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Abstract This study focuses on the second-order neutral delay differential equation with 

the addition of periodic solution. The objectives of this study are to find the solution 𝑥(𝑡), 
of the equation for 𝑛-periodic solution where 𝑛 is any integer, and the existing conditions 

for the solution to exist. The method adopted in this research is by simple calculation based 

on its periodic solution, and by using computer programming to find the solution. The 

results show that the problem is solvable and has many solutions. The general formula for 

𝑛-periodic solution obtained with some existing conditions. 
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1 Introduction 
 

Delay differential equation is a branch of differential equation and it is widely used in many sectors 

of science such as biological science on population dynamics and epidemiology, and model for 

infectious diseases [1]. There are various ways on solving this type of equation such as by the 

embedded singly diagonally implicit Runge-Kutta (SDIRK) method, and the two- and three-point 

one-step block methods [2,3]. According to Thompson [1], delay differential equations is the 

derivative of a function which is unknown at a certain time given in term the values of the function 

at preceding times, and its general form is  

 𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏1),… , 𝑦(𝑡 − 𝜏𝑘)), (1) 

where 𝜏𝑖 = 𝜏𝑖(𝑡, 𝑦(𝑡)) are time delays. There are two types of delay differential equation which 

are retarded and neutral. 

In this paper, it focuses on the problem which involving a second-order neutral delay 

differential equation with the addition of the periodic solutions. Hence, the general form of second-

order neutral delay differential equation is 

 𝑥′′(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡)), (2) 

where 𝑥′′(𝑡) is the second derivative and 𝑓 is the function with delay time. The periodic solution 

of an equation is a solution that repeats the process in a similar form. The periodic solution 𝑥(𝑡) 
is a solution that depends on variable t periodically,  
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 𝑥(𝑡 + 𝑇) = 𝑥(𝑡),  (3) 
where variable t is an independent variable in real number, and 𝑇 ≠ 0 is the periods [4].  

In the previous studies, there are many researches on second-order delay differential 

equation with various methods. According to Chen, Tang and Sun [5], they proved the existence 

of multiple delays of periodic solutions for second-order delay differential equation by applying 

the critical point theory and 𝑆1 index theory with the method by Kaplan and Yorke [6]. Muminov 

and Murid [7] showed another way to solve this type of equation with different equation by simple 

calculation of algebra and application of some properties in linear algebra. The authors showed 

the existing conditions when solving the equation on each case of the periodic solution.    

This research aims to find the solution for the specific equation which in the form of 

second-order neutral delay differential equation with addition of 𝑛-periodic solutions. In order to 

find the solution, there are several conditions applied to the problem equation as it is a need to 

ensure the existence of the solution.  

 

 

2 Problem Statement  
 

The problem in this study is to identify the existence conditions and solutions of second order 

neutral delay differential equation with periodic solutions. In this paper, the problem equation is 

 𝑥′′(𝑡) + 𝑝𝑥′′ (𝑡 −
1

2
) = 𝑓(𝑡), (4) 

where p is a nonzero real number, and 𝑓(𝑡) is continuous function with delay time on real number. 

This study involves 1-periodic, 2-periodic, 3-periodic, 4-periodic and 𝑛-periodic solutions.  

 

 

3     Methodology 
 

In this section, there are several steps to obtain the solution 𝑥(𝑡). First, list all the possible forms 

of the periodic function. The definition of periodic function is used in the form of  

 𝑥′′(𝑡) = 𝑥′′(𝑡 + 𝑘), (5) 
where 𝑘 a positive integer [4]. Second, substitute the periodic function from previous step into 

equation (4) to form a system of equation, and determine the solvability of the system of equation 

by finding its determinant which is not equal to 0. Third, form an equation 𝑥′′(𝑡) by using simple 

algebraic calculation to the system of equation and solve the system to obtain the solution 𝑥(𝑡). 
Next, find all the unknown variables in the solution and obtain the solution 𝑥(𝑡). Lastly, repeat 

the steps to 1-periodic to 4-periodic solutions and find the general formula for 𝑛-periodic solution 

for equation (4) with its existence conditions.   

