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Abstract Genetic algebra is known as non-associative in general. In this paper, we 

consider genetic algebras induced by b-bistochastic Quadratic Stochastic Operators (QSOs) 

which are called b-bistochastic genetic algebras, limited on two-dimensional space. We 

study the condition of associativity on two-dimensional b-bistochastic genetic algebra. 

Moreover, full description of derivation of two-dimensional b-bistochastic genetic algebra 

are presented.  It is well-known that commutative and associative algebras have only 

trivial derivations, thus, the existence of non-trivial derivations on such algebras is given. 
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1 Introduction 
 

Quadratic Stochastic Operators (QSOs) are an operator that early discovered from the problems 

of population genetics which can be traced back to Bernstein’s work [1]. The QSOs were used 

to describe the distribution evolution of individual in a population like in populations genetic 

[2,3]. Besides, QSOs played an important role of analysis for the study of dynamics properties 

and models in different fields such as biology, physics, economics and mathematics. 

 Besides Bernstein’s work, the applications of QSOs on population genetics were given 

by Lyubich [3]. The species time evolution can be identified by the following situation. Let 𝐼 =

{1,2, … , 𝑛} be the 𝑛 type of species in a population and we denote 𝑥(0) = (𝑥1
(0)

, … , 𝑥𝑛
(0)

) as the 

probability distribution of the species in an early state of that population. The probability of an 

individual in the 𝑖𝑡ℎ species and 𝑗𝑡ℎ species to cross-fertilize and produce an individual from the 

𝑘𝑡ℎ  species denoted as  𝑃𝑖𝑗,𝑘 . Given  𝑥(0) = (𝑥1
(0)

, … , 𝑥𝑛
(0)

) , we can find the probability 

distribution of the first generation, 𝑥(1) = (𝑥1
(1)

, … , 𝑥𝑛
(1)

) by applying QSO as a total probability, 

i.e. 

𝑥𝑘
(1)

= ∑ 𝑃𝑖𝑗,𝑘𝑥𝑖
(0)

𝑥𝑗
(0)

, 𝑘 ∈ {1,2, … , 𝑛}.

𝑛

𝑖,𝑗=1

 



Mohd Rosli and Embong (2021) Proc. Sci. Math. 4:72-80 

 

 

 
73 

The operator above is denoted by the symbol  𝑉 . This means that, starting from the initial 

arbitrary state of the probability distribution 𝑥(0) in a population, then it continues to evolve to 

the probability distribution of the first generation,𝑥(1) = 𝑉(𝑥(0)), the second generation 𝑥(2) =

𝑉(𝑥(1)) = 𝑉 (𝑉(𝑥(0))) = 𝑉(2)(𝑥(0)) , and so on. Thus, the probabilities distribution of the 

population can be described as follows: 

𝑥(0),  𝑥(1) = 𝑉(𝑥(0)),  𝑥(2) = 𝑉(2)(𝑥(0)),  𝑥(3) = 𝑉(3)(𝑥(0)), ⋯ 

In other words, each QSOs describe the evolution of generations in terms of probabilities 

distribution. 

Furthermore, according to Ganikhodzhaev, Mukhamedov, Pirnapasov and Qaralleh [4], 

each QSO defines an algebraic structure on the vector space  ℝ𝑛 containing the simplex. Such 

an algebra is called genetic algebra. Lyubich [5] states that it is known that QSO generated 

genetic algebra is commutative and non-associative in general. Note that for any algebra, the 

space of all derivations is a Lie algebra with the commutator multiplication. Particularly, the 

theory of non-associative algebras, in genetic algebra, the Lie algebra of derivations of a given 

algebra is one of the important tools for studying its structure. 

Based on the previous studies, it is apparent that investigation of QSOs in general 

setting is challenging (unlike in case of linear operators), therefore the researchers are likely to 

introduce classes of QSOs such as Volterra-QSOs, b-bistochastic QSOs, doubly QSOs and 

separable QSOs. Genetic Volterra algebras were introduced and some of their algebraic 

properties were studied [4]. Recently, connections between the evolution algebras and the 

associated dynamical system have been made for the case of Volterra QSOs [6]. Motivated from 

those ideas, we are going to consider genetic algebras generated by b-bistochastic QSOs which 

is simply called b-bistochastic genetic algebras. 

The properties of b-bistochastic QSO were studied in [7]. However, genetic algebras 

associated to these operators were not completely studied yet. In this work, we are limited 

ourselves to study on two-dimensional b-bistochastic genetic algebra. Specifically, we are going 

to describe the condition for associativity of such algebra. In general, genetic algebras generated 

by QSOs are commutative but non-associative. Based on the well-known Kadisons Theorem, it 

states that all derivations of associative and commutative algebras are trivial. Therefore, we are 

going to describe the derivation of b-bistochastic genetic algebra. 

  

 

2 Preliminaries  
 

This section introduces terms, definitions and theorems related to QSO and b-bistochastic 

operators. 

