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Abstract The time-dependent squeezing flow of magnetohydrodynamic Jeffrey fluid 

between two horizontal parallel plates is investigated in this study. The upper plate is 

squeezed towards the lower permeable stretching plate. The fluid is electrically conducted 

in the presence of a variable magnetic field. The induced magnetic field is neglected for a 

small magnetic Reynolds number. The partial differential equations are reduced into 

ordinary differential equation (ODE) using dimensionless variables. The ODE is solved 

numerically using finite different scheme of Keller-box method. The effect of Deborah 

number, squeezing and magnetic parameter of the flow for suction and blowing cases on 

the velocity profiles are presented graphically and analysed. The velocity profiles increase 

initially with the increasing value of Deborah number for suction cases. An increase in the 

squeezing parameter enhances the velocity profiles for both suction and blowing cases. As 

the magnetic parameter increasing, the velocity profiles decrease for 0 ≤ 𝜂 ≤ 0.4 and it 

increases for 0.4 ≤ 𝜂 ≤ 1. 
 

Keywords Squeezing flow; Jeffrey fluid; Suction and blowing; Magnetic field; 

Keller-box method. 

 

1 Introduction 
 

The well-known area of magnetohydrodynamic (MHD) is the interaction of fluids with 

electromagnetic fields. The flow of fluid under the influence of an electromagnetic field, such as 

the fluid of the MHD between moving parallel plates contributes to a squeezing flow. According 

to Siddiqui et al. [1] the use of MHD fluid as a lubricant is of interest since it avoids unintended 

changes in lubricant viscosity with temperature under some severe operating conditions. MHD 

lubrication has been investigated both numerically and practically in an externally high pressure 

thrust bearing. The fluid under consideration is electrically conducting in many physical 

conditions, and even a mild magnetic or electromagnetic field presence can affect the flow 

behavior. Therefore, it was necessary to discuss the flow under the influence of the magnetic field 

to see how it affects the conduct of the flow. 
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 In many medical and industrial processes, the squeezing flow between parallel plates had 

been used to solve problems [1]. A better understanding of such flow models, explaining the 

squeezing flow between parallel walls, is often required to improve these equipment and machines. 

Some researchers made attempts to ensure the squeezing flow model become more 

understandable. Some of the application in industrial have different behaviour of conducting fluid 

when there exists the influence of magnetic fields. A porous medium always characterized by 

properties such as porosity and permeability. Porosity describes the volume of fluid that the 

material can bear, whereas permeability is the volume of fluid that can move through it [2]. 

  

 This study focuses about unsteady MHD squeezing flow of Jeffrey fluid between two 

parallel plates with stretching lower plate. The governing equations such as continuity, 

momentum and energy equations are included. After using a similarity transformation, the 

governing equations are reduced to a first order nonlinear ordinary differential equation. This 

problem is solved numerically using finite difference scheme of Keller-box method. Numerical 

solution is solved using MATLAB software. 

  

 

2 Literature Review 
 

2.1 Types of Fluid 

 

Any material that flows or deforms under applied shear stress is called as a fluid. Fluids contain 

liquids, gases and plasma, and form a subset of the states of matter. Both liquid and gases are fluid 

such as water, oil and air. Fluids can be classified based on their viscosity, conductivity, density 

and compressible or not.  

 

2.1.1   Properties of Newtonian Fluid 

 

Newtonian fluids are fluids that obey the Newton’s law of viscosity. Newtonian fluid is defined 

as a true fluid whose shear stress is directly proportional to the shear strain rate. According to 

Afifah [3] Newtonian fluid is a fluid that as forces act on the fluid, does not affect viscosity. For 

a Newtonian fluid, the viscosity depends entirely on the fluid's temperature and pressure. 

Newtonian fluids are incompressible. 

 Newtonian fluids are characterized as those materials that have a linear relationship in 

laminar flow between the shear stress imposed and the resulting shear rate [4]. At a fixed 

temperature, the viscosity of Newtonian fluid remains constant. The viscosity decreases as the 

temperature of the fluid increases. This kind of fluid's viscosity is inversely proportional to the 

increase in its temperature. 