 

 

4          Results and Discussion 

 
In this section, we solve the equation (4) by adapting the similar method used in [7] and find its 

existence conditions. 

 
4.1          1-periodic solution (𝒌 = 𝟏)    

 

From equation (4), we consider the periodicity by applying definition of periodic solution which 

equivalent to 1-periodic solution, 𝑥′′(𝑡) = 𝑥′′(𝑡 + 1). 
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Substituting 𝑡 with (𝑡 +
1

2
) into equation (4), gives 

                                        𝑥′′ (𝑡 +
1

2
) + 𝑝𝑥′′(𝑡) = 𝑓 (𝑡 +

1

2
),                                                    (6) 

where this equation (6) is the equivalent to equation (4). Since 𝑥′′ (𝑡 +
1

2
) = 𝑥′′ (𝑡 −

1

2
), the 

equation becomes  

                                         𝑥′′ (𝑡 −
1

2
) + 𝑝𝑥′′(𝑡) = 𝑓 (𝑡 +

1

2
).                                                   (7) 

Then, we obtain the system of linear equation as the following, 

                            

𝑥′′(𝑡) + 𝑝𝑥′′ (𝑡 −
1

2
) = 𝑓(𝑡)

 

             𝑥′′ (𝑡 −
1

2
) + 𝑝𝑥′′(𝑡) = 𝑓 (𝑡 +

1

2
)     

}
 
 

 
 

.                                           (8) 

By assuming the right sides of the system of equation (8) is known, we consider the system with 

respect to 𝑥′′ (𝑡 −
1

2
) , 𝑥′′(𝑡). It also can be written in matrix form, 

                                         [
𝑝 1
1 𝑝

] [
𝑥′′ (𝑡 −

1

2
)

𝑥′′(𝑡)
] = [

𝑓(𝑡)

𝑓 (𝑡 +
1

2
)  
].                                               (9) 

Then, the solvability of the system of equations (9) is 

 |
𝑝 1
1 𝑝

| = 𝑝2 − 1 ≠ 0. (10) 

Since the determinant of the system of equations is not equal to zero, then the solution 𝑥(𝑡) is 

solvable. Now, we solve the system of linear equations (8) and we obtain 

                                          𝑥′′(𝑡) =
1

1 − 𝑝2
[−𝑝𝑓 (𝑡 +

1

2
) + 𝑓(𝑡)].                                       (11) 

Next, we integrate the equation (10) twice, 

               ∫ ∫ 𝑥′′(𝑠) 
𝑡1

0

𝑡

0

𝑑𝑠𝑑𝑡1 = ∫ ∫
1

1 − 𝑝2
[−𝑝𝑓 (𝑠 +

1

2
) + 𝑓(𝑠)]

𝑡1

0

𝑡

0

𝑑𝑠𝑑𝑡1,               (12) 

where 𝑡 < 1, and obtain the solution of 𝑥(𝑡) as 

 𝑥(𝑡) = 𝑥(0) + 𝑥′(0)𝑡 + 𝐹1(𝑡), (13) 
where 

 𝐹1(𝑡) =
1

1 − 𝑝2
∫ ∫ [−𝑝𝑓 (𝑠 +

1

2
) + 𝑓(𝑠)]

𝑡1

0

𝑡

0

𝑑𝑠𝑑𝑡1                                     

                           =
1

1 − 𝑝2
∫ ∫ 𝑓(𝑠) +∑ (−1)𝑘𝑝2−𝑘𝑓 (𝑠 +

𝑘

2
)

1

𝑘=1

𝑡1

0

𝑡

0

𝑑𝑠𝑑𝑡1.                 (14) 

The equation in (13) and (14) are the general solution of equation (4) for 1-periodic solution. From 

solution (13), we have two unknown variables which are 𝑥(0) and 𝑥′(0). Hence, we need to find 

the values for 𝑥(0) and 𝑥′(0) as it is essential to ensure the equation (4) has solution, and find its 

existing conditions. We find the values of 𝑥(0) and 𝑥′(0) by using solution (13) and (14),  