 

2.1 Quadratic Stochastic Operator 

Let 𝑉 be a mapping on the (𝑛 − 1)-dimensional simplex 

𝑆𝑛−1 = {𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛|𝑥𝑖 ≥ 0, ∑ 𝑥𝑖 = 1

𝑛

𝑖=1

} (1) 

maps into itself, 𝑉: 𝑆𝑛−1 ⟶ 𝑆𝑛−1. 𝑉 has such a form 

𝑉: 𝑥𝑘
′ = ∑ 𝑃𝑖𝑗,𝑘𝑥𝑖𝑥𝑗,   𝑘 = 1,2, … , 𝑛

𝑛

𝑖,𝑗=1

 (2) 

where 𝑃𝑖𝑗,𝑘 are coefficient of heredity and 
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𝑃𝑖𝑗,𝑘 ≥ 0, 𝑃𝑖𝑗,𝑘 = 𝑃𝑗𝑖,𝑘 , ∑ 𝑃𝑖𝑗,𝑘 = 1 

𝑛

𝑘=1

, 𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛 (3) 

Then, 𝑉 is called Quadratic Stochastic Operator (QSO). 

Other than that, QSO also being studied in terms of order. Hardy [8] introduced an order 

called 𝑥 majorized by 𝑦, (𝑥 ≺ 𝑦). The order was used by to initiate a definition of bistochastic 

QSO in terms of classical majorization [9]. QSO is called bistochastic (also called doubly 

stochastic) if 𝑉(𝑥)  ≺  𝑥 for all x taken from the (𝑛 − 1)-dimensional simplex. The necessary 

and sufficient conditions were given for the bistochasticity QSO in [10] and [11]. Moreover, 

besides these orders, there is another order that has been performed to introduce new operator, b-

bistochastic operator. 

 

2.2  b-Bistochastic Operator  

A new order called b-order were introduced in [7]. They were motivated to use majorization that 

was introduced in Parker and Ram [12] to define a bistochasticity QSO with respect to the b-

order and call it b-bistochastic QSO. They described several properties of the b-bistochastic 

QSO. 

 

Definition 1 [7] Let 𝑉  be the QSO given by equation (2) and 𝑆𝑛−1  is a simplex given by 

equation (1). 𝑉 is called b-bistochastic operator if 

𝑉(𝐱) ≤𝑏 𝐱   ∀𝐱 ∈ 𝑆𝑛−1 

From equation (1), if 𝑛 = 2, then the simplex reduces to 

𝑆1 = {𝐱 = (𝑥1, 𝑥2) ∈ ℝ2 | 𝑥1, 𝑥2 ≥ 0,  𝑥1 + 𝑥2 = 1}, (4) 

which is called 1-dimensional simplex. Furthermore, the QSOs 𝑉 given by equation (2) on this 

simplex can be written as 𝑉(𝐱) = (𝑉(𝐱)1, 𝑉(𝐱)2) where, 

𝑉(𝐱)1 = 𝑃11,1𝑥1
2 + 2𝑃12,1𝑥1𝑥2 + 𝑃22,1𝑥2

2 

𝑉(𝐱)2 = 𝑃11,2𝑥1
2 + 2𝑃12,2𝑥1𝑥2 + 𝑃22,2𝑥2

2 

 

Theorem 1 [7] Let 𝑉 be a b-bistochastic QSO defined on 𝑆𝑛−1, then the following statements 

hold: 

i. 𝑃𝑖𝑗,𝑘 = 0  for all 𝑖, 𝑗 ∈ {𝑘 + 1, … , 𝑛} where 𝑘 ∈ {1, … , 𝑛 − 1}  

ii. 𝑃𝑖𝑗,𝑘 ≤
1

2
  for all 𝑗 ≥ 𝑙 + 1, 𝑙 ∈ {1, … , 𝑛 − 1} 

With this theorem, the condition for associativity of b-bistochastic genetic algebra can 

easily determine. In this research, we only involve for two-dimensional b-bistochastic genetic 

algebra. Hence, we have the properties 

𝑃12,1 ≤
1

2
  ,   𝑃22,1 = 0 

 

2.2 Genetic Algebra 

In mathematical genetics, genetic algebras are (possibly non-associative) used to model 

inheritance in genetic. Many authors have tried to investigate and study the difficult problem of 

classification of these algebras [13]. In mathematics, the algebras that occur in genetic (via 

gametic or zygotic) are very interesting structures. Reed [14] states that these algebras are not 

necessarily Lie or Jordan or any alternative algebra although they are generally commutative but 

non-associative. 

 

2.2.1  Definitions on Some Properties of Genetic Algebra 

Definition 2 The genetic algebra 𝐴 is associative if satisfy the following condition: 
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((𝑋 ∘ 𝑌) ∘ 𝑍)
𝑘

= (𝑋 ∘ (𝑌 ∘ 𝑍))
𝑘

   ,        𝑘 = 1, … , 𝑚 

 

Definition 3 A derivation of the genetic algebra 𝐴 is defined as a linear operator  

𝐷 ∶  𝐴 → 𝐴  satisfying 

𝐷(𝑢, 𝑣) = 𝐷(𝑢)𝑣 + 𝑢𝐷(𝑣) 

for all  𝑢, 𝑣 ∈ 𝐸, where 𝐸 is algebra. 