 

2.1.2   Properties of Non-Newtonian Fluid 

 

Non-Newtonian fluids is a fluid that affects viscosity as forces act on the fluid [3].  Non-Newtonian 

fluid does not follow the Newton’s law of viscosity. Non-Newtonian fluids is a fluid in which 

shear stress is not directly proportional to the degree of shear strain. According to Kahshan et al. 

[5] the majority of industrial and biological fluids are non-Newtonian, and the Newton’s law of 

viscosity does not explain the dynamic rheological properties of non-Newtonian fluids. In order 

to research the non-Newtonian flow of fluids in porous-walled channels and tubes, relatively little 

work has been performed. 
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 The Jeffrey fluid model is one of many non-Newtonian fluid models that has attracted 

many researchers because of its consideration as a great physiological fluid model [5]. Since its 

constitutive equation can be reduced to that of the Newtonian model as a special case, the Jeffrey 

model is known as a generalization of the commonly used Newtonian fluid model. The Jeffrey 

fluid model is capable of describing the non-Newtonian fluids' stress relaxation property, which 

cannot be defined by the normal viscous fluid model. As the plate is squeezed, the fluid speed and 

wall shear tension intensify [6]. According to Kahshan et al. [5] the Jeffrey fluid model can well 

define the class of non-Newtonian fluids with the characteristic memory time scale, also known 

as the relaxation time. 

 Khan et al. [7] have considered of using Casson fluid. Unlike other simplistic models, it 

is able to capture complex rheological properties of a fluid. Casson fluid is other example of non-

Newtonian fluid. Casson fluid can be characterized as a shear thinning liquid that is assumed to 

have an infinite viscosity at zero shear rate, a yield stress below which no flow occurs, and a zero 

viscosity at an infinite shear rate [7].  

 

2.2 Unsteady MHD squeezing flow between two parallel plates 

 

The action of electrically conducting fluids in a magnetic field is described by MHD. In a flowing 

conductive fluid, a magnetic field causes currents. A current that passes through a conductive fluid 

will generate forces and influence the magnetic field on the fluid [2]. MHD effects can be 

represented by fluid dynamics equations from Navier-Stokes. The study of MHD in engineering 

and industrial fields is important. Through research on MHD, we can achieve the properties of 

fluid flow that can be used to reduce its negative impact on a material. In various geometry forms 

and fluid types, MHD has been widely studied.  

The MHD flow between two parallel plates is known as Hartaman flow. Hartaman and 

Lazarus, have been studied about the influence of magnetic field towards flowing fluid between 

two parallel infinite plates. According to [8] MHD is referred to as electrically conducting liquids, 

some of which contain liquid metals such as mercury, molten iron and ironized plasma gases. If 

an electrically conducting fluid is put in a continuous magnetic field, the fluid's motion causes 

current producing forces on the fluid [9]. MHD lubrication has been investigated both theoretically 

and experimentally in an externally pressurized thrust bearing by [10]. 

The 2-dimensional movement of an MHD fluid between parallel plates that travel 

symmetrically along the axial symmetry line is considered, giving rise to the squeezing flow [1]. 

The primary interest is in the effects of rotation and magnetic force on squeezing. The effects of 

squeezing and magnetic force on rotation will also be taken into consideration. In the meantime, 

speaking of fluid flow across a parallel plate involving a gripping force that exists around it, this 

event was known by the recognition of flow separation and an unstable flow occurs [11]. 

 

 

3     Problem Formulation  
 

Consider the unsteady two-dimensional flow of an incompressible Jeffrey fluid separated by a 

distance between the two parallel walls at 𝑦 = ℎ(𝑡) = √𝑣(1 − 𝛾𝑡)/𝑎. The upper plate at 𝑦 =

ℎ(𝑡) = √𝑣(1 − 𝛾𝑡)/𝑎   moving with velocity 𝑣𝑤(𝑡) = −
𝛾

2
√𝑣 𝑎(1 − 𝛾𝑡)⁄   towards the lower 

porous plate at 𝑦 = 0. The lower plate is stretching with velocity 𝑢𝑤(𝑡) = 𝑎𝑥 (1 − 𝛾𝑡)⁄  where 𝑎 

is constant and 𝛾(> 0)  represents the nonlinearly stretching sheet parameter. An electrically 

conducting fluid is applied with the magnetic field 𝑀 = 𝐵0 (1 − 𝛾𝑡)⁄  applied in the y-direction. 

