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Abstract This paper investigates a model of a prey predator with a Michaelis Menten-

Holling type functional response and a constant proportion of prey  refuge and predator 

stage structure. The predator is divided into two parts which are juvenile predator and 

mature predator. As a defensive property against predation, prey has a refuge capability. 

All of the possible equilibrium points of the model have been identified. They are 

investigated in terms of their stability. The model under consideration is made up of three 

nonlinear ordinary differential equations that describe the interaction between prey, 

juvenile predator and adult predators. The two numerical simulations using MAPLE 

software are shown for each cases where the equilibrium points is stable. The results show 

the condition for each equilibrium points is stable.  

 

Keywords Global stability; Equilibrium points; Local stability  

 

1 Introduction  

 

According to Sundari et al. [1], in recent years, numerous researchers have generously 

investigated the link between prey and predator species. Their interaction has been 

characterised theoretically as differential equations, and the qualitative analysis of ODE 

has been used to examine its dynamical properties. Sundari et al. [1] went on to say that 
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the modelling endeavour began separately in the 1920s by two mathematicians, Vito 

Volterra and Lotka. In actuality, the prey-predator interaction is controlled by a number 

of factors, including the biological system's carrying capacity, competition for food among 

the same species, predator reaction to prey, and harvesting individual or both species.  

 

 Aziz et al. [2] said that standard Lotka-Volterra systems are also known as 

predator-prey systems, which are based on the assumption that per capita rates of 

predation rely simply on the prey populations  in the first instance are generalised into a 

broad range of current predator-prey theories. Then, Aziz et al. [2] said that several 

biologists have challenged the traditional prey-dependent predator-prey models, because 

functional and digital responses on the typical ecological timescale are sought according 

to the density of both prey and predator, especially when food is searched, share or 

competed with predators. 

 

Therefore, Azar et al. [3] said that for a multiple predator-type Lotka-Volterra, 

where the predator is harvested, the stability qualities are investigated. Two separate 

harvest tactics, a steady quota and a continuous harvest effort are being utilised. They also 

said that the temporal behaviour, which involves periodical and chaotic oscillation, of 

population dynamics at varied intensities of the harvest is explored. Therefore Azar et al.  

said a constant harvest quota for predators is proved to destabilise a stable system, if a 

constant harvest effort is used. Azar et al. show that an increase in harvest quota leads to 

a stationary increasing abundance of the predator for the parameter area investigated. 

 

Bischi et al. think unregulated fishing is characterised by a classic predicament of 

prisoners, commonly described as the 'tragedy of the common [4]. As a result, individuals 

optimise short-term profit rather than pursue long-term goals via overuse and financial 

inefficiency such as reduced resource levels and long-term profitability. Indeed, the 

sustainability of fishing is controlled by the increase in natural supplies as well as by 

ecological interactions between species' patterns of balance.They concluded that  

introducing harvesting activities to a dynamic system as complicated,as it can create 
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possibilities that are not easily understood and administered. In addition, overuse of some 

populations of fish can effect the entire ecosystem and eventually lead to the depletion of 

some species, hence lowering returns to the risk of unanticipated resource extinction. 

Therefore, Bischi et al. in [4], said that central institutions normally implement forms of 

regulation either by placing constraints on harvesting such as continual efforts, individual 

fishery quotas, taxes, or by restricting fish types to be harvested or the areas where 

exploitation is permitted. 

 

Ko et al. in [5] said that they explore a predator-prey model with a functional 

response of type II of Holling that integrates a prey shelter with a homogenous neumann 

border. Then they show that non-constant positive, static solutions exist and are  available, 

depending on the constant m in (0, 1], which prescribes the protection of (1−m)u to prey 

u against predation. Furthermore, Ko et al. in [5] study the asymptotic conduct of spatially 

inhomogeneous solutions and periodic solutions on the ground. Franco et al. in [6] said 

that predator is a living thing that consumes another living thing. The prey is the predator's 

organism. Lion and zebra, bear and fish, fox and rabbit are some instances of the predator 

and prey [6]. Therefore, Franco et al. [6] said that almost usually, the phrases "predator" 

and "prey" indicate only animals which feed on animals, but also plants, such as bear and 

berries, rabbit and lettuce, grasshopper and  leaf.  