 

 

3 Associativity of Two-Dimensional b-Bistochastic Genetic Algebra  
 

In this section, we are going to determine the condition for b-bistochastic genetic algebra to be 

associative on two-dimensional space, ℝ2 . Throughout this paper, we will let 𝑃11,1 = 𝑎  and 

𝑃12,1 = 𝑏 for one-dimensional simplex. Due to conditions in equation (3), 𝑃11,2 = 1 − 𝑎  and 

𝑃12,2 = 1 − 𝑏.  

Based on equation (2), equation (3) and properties above, we can expand (𝐱 ∘ 𝐲) given  

𝐱 = (𝑥1, 𝑥2) and 𝐲 = (𝑦1, 𝑦2) as: 

𝐱 ∘ 𝐲 = ( ∑ 𝑃𝑖𝑗,1𝑥𝑖𝑦𝑗 

2

𝑖,𝑗=1

, ∑ 𝑃𝑖𝑗,2𝑥𝑖𝑦𝑗

2

𝑖,𝑗=1

) 

= (𝑃11,1𝑥1𝑦1 + 𝑃12,1(𝑥1𝑦2 + 𝑥2𝑦1) , 𝑃11,2𝑥1𝑦1 + 𝑃12,2(𝑥1𝑦2 + 𝑥2𝑦1) + 𝑥2𝑦2) 

= (𝑎𝑥1𝑦1 + 𝑏(𝑥1𝑦2 + 𝑥2𝑦1), (1 − 𝑎)𝑥1𝑦1 + (1 − 𝑏)(𝑥1𝑦2 + 𝑥2𝑦1) + 𝑥2𝑦2)  

(5) 

 

Corollary 1 From Theorem 1, we have the following table, where 𝑒1 = (1,0) and 𝑒2 = (0,1). 

 

Table 1: Multiplication table (ℝ2) 

 

∘ 𝑒1 𝑒2 

𝑒1 (𝑎 , 1 − 𝑎) (𝑏 , 1 − 𝑏) 

𝑒2 (𝑏 , 1 − 𝑏) (0 , 1) 

 

  

Proposition 1 Let (𝐴,∘) be a genetic algebra and 𝑒𝑖 be its standard basis. Then, 
(𝐱 ∘ 𝐲) = 𝑥1𝑦1(𝑒1 ∘ 𝑒1) + 𝑥1𝑦2(𝑒1 ∘ 𝑒2) + 𝑥2𝑦1(𝑒2 ∘  𝑒1) + 𝑥2𝑦2(𝑒2 ∘ 𝑒2) 

 

Proof First, let us compute the multiplication of 𝐱 and 𝐲 with respect to the operation, ∘, where 

𝐱 = (𝑥1, 𝑥2) and 𝐲 = (𝑦1, 𝑦2). We can see that 

(𝐱 ∘ 𝐲) = ( ∑ 𝑃𝑖𝑗,1𝑥𝑖𝑦𝑗

2

𝑖,𝑗=1

 , ∑ 𝑃𝑖𝑗,2𝑥𝑖𝑦𝑗 

2

𝑖,𝑗=1

)   

= (𝑃11,1𝑥1𝑦1 + 𝑃12,1𝑥1𝑦2 + 𝑃21,1𝑥2𝑦1 + 𝑃22,1𝑥2𝑦2 , 𝑃11,2𝑥1𝑦1 + 𝑃12,2𝑥1𝑦2 + 𝑃21,2𝑥2𝑦1

+ 𝑃22,2𝑥2𝑦2) 

= 𝑥1𝑦1(𝑃11,1 , 𝑃11,2) + 𝑥1𝑦2(𝑃12,1 , 𝑃12,2) + 𝑥2𝑦1(𝑃21,1 , 𝑃21,2) + 𝑥2𝑦2(𝑃22,1 , 𝑃22,2) 

= 𝑥1𝑦1(𝑒1 ∘ 𝑒1) + 𝑥1𝑦2(𝑒1 ∘ 𝑒2) + 𝑥2𝑦1(𝑒2 ∘ 𝑒1) + 𝑥2𝑦2(𝑒2 ∘ 𝑒2) 
So, this proves the proposition. 
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Lemma 1 Let (𝐴,∘) be a genetic algebra on ℝ2 and 𝑒𝑖 be its standard basis. 𝐴 is associative if 

and only if (𝑒𝑖 ∘ 𝑒𝑗) ∘ 𝑒𝑘 = 𝑒𝑖 ∘ (𝑒𝑗 ∘ 𝑒𝑘) for all 𝑖, 𝑗, 𝑘 ∈ 𝐼2. 

 

Proof (⇒) If (𝐴,∘) is associative, then (𝑒𝑖 ∘ 𝑒𝑗) ∘ 𝑒𝑘 = 𝑒𝑖 ∘ (𝑒𝑗 ∘ 𝑒𝑘) for all 𝑖, 𝑗, 𝑘 ∈ 𝐼2.  