The induced magnetic field is not considered for a small magnetic Reynolds number. Hence, 
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Figure 1: Schematic Diagram of the flow. 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (1) 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣
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𝜕𝑦
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𝜕𝑝∗
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−
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2
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𝜕𝑥2
+

𝜕2𝑢
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1 + 𝜆1
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𝜕𝑡𝜕𝑥2
+

𝜕3𝑢

𝜕𝑡𝜕𝑦2
+ 𝑢 (

𝜕3𝑢

𝜕𝑥3
+

𝜕3𝑢

𝜕𝑥𝜕𝑦2) 
 

                                               +𝑣 (
𝜕3𝑢

𝜕𝑦3
+
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+
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𝜕𝑢

𝜕𝑥
(2

𝜕2𝑢

𝜕𝑥2
−

𝜕2𝑢
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𝜕𝑣

𝜕𝑥

𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕𝑣

𝜕𝑦

𝜕2𝑣

𝜕𝑥𝜕𝑦
], (2) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝∗

𝜕𝑦
+

𝜇

1 + 𝜆1
[
𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑥2
] 

 

                                               +
𝜇𝜆2

1 + 𝜆1
[

𝜕3𝑣

𝜕𝑡𝜕𝑥2
+

𝜕3𝑣

𝜕𝑡𝜕𝑦2
+ 𝑢 (

𝜕3𝑣

𝜕𝑥3
+

𝜕3𝑣

𝜕𝑥𝜕𝑦2) 
 

                                               +𝑣 (
𝜕3𝑣

𝜕𝑦3
+

𝜕3𝑣

𝜕𝑥2𝜕𝑦
) +

𝜕𝑢

𝜕𝑥
(

𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕2𝑣

𝜕𝑥2) 
 

                                               +
𝜕𝑣

𝜕𝑥
(

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2) + 2
𝜕𝑣

𝜕𝑦

𝜕2𝑣

𝜕𝑦2
], (3) 

where u and v are the velocities in x and y direction respectively, 𝑝∗ is the pressure, 𝜌 is the fluid 

density, 𝜎  the electrical conductivity,  𝜇  the dynamic viscosity, 𝜆1  the ratio of relaxation to 

retardation times and 𝜆2 the retardation time. 

The boundary conditions are prescribed in the following forms 
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𝑢 = 𝑈0 =
𝑎𝑥

1 − 𝛾𝑡
 , 𝑣 = −

𝑉0

1 − 𝛾𝑡
 , at 𝑦 = 0,  

𝑢 =  0 , 𝑣 = 𝑉ℎ = −
𝛾

2
√

𝑣

𝑎(1 − 𝛾𝑡)
 , at 𝑦 = ℎ(𝑡).   (4) 

Here 𝑈0 = 𝑎𝑥 1 − 𝛾𝑡⁄  at 𝑦 = 0 denotes the velocity of stretching lower plate with the stretching 

rate 𝑎, 𝑉0 > 0 indicates the suction and 𝑉0 < 0 for the injection velocity. 

The similarity transformation adopted from Muhammad et al, (2017) are given as follows 

Substituting the dimensionless variables from Eq. (5) into Eqs. (1) to (3), the following 

dimensionless momentum equation is obtained 

𝐹𝐼𝑉 + (1 + 𝜆1) [𝐹𝐹′′′ − 𝐹′𝐹′′ −
𝑆𝑞

2
(𝜂𝐹′′′ + 3𝐹′′)]  

+𝛽 [2𝐹′′𝐹′′′ − 𝐹′𝐹𝐼𝑉 − 𝐹𝐹𝑉 +
𝑆𝑞

2
(𝜂𝐹𝑉 + 5𝐹𝐼𝑉)] − 𝑀2(1 + 𝜆1)𝐹′′ = 0. (6) 