 

2 Mathematical Formulations  

 

In this part , we look at a ratio-dependent Michaelis Menten – Holling type prey predator 

model. A predator stage structure has been introduced, along with a prey refuge. Where 

𝑅, 𝐴, 𝐾1, 𝐵  are positive constants .𝑅  is the intrinsic growth rate of the prey, K is the 

carrying capacity of the environment , A is capture rate of the predator , 𝐾1  is the predators 

benefit from feeding . 𝐵 is the conversion coefficiency of the predator ,D is the transition 

rate from juvenile predator to mature predator , 𝑑1  is the mortality rate of juvenile 

predator , 𝑑2= mortality rate of mature predator.  
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The form of the model : 

 

  
𝑑𝑢

𝑑𝑡
= 𝛼𝑅𝑢 (1 −

𝑢

𝑘
) −

𝐴𝑢(1 − 𝛼)𝑣2

𝑢(1 − 𝛼) + 𝐾1𝑣2
 

 

                                           
𝑑𝑣1

𝑑𝑡
= −𝐷

̇
𝑣1 − 𝑑1𝑣1 +

𝐵𝐴𝑢(1 − 𝛼)𝑣2

𝑢(1 − 𝛼) + 𝐾1𝑣2
                                  (1) 

 

 
𝑑𝑣2

𝑑𝑡
=  𝐷𝑣1 − 𝑑2𝑣2                                 

 

                                        with 𝑢(0) ≥ 0, 𝑣1(0) ≥  0, 𝑣2(0) ≥  0                                            (2) 

 

At any time t, where 𝑢(𝑡) is the Population densities of the prey , 𝑣1(𝑡) is the Juvenile 

predator  , 𝑣2(𝑡) = Adult predator . 

 

3 Solutions of The Problem  

 

System (1) can be written in the dimensionless form by introducing U = population of 

prey, 𝑉1 = population of juvenile predator and 𝑉2= population of adult predator . The 

system (1) becomes : 

 

𝑑𝑈

𝑑𝑇
= 𝑈(1 − 𝑈)  −

𝑏𝑈(1 − 𝛼)𝑉2

𝑈(1 − 𝛼) + 𝑉2
= 𝑓1(𝑈, 𝑉1, 𝑉2) 

 

                            
𝑑𝑉1

𝑑𝑇
=  −𝐷1𝑉1 − 𝑎1𝑉1 +

𝑏𝑐𝑈(1 − 𝛼)𝑉2

𝑈(1 − 𝛼) + 𝑉2
 =  𝑓2(𝑈, 𝑉1, 𝑉2)                (3) 
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𝑑𝑉2

𝑑𝑇
=  𝐷1𝑉1 − 𝑎2𝑉2  =  𝑓3(𝑈, 𝑉1, 𝑉2)                                

 

 

For the conditions,  

 

                             𝑈(0)  =  𝑈0 > 0, 𝑉1(0) = 𝑉10 > 0, 𝑉2(0) = 𝑉20 > 0                        (4)    

  

Where,  

𝑏 =
𝐴

𝐾1𝑅
, 𝑐 = 𝐵𝐾 , 𝐷1 =

𝐷

𝑅
 , 𝑎1 =

𝑑1

𝑅
, 𝑎2 =

𝑑2

𝑅
 

 

 

3.1 Equilbrium points  

 

The equilbrium points are obtained by solving simultaneously.  

 

𝑑𝑈

𝑑𝑇
= 0,

𝑑𝑉1

𝑑𝑇
= 0 ,

𝑑𝑉2

𝑑𝑇
= 0  

 

Three equilbrium points are obtained which : 

 

a. The trivial equilbrium points 𝑃0(0,0,0).  All species are 0 . 

b. Only prey exist, 𝑃1(1,0,0).      

c. The co-existence equilibrium point 𝑃2(𝑈
∗, 𝑉1

∗ ,𝑉2
∗)  

 

 

 

 𝑉1
∗ = 

𝑎2

𝐷1
𝑉2

∗  ;  

 

Where, 
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𝑈∗ = 1 −
(1 − 𝛼)

𝐷1𝑐
 [𝐷1𝑏𝑐 − (𝐷1 + 𝑎1)𝑎2]  ;  

 

 𝑉2
∗ = (1 − α) [

𝐷1𝑏𝑐

(𝐷1 + 𝑎1)𝑎2
− 1]𝑈 ∗; 

 

3.2 Local stability analysis  

 

To obtain the the local dynamical behavior of the model near equilibrium points, we need 

to solve the equations by using the Jacobian Matrix of system  (3). Then , we will use 

Routh Hurwitz criterion system to determine the stability of equilbrium parts.    