(⇐) Assume (𝑒𝑖 ∘ 𝑒𝑗) ∘ 𝑒𝑘 = 𝑒𝑖 ∘ (𝑒𝑗 ∘ 𝑒𝑘) for all 𝑖, 𝑗, 𝑘 ∈ 𝐼2. Let 𝐱 = (𝑥1, 𝑥2), 𝒚 = (𝑦1, 𝑦2) 

and 𝒛 = (𝑧1, 𝑧2) where 𝐱, 𝐲, 𝐳 ∈ ℝ2. From 𝐱, 𝐲 and 𝐳, we have 𝒙 = 𝑥1𝑒1 + 𝑥2𝑒2, 𝒚 = 𝑦1𝑒1 +
𝑦2𝑒2 and 𝒛 = 𝑧1𝑒1 + 𝑧2𝑒2. Now, from Proposition 1, we get 

(𝐱 ∘ 𝒚) ∘ 𝐳 = ((𝑥1𝑒1 + 𝑥2𝑒2) ∘ (𝑦1𝑒1 + 𝑦2𝑒2)) ∘ (𝑧1𝑒1 + 𝑧2𝑒2) 

= (𝑥1𝑦1(𝑒1 ∘ 𝑒1) + 𝑥1𝑦2(𝑒1 ∘ 𝑒2) + 𝑥2𝑦1(𝑒2 ∘ 𝑒1) + 𝑥2𝑦2(𝑒2 ∘ 𝑒2))
∘ (𝑧1𝑒1 + 𝑧2𝑒2) 

= 𝑥1𝑦1𝑧1(𝑒1 ∘ 𝑒1) ∘ 𝑒1 + 𝑥1𝑦2𝑧1(𝑒1 ∘ 𝑒2) ∘ 𝑒1 + 𝑥2𝑦1𝑧1(𝑒2 ∘ 𝑒1) ∘ 𝑒1

+ 𝑥2𝑦2𝑧1(𝑒2 ∘ 𝑒2) ∘ 𝑒1 + 𝑥1𝑦1𝑧2(𝑒1 ∘ 𝑒1) ∘ 𝑒2 + 𝑥1𝑦2𝑧2(𝑒1 ∘ 𝑒2) ∘ 𝑒2

+ 𝑥2𝑦1𝑧2(𝑒2 ∘ 𝑒1) ∘ 𝑒2 + 𝑥2𝑦2𝑧2(𝑒2 ∘ 𝑒2) ∘ 𝑒2 

Due to early assumption, we can rewrite the last expression in the following form 

(𝐱 ∘ 𝐲) ∘ 𝐳 = 𝑥1𝑦1𝑧1𝑒1 ∘ (𝑒1 ∘ 𝑒1) + 𝑥1𝑦2𝑧1𝑒1 ∘ (𝑒2 ∘ 𝑒1) + 𝑥2𝑦1𝑧1𝑒2 ∘ (𝑒1 ∘ 𝑒1)
+ 𝑥2𝑦2𝑧1𝑒2 ∘ (𝑒2 ∘ 𝑒1) + 𝑥1𝑦1𝑧2𝑒1 ∘ (𝑒1 ∘ 𝑒2) + 𝑥1𝑦2𝑧2𝑒1 ∘ (𝑒2 ∘ 𝑒2)
+ 𝑥2𝑦1𝑧2𝑒2 ∘ (𝑒1 ∘ 𝑒2) + 𝑥2𝑦2𝑧2𝑒2 ∘ (𝑒2 ∘ 𝑒2) 

= 𝑥1𝑒1 ∘ 𝑦1𝑧1(𝑒1 ∘ 𝑒1) + 𝑥1𝑒1 ∘ 𝑦2𝑧1(𝑒2 ∘ 𝑒1) + 𝑥2𝑒2 ∘ 𝑦1𝑧1(𝑒1 ∘ 𝑒1) + 𝑥2𝑒2

∘ 𝑦2𝑧1(𝑒2 ∘ 𝑒1) + 𝑥1𝑒1 ∘ 𝑦1𝑧2(𝑒1 ∘ 𝑒2) + 𝑥1𝑒1 ∘ 𝑦2𝑧2(𝑒2 ∘ 𝑒2) + 𝑥2𝑒2

∘ 𝑦1𝑧2(𝑒1 ∘ 𝑒2) + 𝑥2𝑒2 ∘ 𝑦2𝑧2(𝑒2 ∘ 𝑒2) 
= (𝑥1𝑒1 + 𝑥2𝑒2)

∘ (𝑦1𝑧1(𝑒1 ∘ 𝑒1) + 𝑦2𝑧1(𝑒2 ∘ 𝑒1) + 𝑦1𝑧2(𝑒1 ∘ 𝑒2) + 𝑦2𝑧2(𝑒2 ∘ 𝑒2)) 

= (𝑥1𝑒1 + 𝑥2𝑒2) ∘ ((𝑦1𝑒1 + 𝑦2𝑒2) ∘ (𝑧1𝑒1 + 𝑧2𝑒2)) 

= 𝐱 ∘ (𝐲 ∘ 𝐳) 

We show that (𝐱 ∘ 𝐲) ∘ 𝐳 = 𝐱 ∘ (𝐲 ∘ 𝐳). Hence, 𝐴 is associative. This completes the proof.  