The corresponding boundary conditions are 

𝐹(0) = 𝑆, 𝐹′(0) = 1, 𝐹(1) =
𝑆𝑞

2
,  𝐹′(1) = 0,           (7) 

where 𝑆𝑞  is the squeezing parameter, 𝑆  is the suction/blowing parameter, 𝛽  is the Deborah 

number and 𝑀 is the magnetic parameter. The physical parameters involved in the dimensionless 

equations is defined as 

𝑆𝑞 =
𝛾

𝑎
, 𝛽 =

𝑎𝜆2

1 − 𝛾𝑡
, 𝑀2 =

𝜎𝐵0
2

𝜌𝑎
, 𝑆 =

𝑉0

𝑎ℎ
.     (8) 

 

 

4          Keller-box Procedure 

 

The problem is solved by using Keller-box method. The ODEs are first converted into a system 

of first-order equations. By letting new dependent variables 𝑓(𝜂), 𝑔(𝜂), 𝑢(𝜂), 𝑣(𝜂) and 𝑤(𝜂), the 

transformed equation can be written as 

𝐹 = 𝑓,  𝐹′ = 𝑔,  𝐹′′ = 𝑢,  𝐹′′′ = 𝑣,  𝐹𝐼𝑉 = 𝑤.      (9) 

By substitute Eq. (9) into Eq. (6), the ODEs become 

𝑤 + (1 + 𝜆1) [𝑓𝑣 − 𝑔𝑢 −
𝑆𝑞

2
(𝜂𝑣 + 3𝑢)]  

+𝛽 [2𝑢𝑣 − 𝑔𝑤 − 𝑓𝑤′ +
𝑆𝑞

2
(5𝑤 + 𝜂𝑤′)] − 𝑀2(1 + 𝜆1)𝑢 = 0,   (10) 

with a new form of boundary conditions; 

𝑢 = 𝑈0𝐹′(𝜂) , 𝑣 = −√
𝑎𝜈

1 − 𝛾𝑡
 𝐹(𝜂), 𝜂 =

𝑦

ℎ(𝑡)
,  

𝑈0 =
𝑎𝑥

1 − 𝛾𝑡
 , ℎ(𝑡) = √𝜈(1 − 𝛾𝑡)/𝑎   (5)  



Norkamaruddin and Admon (2021) Proc. Sci. Math. 4:92-103 

 

 

 
97 

𝑓(0) = 𝑆, 𝑔(0) = 1, 𝑤(0) = 0,  𝑓(1) =
𝑆𝑞

2
, 𝑔(1) = 0.          (11) 

Then, the ODEs system is approximated by a finite difference method which is the central 

difference scheme. Therefore, equation (9) and (10) becomes, 
1

ℎ𝑗
(𝑓𝑗

𝑖 − 𝑓𝑗−1
𝑖 ) =

1

2
(𝑔𝑗

𝑖 + 𝑔𝑗−1
𝑖 ), (12) 

1

ℎ𝑗
(𝑔𝑗

𝑖 − 𝑔𝑗−1
𝑖 ) =

1

2
(𝑢𝑗

𝑖 + 𝑢𝑗−1
𝑖 ), (13) 

1

ℎ𝑗
(𝑢𝑗

𝑖 − 𝑢𝑗−1
𝑖 ) =

1

2
(𝑣𝑗

𝑖 + 𝑣𝑗−1
𝑖 ), (14) 

1

ℎ𝑗
(𝑣𝑗

𝑖 − 𝑣𝑗−1
𝑖 ) =

1

2
(𝑤𝑗

𝑖 + 𝑤𝑗−1
𝑖 ), (15) 

1

2
(𝑤𝑗

𝑖 + 𝑤𝑗−1
𝑖 ) + (1 + 𝜆1) [

1

4
(𝑓𝑗

𝑖 + 𝑓𝑗−1
𝑖 )(𝑣𝑗

𝑖 + 𝑣𝑗−1
𝑖 )  

−
1

4
(𝑔𝑗

𝑖 + 𝑔𝑗−1
𝑖 )(𝑢𝑗

𝑖 + 𝑢𝑗−1
𝑖 ) −

𝑆𝑞

2
(

1

4
(𝜂𝑗

𝑖 + 𝜂𝑗−1
𝑖 )(𝑣𝑗

𝑖 + 𝑣𝑗−1
𝑖 )  