 
                 𝑥(1) = 𝑥(0) + 𝑥′(0) + 𝐹1(1) 

  𝑥′(1)  = 𝑥′(0) + 𝐹1′(1)
 } .            (15) 

We know that 𝑥(0) = 𝑥(1) and 𝑥′(0) = 𝑥′(1) since the solution is continuous and periodic, then 

we obtain 

                                                              
𝑥′(0) = −𝐹1(1)  

   0 = 𝐹1′(1)
 } .                                                       (16) 

It also can be written in matrix form, 
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                                                 [
0 1
0 0

] [
𝑥(0)

𝑥′(0)
] = [

−𝐹1(1)

𝐹1′(1)
] .                                                    (17) 

From equation (17), the right side of the equation, we already assumed as known variables while 

the left side of the equation contains the unknown variables 𝑥(0) and 𝑥′(0). In order to verify the 

values for 𝑥(0) and 𝑥′(0), we find determinant of the system of equation (𝑥(0), 𝑥′(0)) from (17), 

and we obtain 

 𝐷1 = |
0 1
0 0

| = 0,  (18) 

which means that the system can have many solutions or no solution. In our case, since 𝐹1
′(1) =

0, then the value of 𝑥(0) can be any real number while 𝑥′(0) is a unique value. From the equation 

(17), we know the existing condition for the solution 𝑥(𝑡) as in the following theorem. 

 

Theorem 1 The equation (4) has 1-periodic solution if and only if 𝐹1
′(1) = 0. Otherwise, the 

equation (4) has no solution. In this case, the equation (4) has infinitely many solutions of the 

form 𝑥(𝑡) = 𝑥(0) + 𝑥′(0)𝑡 + 𝐹1(1) where 𝑥(0) is any real number and 𝑥′(0) = −𝐹1(1). 
 

4.2          2-periodic solution (𝒌 = 𝟐) 
 

From equation (4), we consider the periodicity by applying definition of periodic solution which 

equivalent to 2-periodic solution, 𝑥′′(𝑡) = 𝑥′′(𝑡 + 2). Then, we obtain the system of linear 

equation as the following, 

                           

𝑥′′(𝑡) + 𝑝𝑥′′ (𝑡 −
1

2
) = 𝑓(𝑡)

 

         𝑥′′ (𝑡 +
1

2
) + 𝑝𝑥′′(𝑡) = 𝑓 (𝑡 +

1

2
)

𝑥′′(𝑡 + 1) + 𝑝𝑥′′ (𝑡 +
1

2
) = 𝑓(𝑡 + 1)

        𝑥′′ (𝑡 −
1

2
) + 𝑝𝑥′′(𝑡 + 1) = 𝑓 (𝑡 +

3

2
)     }

 
 
 
 

 
 
 
 

 .                                      (19) 

By assuming the right sides of the system of equation (19) is known, we consider the system with 

respect to 𝑥′′ (𝑡 −
1

2
) , 𝑥′′(𝑡), 𝑥′′ (𝑡 +

1

2
) , 𝑥′′(𝑡 + 1). Then, the solvability condition of the system 

of equations (19) is 

 |

𝑝 1 0 0
0 𝑝 1 0
0 0 𝑝 1
1 0 0 𝑝

| = 𝑝4 − 1 ≠ 0. (20)    

Since the determinant of the system of equations is not equal to zero, then the we can obtain the 

solution 𝑥(𝑡) as the system is solvable. Now, we solve the system of equations (19) and we obtain 

            𝑥′′(𝑡) =
1

1 − 𝑝4
[−𝑝3𝑓 (𝑡 +

1

2
) + 𝑝2𝑓(𝑡 + 1) − 𝑝𝑓 (𝑡 +

3

2
) + 𝑓(𝑡)].               (21) 

Next, we integrate the equation (21) twice and obtain 

 𝑥(𝑡) = 𝑥(0) + 𝑥′(0)𝑡 + 𝐹2(𝑡),   (22) 
where 

    𝐹2(𝑡) =
1

1 − 𝑝4
∫ ∫ [−𝑝3𝑓 (𝑠 +

1

2
) + 𝑝2𝑓(𝑠 + 1) − 𝑝𝑓 (𝑠 +

3

2
) + 𝑓(𝑠)]