 

Now the next theorem will describe the condition for associativity of two-dimensional b-

bistochastic genetic algebra. 

 

Theorem 2 Let 𝑉 be a b-bistochastic genetic algebra on ℝ2. Then, 𝑉 is associative if and only if 

𝑏 = 0. 

 

Proof Let 𝑉 be a b-bistochastic genetic algebra on ℝ2 

(⇒) Assume 𝑉 is associative. By Lemma 1, (𝑒𝑖 ∘ 𝑒𝑗) ∘ 𝑒𝑘 = 𝑒𝑖 ∘ (𝑒𝑗 ∘ 𝑒𝑘) for all 𝑖, 𝑗, 𝑘 ∈

 𝐼2. Therefore, according to Table 1, we can have 

(𝑒1 ∘ 𝑒1) ∘ 𝑒2 = 𝑒1 ∘ (𝑒1 ∘ 𝑒2) ⇒ (𝑎𝑏, 1 − 𝑎𝑏) = (𝑎𝑏 + 𝑏(1 − 𝑏), (1 − 𝑎)𝑏 + (1 − 𝑏)2) 

Solving the equality above, we get the following equation 

𝑏(1 − 𝑏) = 0 

where 𝑏 = 0 and 𝑏 = 1. Since 𝑏 ≤
1

2
 , so we have 𝑏 = 0. This is satisfied for all (𝑒𝑖 ∘ 𝑒𝑗) ∘

𝑒𝑘 = 𝑒𝑖 ∘ (𝑒𝑗 ∘ 𝑒𝑘) ∀ 𝑖, 𝑗, 𝑘 ∈ 𝐼2.  

(⇐) Assume 𝑏 = 0 and let 𝐱 = (𝑥1, 𝑥2), 𝒚 = (𝑦1, 𝑦2) and 𝒛 = (𝑧1, 𝑧2) where 𝐱, 𝐲, 𝐳 ∈ 𝑉. 

𝐱 ∘ 𝐲 = (𝑎𝑥1𝑦1 ,  (1 − 𝑎)𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2) 

= (𝑎𝑥1𝑦1 ,  (1 − 𝑎)𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2(𝑦1 + 𝑦2)) 

𝐲 ∘ 𝐳 = (𝑎𝑦1𝑧1 ,  (1 − 𝑎)𝑦1𝑧1 + 𝑦1𝑧2 + 𝑦2𝑧1 + 𝑦2𝑧2) 

= (𝑎𝑦1𝑧1 ,  (1 − 𝑎)𝑦1𝑧1 + 𝑦1𝑧2 + 𝑦2(𝑧1 + 𝑧2)) 
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(𝐱 ∘ 𝐲) ∘ 𝐳 = (𝑎(𝑎𝑥1𝑦1)𝑧1 ,  (1 − 𝑎)(𝑎𝑥1𝑦1)𝑧1 + (𝑎𝑥1𝑦1)𝑧2

+ [(1 − 𝑎)𝑥1𝑦1 + 𝑥1𝑦2
+ 𝑥2𝑦1 + 𝑥2𝑦2

](𝑧1 + 𝑧2))  

= (𝑎2𝑥1𝑦1𝑧1 ,  (1 − 𝑎)𝑎𝑥1𝑦1𝑧1 + 𝑎𝑥1𝑦1𝑧2 + (1 − 𝑎)𝑥1𝑦1𝑧1 + 𝑥1𝑦2𝑧1 + 𝑥2𝑦1𝑧1

+ 𝑥2𝑦2𝑧1 + (1 − 𝑎)𝑥1𝑦1𝑧2 + 𝑥1𝑦2𝑧2 + 𝑥2𝑦1𝑧2 + 𝑥2𝑦2𝑧2) 
= (𝑎2𝑥1𝑦1𝑧1 ,  (1 − 𝑎)𝑎𝑥1𝑦1𝑧1 + 𝑥1𝑦1𝑧2 + (1 − 𝑎)𝑥1𝑦1𝑧1 + 𝑥1𝑦2𝑧1 + 𝑎𝑥2𝑦1𝑧1

+ (1 − 𝑎)𝑥2𝑦1𝑧1 + 𝑥2𝑦2𝑧1 + 𝑥1𝑦2𝑧2 + 𝑥2𝑦1𝑧2 + 𝑥2𝑦2𝑧2) 
= (𝑎𝑥1(𝑎𝑦1𝑧1) ,  (1 − 𝑎)𝑥1(𝑎𝑦1𝑧1)

+ (𝑥1 + 𝑥2)[(1 − 𝑎)𝑦1𝑧1 + 𝑦1𝑧2 + 𝑦2𝑧1 + 𝑦2𝑧2] + 𝑥_2(𝑎𝑦1𝑧1)) 

= 𝐱 ∘ (𝐲 ∘ 𝐳) 

This shows that 𝑉 is associative. Therefore, this proves the theorem. 