+
3

2
(𝑢𝑗

𝑖 + 𝑢𝑗−1
𝑖 ))] + 𝛽 [

1

4
(𝑔𝑗

𝑖 + 𝑔𝑗−1
𝑖 )(𝑤𝑗

𝑖 + 𝑤𝑗−1
𝑖 )  

−
1

2ℎ𝑗
(𝑓𝑗

𝑖 + 𝑓𝑗−1
𝑖 )(𝑤𝑗

𝑖 − 𝑤𝑗−1
𝑖 ) +

𝑆𝑞

2
(

5

2
(𝑤𝑗

𝑖 + 𝑤𝑗−1
𝑖 )  

+
1

2ℎ𝑗
(𝜂𝑗

𝑖 + 𝜂𝑗−1
𝑖 )(𝑤𝑗

𝑖 − 𝑤𝑗−1
𝑖 ))] −

𝑀2

2
(1 + 𝜆1)(𝑢𝑗

𝑖 + 𝑢𝑗−1
𝑖 ) = 0. (16) 

The nonlinear system is linearized using Newton’s method. Substituting into the nonlinear 

algebraic system equations (12) to (16) and neglecting higher order of 𝛿 yields  

𝛿𝑓𝑗 − 𝛿𝑓𝑗−1 −
ℎ𝑗

2
(𝛿𝑔𝑗 + 𝛿𝑔𝑗−1) = (𝑟1)

𝑗−
1
2

, (17) 

𝛿𝑔𝑗 − 𝛿𝑔𝑗−1 −
ℎ𝑗

2
(𝛿𝑢𝑗 + 𝛿𝑢𝑗−1) = (𝑟2)

𝑗−
1
2

, (18) 

𝛿𝑢𝑗 − 𝛿𝑢𝑗−1 −
ℎ𝑗

2
(𝛿𝑣𝑗 + 𝛿𝑣𝑗−1) = (𝑟3)

𝑗−
1
2

, (19) 

𝛿𝑣𝑗 − 𝛿𝑣𝑗−1 −
ℎ𝑗

2
(𝛿𝑤𝑗 + 𝛿𝑤𝑗−1) = (𝑟4)

𝑗−
1
2

, (20) 

(𝑎1)𝛿𝑤𝑗 + (𝑎2)𝛿𝑤𝑗−1 + (𝑎3)𝛿𝑣𝑗 + (𝑎4)𝛿𝑣𝑗−1 + (𝑎5)𝛿𝑢𝑗 + (𝑎6)𝛿𝑢𝑗−1  

+(𝑎7)𝛿𝑔𝑗 + (𝑎8)𝛿𝑔𝑗−1 + (𝑎9)𝛿𝑓𝑗 + (𝑎10)𝛿𝑓𝑗−1 = (𝑟5)
𝑗−

1
2

, (21) 

where 

𝑎1 = ℎ𝑗 + 𝛽 [
ℎ𝑗

2
𝑔

𝑗−
1
2

−
1

2
𝑓

𝑗−
1
2

+
𝑆𝑞

2
(

5ℎ𝑗

2
+

1

2
𝜂

𝑗−
1
2

)],  
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𝑎2 = ℎ𝑗 + 𝛽 [
ℎ𝑗

2
𝑔

𝑗−
1
2

+
1

2
𝑓

𝑗−
1
2

+
𝑆𝑞

2
(

5ℎ𝑗

2
−

1

2
𝜂

𝑗−
1
2

)],  

𝑎3 = ℎ𝑗(1 + 𝜆1) [
1

2
𝑓

𝑗−
1
2

−
𝑆𝑞

2
(

1

2
𝜂

𝑗−
1
2

)] + 𝛽 [ℎ𝑗𝑣
𝑗−

1
2

],  

𝑎4 = 𝑎3,  

𝑎5 = ℎ𝑗(1 + 𝜆1) [−
1

2
𝑔

𝑗−
1
2

−
3𝑆𝑞

4
] −

ℎ𝑗𝑀2

2
(1 + 𝜆1) + 𝛽 [ℎ𝑗𝑤

𝑗−
1
2

],  

𝑎6 = 𝑎5,  

𝑎7 = ℎ𝑗(1 + 𝜆1) [−
1

2
𝑢

𝑗−
1
2

] + 𝛽 [
ℎ𝑗

2
𝑤

𝑗−
1
2

],  

𝑎8 = 𝑎7,  

𝑎9 = ℎ𝑗(1 + 𝜆1) [
1

2
𝑣

𝑗−
1
2

] − 𝛽 [
𝑤𝑗 − 𝑤𝑗−1

2
],  

𝑎10 = 𝑎9 (22) 