 

 

The Jacobian matrix of system (3) is given by  

 

𝐽

=

[
 
 
 
 
 
−(1 − 𝛼)𝑏𝑉2

𝑈(1 − 𝛼) + 𝑉2
+

(1 − 𝛼)2𝑏𝑉2𝑈

𝑈(1 − 𝛼) + 𝑉2
− 2𝑈 + 1 0

(1 − 𝛼)𝑏𝑈𝑉2

(𝑈(1 − 𝛼) + 𝑉2)2
−

(1 − 𝛼)𝑏𝑈

𝑈(1 − 𝛼) + 𝑉2

(1 − 𝛼)𝑏𝑐𝑉2

𝑈(1 − 𝛼) + 𝑉2
−

(1 − 𝛼)2𝑏𝑐𝑉2𝑈

(𝑈(1 − 𝛼) + 𝑉2)2
−𝑎1 − 𝐷1

(1 − 𝛼)𝑏𝑐𝑈

𝑈(1 − 𝛼) + 𝑉2
−

(1 − 𝛼)𝑏𝑐𝑉2𝑈

(𝑈(1 − 𝛼) + 𝑉2)2

0 𝐷1 −𝑎2 ]
 
 
 
 
 

  

 

At the equilibrium point 𝑃0(0,0,0),  the jacobian matrix of system (3) is  

 

 

J(𝑃0)  =  [
1 0 0
0 −(𝐷1 + 𝑎1) 0
0 𝐷1 −𝑎2

] 

 

Then by solving the determinant we will get ,  

 

 λ1 = 1, λ2 = −(𝐷1 + 𝑎1) , λ3 = −𝑎2 
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We can see that λ1 = 1>0 while the others two eigen values are negative . Thus trivial 

equilibrium point 𝑃0  is a saddle point.  

At equilibrium point 𝑃1(1,0,0) , the Jacobian matrix of system (3) is  

 

J(𝑃1)  =  [
1 0 −𝑏
0 −(𝐷1 + 𝑎1) 𝑏𝑐
0 𝐷1 −𝑎2

] 

 

Then by solving the determinant we will get ,  

 

𝜆1 = −1 , 𝜆2 = −(𝐷1 + 𝑎1 + 𝑎2) , 𝜆3 = 𝑏𝑐𝐷1 − (𝐷1 + 𝑎1)𝑎2. 

 

We can see that 𝜆1 and 𝜆2 are negative. Equilbrium point 𝑃1 is stable if  𝜆3 is negative. 𝜆3 

is negative if  

 

𝑏𝑐𝐷1 − (𝐷1 + 𝑎1)𝑎2 < 0 

 

 

 

 

Thus the equilibrium point 𝑃1(1,0,0) of system (3) is locally asymptotically stable if 

 

 𝑏𝑐 <
(𝐷1 + 𝑎1)𝑎2

𝐷1
 , 

 

Parameter bc is the benefit to the predator when eat prey.   

 

 

 

The Jacobian matrix of system (3) at equilibrium point 𝑃2(𝑈
∗, 𝑉1

∗, 𝑉2
∗) is  
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𝐽(𝑃2) =

[
 
 
 
 
 1 − 2𝑈 ∗ −

𝑏𝑉2
∗2(1 − 𝛼)1

[𝑈 ∗ (1 − 𝛼)  + 𝑉2 ∗2]
0

−𝑏𝑈 ∗2 (1 − 𝛼)2

 [𝑈 ∗ (1 − 𝑀) + 𝑉2 ∗]2

𝑏𝑐𝑈 ∗2 (1 − 𝛼)2𝐷1

[𝑈 ∗ (1 − 𝛼)  + 𝑉2 ∗]2
−(𝐷1 + 𝑎1)

𝑏𝑐𝑈 ∗2 (1 − 𝛼)2

[𝑈 ∗ (1 − 𝛼)  + 𝑉2 ∗]2

0 𝐷1 −𝑎2 ]
 
 
 
 
 

 

 

and then, 

𝐽(𝑃2) = [

H11 H12 H13

H21 H22 H23

H31 H32 H33

] 

 

where 

H1 = −(H11 + H22 + H33) 

 

H2 = H11H22 + H11H33 + H22H33 − H23H32 

 

H3 = H11(H23H32 − H22H33) − H13H21H32 

 

The characterisitic equation is : 

 

λ3 + H1λ
2 + H2λ + H3 =  0 

 

Then we using Routh Hurwitz Criterion ,  

 

 

𝑃3(𝑠)  = λ3 + H1λ
2 + H2λ + H3 =  0 

 

 

 

[

 H3  H1

 H2 1
 𝑍3,1 0

𝑍4,1 0

] 
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𝑍3,1 = 
 H1(H2) − (1)H3

 𝐻2
, let  𝑍3,1 be 𝑏1 

 

 

 

𝑍4,1 = 
 𝑏1 (1) − 𝐻2 (0)

 𝑏1
= 𝑎0 

 

Prove as assumption , 

 

 

H3 >  0  
 

H2 >  0  
 

1 >  0  
 

 

Then, 
 H1(H2) − (1)H3

 𝐻2
> 0 

 

 

𝐼𝑓 𝐻2 >  0, then  
 

 

H1(H2) − H3 > 0  
 

 

H1(H2) > H3 

 

Note :  

 

No restriction on  𝑎1 , 

 

 

  If  𝐻2 > 0  , 𝐻1 >
 𝐻3 

 𝐻2
 , thus  𝐻1 will automatically positive.  