 

 

4 Derivation of Two-Dimensional b-Bistochastic Genetic Algebra  
 

This section will describe the derivation of two-dimensional b-bistochastic genetic algebra. Let 

(𝐴,∘) be a genetic algebra on ℝ2. A linear operator mapping 𝐷: 𝐴 → 𝐴 given by  

𝐷(𝑒𝑖) = ∑ 𝑑𝑖𝑗𝑒𝑗

𝑛

𝑗=1

 (6) 

is called derivation if it satisfies 

 𝐷(𝐱 ∘ 𝐲) = 𝐷(𝐱) ∘ 𝐲 + 𝐱 ∘ 𝐷(𝐲), ∀ 𝐱, 𝐲 ∈ 𝐴 (7) 

 Moreover, for any 𝐱, 𝐲 and 𝐳 in b-bistochastic genetic algebra one has 

𝐱 ∘ (𝐲 + 𝐳) = ∑ 𝑃𝑖𝑗,𝑘𝑥𝑖(𝑦𝑗 + 𝑧𝑗)

𝑛

𝑖,𝑗=1

 

= ∑ 𝑃𝑖𝑗,𝑘(𝑥𝑖𝑦𝑗 + 𝑥𝑖𝑧𝑗)

𝑛

𝑖,𝑗=1

 

= ∑ 𝑃𝑖𝑗,𝑘𝑥𝑖𝑦𝑗

𝑛

𝑖,𝑗=1

+ ∑ 𝑃𝑖𝑗,𝑘𝑥𝑖𝑧𝑗

𝑛

𝑖,𝑗=1

 

= 𝐱 ∘ 𝐲 + 𝐱 ∘ 𝐳 

(8) 

Therefore, this algebra satisfies distributive law. 

 Throughout this section, we will only consider our b-bistochastic on two-dimensional 

genetic algebra that is 𝑛 = 2. 

 

Lemma 2 The linear operator 𝐷 given by (6) is derivative if and only if 𝐷(𝑒𝑖 ∘ 𝑒𝑗) = 𝐷(𝑒𝑖) ∘

𝑒𝑗 + 𝑒𝑖 ∘ 𝐷(𝑒𝑗) for all 𝑖, 𝑗 = 1,2, … , 𝑛 

 

Proof (⇒) If 𝐷 is derivative, then obviously 𝐷(𝑒𝑖 ∘ 𝑒𝑗) = 𝐷(𝑒𝑖) ∘ 𝑒𝑗 + 𝑒𝑖 ∘ 𝐷(𝑒𝑗).  

(⇐) Assume 𝐷(𝑒𝑖 ∘ 𝑒𝑗) = 𝐷(𝑒𝑖) ∘ 𝑒𝑗 + 𝑒𝑖 ∘ 𝐷(𝑒𝑗) for all 𝑖, 𝑗 = 1,2. Let 𝐱 = (𝑥1, 𝑥2) and 𝐲 =

(𝑦1, 𝑦2). By Proposition 1, we have  
(𝐱 ∘ 𝐲) = 𝑥1𝑦1(𝑒1 ∘ 𝑒1) + 𝑥1𝑦2(𝑒1 ∘ 𝑒2) + 𝑥2𝑦1(𝑒2 ∘  𝑒1) + 𝑥2𝑦2(𝑒2 ∘ 𝑒2) 

Then, the derivation of (𝐱 ∘ 𝐲) is 

𝐷(𝐱 ∘ 𝐲) = 𝐷(𝑥1𝑦1(𝑒1 ∘ 𝑒1) + 𝑥1𝑦2(𝑒1 ∘ 𝑒2) + 𝑥2𝑦1(𝑒2 ∘ 𝑒1) + 𝑥2𝑦2(𝑒2 ∘ 𝑒2))  

= 𝑥1𝑦1𝐷(𝑒1 ∘ 𝑒1) + 𝑥1𝑦2𝐷(𝑒1 ∘ 𝑒2) + 𝑥2𝑦1𝐷(𝑒2 ∘ 𝑒1) + 𝑥2𝑦2𝐷(𝑒2 ∘ 𝑒2)  
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= 𝑥1𝑦1[𝐷(𝑒1) ∘ 𝑒1 + 𝑒1 ∘ 𝐷(𝑒1)] + 𝑥1𝑦2[𝐷(𝑒1) ∘ 𝑒2 + 𝑒1 ∘ 𝐷(𝑒2)]  
+ 𝑥2𝑦1[𝐷(𝑒2) ∘ 𝑒1 + 𝑒2 ∘ 𝐷(𝑒1)] + 𝑥2𝑦2[𝐷(𝑒2) ∘  𝑒2 + 𝑒2 ∘ 𝐷(𝑒2)]  

= 𝑥1𝑦1[𝐷(𝑒1) ∘ 𝑒1] + 𝑥1𝑦2[𝐷(𝑒1) ∘ 𝑒2] + 𝑥2𝑦1[𝐷(𝑒2) ∘ 𝑒1] + 𝑥2𝑦2[𝐷(𝑒2) ∘ 𝑒2]
+ 𝑥1𝑦1[𝑒1 ∘ 𝐷(𝑒1)] + 𝑥1𝑦2[𝑒1 ∘ 𝐷(𝑒2)] + 𝑥2𝑦1[𝑒2 ∘ 𝐷(𝑒1)]
+ 𝑥2𝑦2[𝑒2 ∘ 𝐷(𝑒2)] 