and 

(𝑟1)
𝑗−

1
2

= 𝑓𝑗−1 − 𝑓𝑗 + ℎ𝑗𝑔
𝑗−

1
2

,  

(𝑟2)
𝑗−

1
2

= 𝑔𝑗−1 − 𝑔𝑗 + ℎ𝑗𝑢
𝑗−

1
2

,  

(𝑟3)
𝑗−

1
2

= 𝑢𝑗−1 − 𝑢𝑗 + ℎ𝑗𝑣
𝑗−

1
2

,  

(𝑟4)
𝑗−

1
2

= 𝑣𝑗−1 − 𝑣𝑗 + ℎ𝑗𝑤
𝑗−

1
2

,  

(𝑟5)
𝑗−

1
2

= −ℎ𝑗(𝑤𝑗 + 𝑤𝑗−1) − ℎ𝑗(1 + 𝜆1) [𝑓
𝑗−

1
2

⋅ 𝑣
𝑗−

1
2
  

                   −𝑔
𝑗−

1
2

⋅ 𝑢
𝑗−

1
2

−
𝑆𝑞

2
(𝜂

𝑗−
1
2

⋅ 𝑣
𝑗−

1
2

+ 3𝑢
𝑗−

1
2

)]  

                   −𝛽 [ℎ𝑗𝑔
𝑗−

1
2

⋅ 𝑤
𝑗−

1
2

− 𝑓
𝑗−

1
2

⋅ (𝑤𝑗 − 𝑤𝑗−1) +
𝑆𝑞

2
(5𝑤

𝑗−
1
2
  

                   +𝜂
𝑗−

1
2

(𝑤𝑗 − 𝑤𝑗−1)) − 2ℎ𝑗𝑣
𝑗−

1
2

⋅ 𝑤
𝑗−

1
2

] +
ℎ𝑗𝑀2

2
(1 + 𝜆1)𝑢

𝑗−
1
2

. (23) 

The linear system (17) to (21) is solved using the block-elimination method, forward and 

backward sweeps. 

 

 

5  Results and Discussion 
 

The governing equations (1) to (3) together with boundary conditions (4) are solved numerically 

using Keller-box method. Here the influence of embedding parameters to see the influence on the 
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velocity profile, 𝑓′(𝜂) for suction and blowing cases are discussed. Computations are carried out 

for various values of 𝑆(−0.5 ≤ 𝑆 ≤ 0.5), 𝑆𝑞(0.0 ≤ 𝑆 ≤ 1.5), 𝛽(0.0 ≤ 𝑆 ≤ 0.6), 𝜆1(0.0 ≤ 𝑆 ≤

3.0) and 𝑀(0.0 ≤ 𝑆 ≤ 3.0). 

 
Figure 2: Impact of 𝑆𝑞 on 𝑓′(𝜂) for suction case with 𝑆 = 0.5, 𝑀 = 1.0, 𝛽 = 0.1 and 𝜆1 = 0.5. 

 

 Figures 2 illustrates the graph of the impact of squeezing parameter, 𝑆𝑞 on the velocity 

profile, 𝑓′(𝜂) for suction cases. The other parameters such as 𝑆, 𝛽, 𝜆1 and 𝑀 are keep constant. It 

can be seen that the velocity profile, 𝑓′(𝜂) decreases near the porous wall where the suction effect 

is dominant. Pressure is generated because of the squeezing at the upper wall towards a stretching 

porous wall. The pressure enhances the flow and causes the velocity profile, 𝑓′(𝜂) near the upper 

wall increases to satisfy the mass conservation constrain.  

