12,30,31,37,48, and 99nm. Almost no relationship exists between the size of nanoparticles and the

viscosity of the nanofluid. This means that size of the particle is almost negligible, as it neither

increases nor decreases the viscosity of the nanofluids. These results also confirm the studies made

by Pastoriza-Gallego, M. J. et al. [22] who stated that the size of nanoparticle is negligible.

4.2 Comparison between Actual and Predicted Data and their Error Analysis

 In this section, a comparison is made between calculated and the actual values. The

purpose is to measure the relative error between them. The error analysis is done by finding

relative error between the calculated and actual values. The mean relative error is calculated as

follows.

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 % =

|𝑑𝑎𝑡𝑎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑑𝑎𝑡𝑎𝑎𝑐𝑡𝑢𝑎𝑙|

𝑑𝑎𝑡𝑎𝑎𝑐𝑡𝑢𝑎𝑙
∗ 100

Eq.

1

𝑀𝑒𝑎𝑛 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 % =

∑𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 %

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑡𝑎

Eq.

2

0.0000

2.0000

4.0000

6.0000

8.0000

0.000020.000040.000060.000080.0000100.0000120.0000
R

el
at

iv
e

V
is

co
si

ty
Size

Viscosity vs Size

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

54

Figure 8: Comparison between calculated data and actual data

Figure 9: Regression line between actual data and calculated data

Figure 17 shows the comparison between the actual data and calculated data. Both actual data and

calculated data lie closely to each other. In other words, the calculated data and the actual data are

highly correlated to each other. This means that the model is well trained and can be used to model

the dynamic viscosity of nanofluids.

Figure 18 shows the regression line is drawn between the actual and calculated data. The

correlation coefficient between the data is 0.9963. The closer the value to 1, the higher is the

correlation.

0

10

20

30

0.0000

5.0000

10.0000

15.0000

20.0000

0 100 200 300 400 500
V

is
co

si
ty

data Number

Comparison between Estimated Data and
Real Data

Actual Predicted

y = 0.9994x + 0.0047
R² = 0.9963

0

5

10

15

20

25

0.0000 5.0000 10.0000 15.0000 20.0000 25.0000

P
re

d
ic

te
d

 D
at

a

Actual Data

Regression Line

Predicted Linear (Predicted)

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

55

Figure 10: Range of error between actual data and calculated data

Table 1: Mean relative error between the calculated and actual data

ANN-MLP

Mean Relative Error (%) 4.098634493

Figure 19 is the range of error between actual and calculated data. The range of error is mostly fall

under 10% of error while the largest error is approximately 40%. Table 5 shows that the mean

relative error for this model is only 4%, which is acceptable as the value of MSE for the training,

validation, and testing is 0.0078, 0.1124, and 0.0597 respectively.

4 Conclusion

 In this study, ANN-MLP is used as a tool to develop a model to calculate the dynamic

viscosity of nanofluids by considering the temperature of nanofluids, volume fraction of

nanofluids, and the size of nanofluids as input variables. Several hidden neurons are tested to

identify the optimum number of hidden neurons in the network model. Statistical benchmark that

was used for determining the hidden neurons is the value of correlation coefficient R2. With 17

hidden neurons, the highest value of R2, 0.9983 for training, 0.9847 for validation, and 0.9821 for

testing were obtained. These values are all close to 1 as compared to other number of hidden

neurons.

Low correlation between data gives the best performance for the neural network. The

correlation between data all fall below 0.5, where the lowest correlation between viscosity is size

with 0.0570 and the highest correlation between viscosity is volume fraction which is 0.5131. The

correlation for temperature with viscosity is -0.2061. Therefore, they are all low correlations that

imply good performance for the network.

The size has low importance in determining dynamic viscosity of nanofluid, and volume

fraction gives linear relationship with the dynamic viscosity. Similarly for temperature. However,

inverse linear relationship is obtained, namely, as temperature increases the dynamic viscosity

decrease. The critical temperature where the dynamic viscosity increases as the temperature

increase is called the hysteresis phenomenon, that is the temperature is above 70 degrees Celsius.

The actual and calculated data are shown to be closely lied. The correlation coefficient between

the actual and estimated data is 0.9963. This model is suitable for simulating the dynamic viscosity

0

10

20

30

40

50

0 100 200 300 400 500
Er

ro
r

(%
)

data Number

Range of Error between Estimated
Data and Real Data

Relative Error

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

56

of nanofluids. Based on the error analysis, the average relative error is 4.098% hence, the network

is well trained and can be used to calculate the viscosity.

In conclusion, the Levenberg-Marquardt training algorithm with 17 hidden neurons is the

optimal setup calculating the dynamic viscosity of nanofluids based on 520 sets of data.

5 References

[1] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., ... & Sun, M. (2018). Graph

neural networks: A review of methods and applications. arXiv preprint arXiv:1812.08434.

[2] Irfan, S. A., Shafie, A., Yahya, N., & Zainuddin, N. (2019). Mathematical Modeling and

Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review. Energies, 12(8),

1575.