= 𝑥1[𝑦1(𝐷(𝑒1) ∘ 𝑒1) + 𝑦2(𝐷(𝑒1) ∘ 𝑒2)] + 𝑥2[𝑦1(𝐷(𝑒2) ∘ 𝑒1) + 𝑦2(𝐷(𝑒2) ∘ 𝑒2)]

+ 𝑦1[𝑥1(𝑒1 ∘ 𝐷(𝑒1)) + 𝑥2(𝑒2 ∘ 𝐷(𝑒1))]

+ 𝑦2[𝑥1(𝑒1 ∘ 𝐷(𝑒2)) + 𝑥2(𝑒2 ∘ 𝐷(𝑒2))] 

= 𝑥1𝐷(𝑒1) ∘ 𝑦1𝑒1 + 𝑥1𝐷(𝑒1) ∘ 𝑦2𝑒2 + 𝑥2𝐷(𝑒2) ∘ 𝑦1𝑒1 + 𝑥2𝐷(𝑒2) ∘ 𝑦2𝑒2 + 𝑥1𝑒1

∘ 𝑦1𝐷(𝑒1) + 𝑥2𝑒2 ∘ 𝑦1𝐷(𝑒1) + 𝑥1𝑒1 ∘ 𝑦2𝐷(𝑒2) + 𝑥2𝑒2 ∘  𝑦2𝐷(𝑒2) 
= 𝐷(𝑥1𝑒1) ∘ 𝑦1𝑒1 + 𝐷(𝑥1𝑒1) ∘ 𝑦2𝑒2 + 𝐷(𝑥2𝑒2) ∘ 𝑦1𝑒1 + 𝐷(𝑥2𝑒2) ∘ 𝑦2𝑒2 + 𝑥1𝑒1

∘ 𝐷(𝑦1𝑒1) + 𝑥2𝑒2 ∘ 𝐷(𝑦1𝑒1) + 𝑥1𝑒1 ∘ 𝐷(𝑦2𝑒2)  + 𝑥2𝑒2 ∘ 𝐷(𝑦2𝑒2) 
= 𝐷(𝑥1𝑒1 + 𝑥2𝑒2) ∘ (𝑦1𝑒1 + 𝑦2𝑒2) + (𝑥1𝑒1 + 𝑥2𝑒2) ∘ 𝐷(𝑦1𝑒1 + 𝑦2𝑒2) 
= 𝐷(𝑥1, 𝑥2) ∘ (𝑦1, 𝑦2) + (𝑥1, 𝑥2) ∘  𝐷(𝑦1, 𝑦2) 
= 𝐷(𝐱) ∘ 𝐲 + 𝐱 ∘ 𝐷(𝒛) 

This finishes the proof. 

 

Theorem 3 Let 𝐴  be a two-dimensional b-bistochastic genetic algebra. Then the following 

statements holds: 

(i) If 𝑏 <
1

2
 and 𝑏 ≠

𝑎

2
 , then all derivatives are trivial. 

(ii) If 𝑏 =
𝑎

2
 for any 𝑎 ∈ [0,1), then the derivative has the following form: 

𝐷(𝐱) = 𝑥1𝑡(𝑒2 − 𝑒1) for any 𝑡 ∈ ℝ 

(iii) If 𝑏 =
1

2
 and 𝑎 = 1, then the derivative has the following form: 

𝐷(𝐱) = e1(𝑠𝑥2 − 𝑡𝑥1) + 𝑒2(𝑡𝑥1 − 𝑠𝑥2) for any 𝑠, 𝑡 ∈ ℝ 

 

Proof Let 𝐷 be a derivative for two-dimensional b-bistochastic genetic algebra. By Lemma 2, 𝐷 

is derivative if and only if 𝐷(𝑒𝑖 ∘ 𝑒𝑗) = 𝐷(𝑒𝑖) ∘ 𝑒𝑗 + 𝑒𝑖 ∘ 𝐷(𝑒𝑗) for all 𝑖, 𝑗 = 1,2 . Therefore, 

we obtain a system of equations as follow: 

𝑎𝑑11 + 2𝑏𝑑12 − (1 − 𝑎)𝑑21 = 0 (9) 

2(1 − 𝑎)𝑑11 + [2(1 − 𝑏) − 𝑎]𝑑12 − (1 − 𝑎)𝑑22 = 0 (10) 

(1 − 𝑏 − 𝑎)𝑑21 − 𝑏𝑑22 = 0 (11) 

(1 − 𝑏)𝑑11 + (1 − 𝑏)𝑑12 + (1 − 𝑎)𝑑21 = 0 (12) 

(2𝑏 − 1)𝑑21 = 0 (13) 

2(1 − 𝑏)𝑑21 + 𝑑22 = 0 (14) 

Recall from Theorem 1, where 𝑏 ≤
1

2
. So, we divide equation (13) into two cases: 

Case I: Let 𝑏 <
1

2
 , then 𝑑21 = 0. Substitute 𝑑21 = 0 into equation (14) implies 𝑑22 = 0. 