 
Figure 3: Impact of 𝑆𝑞 on 𝑓′(𝜂) for blowing case with 𝑆 =  0.5, 𝑀 = 1.0, 𝛽 = 0.1 and 𝜆1 = 0.5. 

 

 Figure 3 showed that blowing from the lower wall cause a retarding force which decrease 

the fluid velocity. However, the fluid velocity increases in the upper half of the channel due to the 

squeezing effects are dominant in the upper half of the channel. 

 



Norkamaruddin and Admon (2021) Proc. Sci. Math. 4:92-103 

 

 

 
100 

 

Figure 4: Impact of 𝛽 on 𝑓′(𝜂) for suction case with 𝑆 =  0.5, 𝑆𝑞 = 𝑀 = 1.0, and 𝜆1 = 0.5. 

 

 
Figure 5: Impact of 𝛽 on 𝑓′(𝜂) for blowing case with 𝑆 =  0.5, 𝑆𝑞 = 𝑀 = 1.0, and 𝜆1 = 0.5. 

  

 From Figures 4, the velocity profile, 𝑓′(𝜂) increases initially with the increasing value of 

Deborah number, 𝛽. However, there is a decrease of the velocity profile, 𝑓′(𝜂) for 𝜂 ≥ 0.35. As 

expected, the magnitude of the velocity field is increasing function of 𝛽. Figure 5 showed the 

opposite results in the blowing situation. 

 

 
Figure 6: Impact of 𝜆1 on 𝑓′(𝜂) for suction case with 𝑆 =  0.5, 𝑆𝑞 = 𝑀 = 1.0, and 𝛽 = 0.1. 
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Figure 7: Impact of 𝜆1 on 𝑓′(𝜂) for blowing case with 𝑆 =  0.5, 𝑆𝑞 = 𝑀 = 1.0, and 𝛽 = 0.1. 

 

 Figure 6 presented the effect of 𝜆1 on the velocity profile, 𝑓′(𝜂) for suction case. It is 

found that the increase of 𝜆1, the velocity profile, 𝑓′(𝜂) decreases for 0 ≤ 𝜂 ≤ 0.4 and increases 

for 0.4 ≤ 𝜂 ≤ 1. Figure 7 showed the result for blowing case. From the graph it is seen an opposite 

behavior compared to the suction case. 

 

 

Figure 8: Impact of 𝑀 on 𝑓′(𝜂) for suction case with 𝑆 =  0.5, 𝑆𝑞 = 1.0, 𝜆1 = 0.5, and 𝛽 = 0.1. 

 

 

Figure 9: Impact of 𝑀 on 𝑓′(𝜂) for blowing case with 𝑆 =  0.5, 𝑆𝑞 = 1.0, 𝜆1 = 0.5, and 𝛽 = 0.1. 
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  The influence of magnetic parameter, M on the velocity profile, 𝑓′(𝜂) for suction case is 

shown in Figure 8. It is observed that when M increases the velocity profile, 𝑓′(𝜂) decreases for 

0 ≤ 𝜂 ≤ 0.4 and it increases for 0.4 ≤ 𝜂 ≤ 1. Figure 9 showed the opposite result for the blowing 

case. When the magnetic parameter, M increases, the velocity is decrease so does the velocity 

gradient since the same mass flow rate is imposed in order to satisfy the mass conservation 

constraint. 

 

6 Conclusion 
 

The problem of MHD unsteady squeezing flow of Jeffrey fluid over a porous stretching wall is 

examined. We have to pursue to determine how the Deborah number, 𝛽, squeezing parameter, 𝑆𝑞 , 

and magnetic parameter, 𝑀 affect the velocity profile, 𝑓′(𝜂). Solutions of the governing equation 

are obtained numerically using the Keller-box method. This study summarizes the following 

conclusion: 

• An increase in the squeezing parameter, 𝑆𝑞 enhances the velocity profile, 𝑓′(𝜂) for both 

suction and blowing cases. 

• Influence of 𝜆1  and 𝑀  on the velocity profile, 𝑓′(𝜂) are both similar for suction and 

blowing cases. The velocity profile, 𝑓′(𝜂) in suction is lower than blowing. 

• The impact of Deborah number, 𝛽 is opposite to 𝜆1 and 𝑀. 
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