𝑡1

0

𝑡

0

𝑑𝑠𝑑𝑡1 

                =
1

1 − 𝑝4
 ∫ ∫ 𝑓(𝑠) +∑ (−1)𝑘𝑝4−𝑘𝑓 (𝑠 +

𝑘

2
)

3

𝑘=1

𝑡1

0

𝑡

0

𝑑𝑠𝑑𝑡1.                                  (23) 
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The equation in (22) and (23) are the general solution for equation (4) for 2-periodic solution. 

From solution (22), we have two unknown variables which are 𝑥(0) and 𝑥′(0). Hence, we find 

the values of 𝑥(0) and 𝑥′(0) by using solution (22) and (23), 

 
                 𝑥(2) = 𝑥(0) + 2𝑥′(0) + 𝐹2(2)  

𝑥′(2)  = 𝑥′(0) + 𝐹2′(2)
 }. (24) 

We know that 𝑥(0) = 𝑥(2) and 𝑥′(0) = 𝑥′(2), since the solution is continuous and periodic, then 

we obtain 

                                                                   
2𝑥′(0) = −𝐹2(2)  

   0 = 𝐹2′(2)
 }.                                                (25) 

From equation (25), the right side of the equation, we already assumed as known variables while 

the left side of the equation is the unknown variables 𝑥(0) and 𝑥′(0). In order to verify the values 

for 𝑥(0) and 𝑥′(0), we find determinant of the system of equation (𝑥(0), 𝑥′(0)) from (25), and 

we obtain 

 𝐷2 = |
0 2
0 0

| = 0, (26) 

which means that the system can have many solutions or no solution. In our case, since 𝐹2
′(2) =

0, then the value of 𝑥(0) can be any real number while 𝑥′(0) is a unique value. From equation 

(25), we know the existing condition of the solution (22) and (23), as in the following theorem. 

 

Theorem 2 The equation (4) has 2-periodic solution if and only if 𝐹2
′(2) = 0. Otherwise, the 

equation (4) has no solution. In this case, the equation (4) has infinitely many solutions of the 

form (22), where 𝑥(0) is any real number while 𝑥′(0) = −
1

2
𝐹2(2).   

 

4.3          3-periodic solution (𝒌 = 𝟑) 
 

From equation (4), we consider the periodicity by applying definition of periodic solution which 

equivalent to 3-periodic solution, 𝑥′′(𝑡) = 𝑥′′(𝑡 + 3). Then, we obtain the system of linear 

equation as the following, 

                                    

𝑥′′(𝑡) + 𝑝𝑥′′ (𝑡 −
1

2
) = 𝑓(𝑡)

 

        𝑥′′ (𝑡 +
1

2
) + 𝑝𝑥′′(𝑡) = 𝑓 (𝑡 +

1

2
)

𝑥′′(𝑡 + 1) + 𝑝𝑥′′ (𝑡 +
1

2
) = 𝑓(𝑡 + 1)

 𝑥′′ (𝑡 +
3

2
) + 𝑝𝑥′′(𝑡 + 1) = 𝑓 (𝑡 +

3

2
)

𝑥′′(𝑡 + 2) + 𝑝𝑥′′ (𝑡 +
3

2
) = 𝑓(𝑡 + 2)

 𝑥′′ (𝑡 −
1

2
) + 𝑝𝑥′′(𝑡 + 2) = 𝑓 (𝑡 +

5

2
) 

     

      

}
 
 
 
 
 
 

 
 
 
 
 
 

.                                   (27) 

By assuming the right sides of the system of equation (27) is known, we consider the system with 

respect to 𝑥′′ (𝑡 −
1

2
) , 𝑥′′(𝑡), 𝑥′′ (𝑡 +

1

2
) , 𝑥′′(𝑡 + 1), 𝑥′′ (𝑡 +

3

2
) , 𝑥′′(𝑡 + 2). Then, the 

determinant of the system of equations (27) is 𝑝6 − 1 ≠ 0, then the solution 𝑥(𝑡) is solvable. Now, 

we solve the system of linear equations (27) and we obtain  
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 𝑥′′(𝑡) =
1