Then, substitute 𝑑21 = 0 and 𝑑22 = 0 into the system of equations above and get: 

𝑎𝑑11 + 2𝑏𝑑12 = 0 (15) 

(2 − 𝑎)(𝑑11 + 𝑑12) = 0 (16) 

(1 − 𝑏)(𝑑11 + 𝑑12) = 0 (17) 

Since 𝑎 ≠ 2, then 𝑑12 = −𝑑11 due to (16). So (15) will be (𝑎 − 2𝑏)𝑑11 = 0. Therefore, we 

divide (15) into two parts: 

i. Let 𝑏 ≠
𝑎

2
, then 𝑑11 = 𝑑12 = 𝑑21 = 𝑑22 = 0. The derivative 𝐷 is trivial, hence proves 

(i). 



Mohd Rosli and Embong (2021) Proc. Sci. Math. 4:72-80 

 

 

 
79 

ii. Let 𝑏 =
𝑎

2
 , then 𝑑11 become a free variable. Let 𝑑12 = 𝑡 ∈ ℝ. From previous, we have 

𝑑21 = 𝑑22 = 0 and 𝑑12 = 𝑑11. Therefore, from the definition of derivation 𝐷, 

𝐷(𝑒1) = 𝑑11𝑒1 + 𝑑12𝑒2 
= −𝑑12𝑒1 + 𝑑12𝑒2 
= −𝑡𝑒1 + 𝑡𝑒2 
= 𝑡(𝑒2 − 𝑒1) 

𝐷(𝑒2) = 𝑑21𝑒1 + 𝑑22𝑒2 = 0 

Then let a variable 𝐱 = (𝑥1𝑥2) = 𝑥1𝑒1 + 𝑥2𝑒2 be any variable. Hence,  

𝐷(𝐱) = 𝐷(𝑥1𝑒1 + 𝑥2𝑒2) 
= 𝑥1𝐷(𝑒1) + 𝑥2𝐷(𝑒2) 
= 𝑥1𝐷(𝑒1) 
= 𝑥1𝑡(𝑒2 − 𝑒1) 

This proves (ii). 

Case II: Let 𝑏 =
1

2
 . the system of equations will reduce to: 

𝑎𝑑11 + 𝑏𝑑12 − (1 − 𝑎)𝑑21 = 0 (18) 

(1 − 𝑎)(2𝑑11 + 𝑑12 − 𝑑22) = 0 (19) 
1

2
(𝑑21 − 𝑑22) − 𝑎𝑑21 = 0 (20) 

1

2
(𝑑11 + 𝑑12) + (1 − 𝑎)𝑑21 = 0 (21) 

𝑑21 + 𝑑22 = 0 (22) 

Due to equation (22), 𝑑21 = −𝑑22. The system of equations become: 

𝑎𝑑11 + 𝑏𝑑12 − (1 − 𝑎)𝑑21 = 0 (23) 

(1 − 𝑎)(2𝑑11 + 𝑑12 + 𝑑21) = 0 (24) 

(1 − 𝑎)𝑑21 = 0 (25) 
1

2
(𝑑11 + 𝑑12) + (1 − 𝑎)𝑑21 = 0 (26) 

Refer to equation (25), we can divide into 2 parts: 

i. Let 𝑎 ≠ 1 , thus 𝑑21 = 0 . From equation (22) one has 𝑑11 = −𝑑12 , together with 

equation (23) produce 𝑑11 = 𝑑12 = 0. Therefore, 𝑑11 = 𝑑12 = 𝑑22 = 0, the derivation 

𝐷 is trivial. 

ii. Let 𝑎 = 1. Due to (23), 𝑑11 = −𝑑12 . Let 𝑑12 = 𝑡 = −𝑑11  and 𝑑21 = 𝑠 = −𝑑22  such 

that  𝑡, 𝑠 ∈ ℝ. From the definition of derivation 𝐷, 

𝐷(𝑒1) = −𝑑12𝑒1 + 𝑑12𝑒2 = 𝑡(𝑒2 − 𝑒1) 
𝐷(𝑒2) = 𝑑21𝑒1 − 𝑑21𝑒2 = 𝑠(𝑒1 − 𝑒2) 

Then, 

𝐷(𝐱) = 𝐷(𝑥1𝑒1 + 𝑥2𝑒2) 
= 𝑥1𝐷(𝑒1) + 𝑥2𝐷(𝑒2) 
= 𝑥1𝑡(𝑒2 − 𝑒1) + 𝑥2𝑠(𝑒1 − 𝑒2) 
= 𝑒1(𝑥2𝑠 − 𝑥1𝑡) + 𝑒2(𝑥1𝑡 − 𝑥2𝑠) 

which proves (iii). Thus, this completes the proof. 

5 Conclusion  
 

This paper study the associativity and derivation of two-dimensional b-bistochastic genetic 

algebra. The condition for two-dimensional b-bistochastic genetic algebra to be associative are 
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determined. Furthermore, the trivial and non-trivial derivations of two-dimensional b-

bistochastic genetic algebra are also fully described. 
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