 

Thus , H1 > 0 

 

By using Routh Hurwitz criterion system (3) is locally asymptotically stable if    
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i. H1 > 0 

ii. H3 >  0  

iii.  H1H2 − H3 > 0 

 

4 Results  

 

Graphs are then displayed using MAPLE software in this project based on two numerical 

simulations. Simulation 1 is case for (𝑈, 𝑉1, 𝑉2) = (1,0,0), where only prey exist while 

simulation 2 is case for (𝑈, 𝑉1, 𝑉2) = (0.90,0.34,0.11), where co-existence equilibrium 

point exists. 

 

These are the parameter values used in Numerical Simulation 1 and Numerical Simulation 

2 . 

 

Table 1 : Parameter values used in Numerical Simulation 1 and Numerical Simulation 2. 

 

Simulation  Simulation 1 𝑃1(1,0,0) Simulation 2 𝑃2(𝑈
∗, 𝑉1

∗, 𝑉2
∗) 

The benefit of juvenile 

predator when consume prey  

b = 1.5 b  = 1 

The benefit of mature predator 

when consume prey 

c  = 0.7 c  = 3.0 

Transition rate from juvenile 

predator to mature predator  

𝐷1 = 1.5 𝐷1 = 0.5 

Capture rate for juvenile 

predator  

𝑎1= 1.0 𝑎1 = 0.3 

Capture rate for mature 

predator   

𝑎2 = 1.5 𝑎2 = 1.5 

Proportion of prey to refuge α= 0.7 α= 0.5 
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Eigen values 𝜆1 = −1, 𝜆2

= −3.35092, 𝜆3

= −0.64907 

 λ1 = −1, λ2 = −1.03839,  

λ3 = −0.76861 

 

 

Numerical simulation 1 

 

Case for (𝑼, 𝑽𝟏, 𝑽𝟐) = (𝟏, 𝟎, 𝟎) where only prey exist.  

   

 

Figure 1 : Density of Prey and Predators with time for numerical simulation 1. 
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Numerical simulation 2  

 

Case for (𝑼, 𝑽𝟏, 𝑽𝟐) = (𝟎. 𝟗𝟎, 𝟎. 𝟑𝟒, 𝟎. 𝟏𝟏), where co-existence equilibrium point 

exists. 

 

 

Figure 2 : Density of Prey and Predators with time for numerical simulation 2. 

 

Figure 1 represent the graphs for results in numerical simulation 1 while figure 2 

are represent the graphs for results in numerical simulation 2 . Based on figure 1, we can 

see that the population of mature and the juvenile predator go to zero, while the density of 

the prey goes to the carrying capacity 1. Based on figure 2, we can see that the population 

of mature and the juvenile predator go to 0.34,0.11 respectively, while the density of the 

prey goes to the 0.9. Thus this show that the co-existence equilibrium points is stable 

where the population of prey, population of juvenile predator and population of mature 

predator are stable and exists.   
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Figure 1 is the graph for the density of prey and predators with time for numerical 

simulation 1. Based on figure 1, we can observe that the number of prey was dropping at 

first, but it began to increase once the predator disappeared. After the predator has left, the 

prey's life returns to normal. Next, from figure 1 we can see that the population of juvenile 

predators is declining with time. Then, all at once, the number of juvenile predators go to 

zero. Lastly from the figure 1 , we can observe that the population of mature predators is 

steadily diminishing over time. Then the mature predator population go to zero. 

 

 Figure 2 shows the graph for the density of prey and predators with time for 

numerical simulation 2. Based on figure 2, we can see that the number of prey is 

diminishing with time. Following the absence of the predator, the development of prey 

increases. After the predator has left, the prey's life returns to normal. Then, in figure 2 ,we 

also can see that the population of juvenile predator increasing at first . Then it is decrease 

steeply over time and remain constant when the time is increasing. Therefore , in figure 2, 

we can observe that the population of mature predator is dwindling and approaching zero. 

The growth of mature predators is therefore steady and does not alter. 
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