1 − 𝑝6
[−𝑝5𝑓 (𝑡 +

1

2
) + 𝑝4𝑓(𝑡 + 1) − 𝑝3𝑓 (𝑡 +

3

2
) + 𝑝2𝑓(𝑡 + 2) − 𝑝𝑓 (𝑡 +

5

2
)

+ 𝑓(𝑡)].                                                                                                             (28) 

Next, we integrate the equation (28) twice and obtain the solution for 3-periodic solution as 

 𝑥(𝑡) = 𝑥(0) + 𝑥′(0)𝑡 + 𝐹3(𝑡),  (29) 
where 

   𝐹3(𝑡) =
1

1 − 𝑝6
∫ ∫ [−𝑝5𝑓 (𝑠 +

1

2
) + 𝑝4𝑓(𝑠 + 1) − 𝑝3𝑓 (𝑠 +

3

2
) + 𝑝2𝑓(𝑠 + 2)

𝑡1

0

𝑡

0

− 𝑝𝑓 (𝑠 +
5

2
) + 𝑓(𝑠)] 𝑑𝑠𝑑𝑡1 

                  =
1

1 − 𝑝6
∫ ∫ 𝑓(𝑠) +∑ (−1)𝑘𝑝6−𝑘𝑓 (𝑠 +

𝑘

2
)

5

𝑘=1

𝑡1

0

𝑡

0

𝑑𝑠𝑑𝑡1.                          (30) 

From solution (29), we have two unknown variables which are 𝑥(0) and 𝑥′(0). Hence, we find 

the values of 𝑥(0) and 𝑥′(0) by using solution (29) and (30), 

 
                 𝑥(3) = 𝑥(0) + 3𝑥′(0) + 𝐹3(3)  

𝑥′(3)  = 𝑥′(0) + 𝐹3′(3)
 }.  (31) 

We know that 𝑥(0) = 𝑥(3) and 𝑥′(0) = 𝑥′(3), since the solution is continuous and periodic, then 

we obtain 

                                                                 
3𝑥′(0) = −𝐹3(3)  

   0 = 𝐹3′(3)
 } .                                                 (32) 

 From equation (32), the right side of the equation, we already assumed as known variables 

while the left side of the equation is the unknown variables 𝑥(0) and 𝑥′(0). In order to verify the 

values for 𝑥(0) and 𝑥′(0), we find determinant of the system of equation (𝑥(0), 𝑥′(0)) from (32), 

and we obtain the determinant is equal to 0, which means that the system can have many solutions 

or no solution. In our case, since 𝐹3
′(3) = 0, then the value of 𝑥(0) can be any real number while 

𝑥′(0) is a unique value. From the equation (32), we produce the following theorem. 

 

Theorem 3 The equation (4) has 3-periodic solution if and only if 𝐹3
′(3) = 0. Otherwise, the 

equation (4) has no solution. In this case, the equation (4) has infinitely many solutions of the 

form (29), where 𝑥(0) is any real number while 𝑥′(0) = −
1

3
𝐹3(3).  

 

4.4          4-periodic solution (𝒌 = 𝟒) 
 

From equation (4), we consider the periodicity by applying definition of periodic solution which 

equivalent to 4-periodic solution, 𝑥′′(𝑡) = 𝑥′′(𝑡 + 4). Then, we obtain the system of linear 

equation as the following, 

𝑥′′(𝑡) + 𝑝𝑥′′ (𝑡 −
1

2
) = 𝑓(𝑡)

 
 

       𝑥′′ (𝑡 +
1

2
) + 𝑝𝑥′′(𝑡) = 𝑓 (𝑡 +

1

2
) 

𝑥′′(𝑡 + 1) + 𝑝𝑥′′ (𝑡 +
1

2
) = 𝑓(𝑡 + 1) 