[3] Ahmadi, M. H., Mohseni-Gharyehsafa, B., Ghazvini, M., Goodarzi, M., Jilte, R. D., &

Kumar, R. (2020). Comparing various machine learning approaches in modeling the

dynamic viscosity of CuO/water nanofluid. Journal of Thermal Analysis and Calorimetry,

139(4), 2585-2599.

[4] Ramezanizadeh, M., Ahmadi, M. A., Ahmadi, M. H., & Nazari, M. A. (2019). Rigorous

smart model for predicting dynamic viscosity of Al 2 O 3/water nanofluid. Journal of

Thermal Analysis and Calorimetry, 137(1), 307-316.

[5] Ahmadi, M. H., Mohseni-Gharyehsafa, B., Farzaneh-Gord, M., Jilte, R. D., Kumar, R., &

Chau, K. W. (2019). Applicability of connectionist methods to predict dynamic viscosity

of silver/water nanofluid by using ANN-MLP, MARS, and MPR algorithms. Engineering

Applications of Computational Fluid Mechanics, 13(1), 220-228.

[6] Chen, Y. Y., Lin, Y. H., Kung, C. C., Chung, M. H., & Yen, I. Hsuan (January 2019)."

Design and Implementation of Cloud Analytics-Assisted Smart Power Meters

Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side

Management for Smart Homes. Sensors, 19(9), 2047.

[7] Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected

graphs. Information processing letters, 31(1), 7-15.

[8] Gansner, E. R., Koutsofios, E., North, S. C., & Vo, K. P. (1993). A technique for drawing

directed graphs. IEEE Transactions on Software Engineering, 19(3), 214-230.

[9] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The

graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61-80.

[10] Zell, A. (2003). Simulation Neuronaler Netze (Simulation with Neuronal

Networks). Wissenschaftsverlag: Oldenbourg.

[11] Anand, R. (2020, March 30). An Illustrated Guide to Graph Neural Networks. Retrieved

November 23, 2020, from https://medium.com/dair-ai/an-illustrated-guide-to-graph-

neural-networks-d5564a551783

[12] Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on

large graphs. In Advances in neural information processing systems (pp. 1024-1034).

[13] Goldberg, E., Scheringer, M., Bucheli, T. D., & Hungerbühler, K. (2015). Prediction of

nanoparticle transport behavior from physicochemical properties: machine learning

provides insights to guide the next generation of transport models. Environmental Science:

Nano, 2(4), 352-360.

[14] Savyakhosla (2019, August 26). CNN: Introduction to Pooling Layer. Retrieved January

17, 2021, from https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/

Fozi and Ahmad (2021) Proc. Sci. Math. 4:43-57

57

[15] Alvim, R. S., Babilonia, O. A., Celaschi, Y. M., & Miranda, C. R. (2017). Nanoscience

applied to oil recovery and mitigation: a multiscale computational approach. MRS

Advances, 2(9), 477.

[16] Sangani, M. F., Owens, G., Nazari, B., Astaraei, A., Fotovat, A., & Emami, H. (2019).

Different modeling approaches for predicting titanium dioxide nanoparticles mobility in

intact soil media. Science of The Total Environment, 665, 1168-1181.

[17] Ahmadi, M. H., Sadeghzadeh, M., Maddah, H., Solouk, A., Kumar, R., & Chau, K. W.

(2019). Precise smart model for estimating dynamic viscosity of SiO2/ethylene glycol–

water nanofluid. Engineering Applications of Computational Fluid Mechanics, 13(1),

1095-1105.

[18] Yu, H., & Wilamowski, B. M. (2011). Levenberg-marquardt training. Industrial

electronics handbook, 5(12), 1.

[19] Cook, N. D. (1995). Correlations between input and output units in neural networks.

Cognitive Science, 19(4), 563-574.

[20] Lee, J. H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U., & Choi, C. J.

(2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing

low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and

Mass Transfer, 51(11-12), 2651-2656.

[21] Esfe, M. H., Saedodin, S., Wongwises, S., & Toghraie, D. (2015). An experimental study

on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water

nanofluids. Journal of Thermal Analysis and Calorimetry, 119(3), 1817-1824.

[22] Pastoriza-Gallego, M. J., Casanova, C., Legido, J. L., & Piñeiro, M. M. (2011). CuO in

water nanofluid: influence of particle size and polydispersity on volumetric behavior and

viscosity. Fluid phase equilibria, 300(1-2), 188-196.

[23] Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., & Mintsa,

H. A. (2007). Temperature and particle-size dependent viscosity data for water-based

nanofluids–hysteresis phenomenon. International journal of heat and fluid flow, 28(6),

1492-1506.

[24] Heidari, E., Sobati, M. A., & Movahedirad, S. (2016). Accurate prediction of nanofluid

viscosity using a multilayer perceptron artificial neural network (MLP-ANN).

Chemometrics and intelligent laboratory systems, 155, 73-85.