𝑥′′ (𝑡 +
3

2
) + 𝑝𝑥′′(𝑡 + 1) = 𝑓 (𝑡 +

3

2
) 

                                               𝑥′′(𝑡 + 2) + 𝑝𝑥′′ (𝑡 +
3

2
) = 𝑓(𝑡 + 2)                                  (33) 
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𝑥′′ (𝑡 +
5

2
) + 𝑝𝑥′′(𝑡 + 2) = 𝑓 (𝑡 +

5

2
) 

𝑥′′(𝑡 + 3) + 𝑝𝑥′′ (𝑡 +
5

2
) = 𝑓(𝑡 + 3) 

𝑥′′ (𝑡 −
1

2
) + 𝑝𝑥′′(𝑡 + 3) = 𝑓 (𝑡 +

7

2
) 

By assuming the right sides of the system of equation (33) is known, we consider the system with 

respect to 𝑥′′ (𝑡 −
1

2
) , 𝑥′′(𝑡), 𝑥′′ (𝑡 +

1

2
) , 𝑥′′(𝑡 + 1), 𝑥′′ (𝑡 +

3

2
) , 𝑥′′(𝑡 + 2), 𝑥′′ (𝑡 +

5

2
) , 𝑥′′(𝑡 +

3). Then, the determinant of the system of equations (33) is 𝑝8 − 1 ≠ 0, then the solution 𝑥(𝑡) is 

solvable. Now, we solve the system of linear equations (33) and obtain function 𝑥′′(𝑡), 

     𝑥′′(𝑡) =
1

1 − 𝑝8
[−𝑝7𝑓 (𝑡 +

1

2
) + 𝑝6𝑓(𝑡 + 1) − 𝑝5𝑓 (𝑡 +

3

2
) + 𝑝4𝑓(𝑡 + 2) − 𝑝3𝑓 (𝑡 +

5

2
)

+ 𝑝2𝑓(𝑡 + 3) − 𝑝𝑓 (𝑡 +
7

2
) + 𝑓(𝑡)].                                                            (34) 

Next, we integrate the equation (34) twice and obtain the solution for 4-periodic solution as 

 𝑥(𝑡) = 𝑥(0) + 𝑥′(0)𝑡 + 𝐹4(𝑡), (35) 
where 

  𝐹4(𝑡) =
1

1 − 𝑝8
∫ ∫ [−𝑝7𝑓 (𝑠 +

1

2
) + 𝑝6𝑓(𝑠 + 1) − 𝑝5𝑓 (𝑠 +

3

2
) + 𝑝4𝑓(𝑠 + 2)

𝑡1

0

𝑡

0

− 𝑝3𝑓 (𝑠 +
5

2
) + 𝑝2𝑓(𝑠 + 3) − 𝑝𝑓 (𝑠 +

7

2
) + 𝑓(𝑠)] 𝑑𝑠𝑑𝑡1.                (36) 

 From solution (35), we have two unknown variables which are 𝑥(0) and 𝑥′(0). Hence, 

we find the values of 𝑥(0) and 𝑥′(0) by using solution (35) and (36), and since 𝑥(0) = 𝑥(4) and 

𝑥′(0) = 𝑥′(4) as the solution is continuous and periodic, then we obtain 

                                                                 
4𝑥′(0) = −𝐹4(4)  

   0 = 𝐹4′(4)
 } .                                                 (37) 

From equation (37), the right side of the equation, we already assumed as known variables while 

the left side of the equation is the unknown variables 𝑥(0) and 𝑥′(0). In order to verify the values 

for 𝑥(0) and 𝑥′(0), we need to find determinant of the system of equation (𝑥(0), 𝑥′(0)) from 

(37). Since the determinant is equal to 0, then the system can have many solutions or no solution. 

In our case, since 𝐹4
′(4) = 0, then the value of 𝑥(0) can be any real number while 𝑥′(0) is a 

unique value. From the equation (37), we produce the following theorem. 

 

Theorem 4 The equation (4) has 4-periodic solution if and only if 𝐹4
′(4) = 0. Otherwise, the 

equation (4) has no solution. In this case, the equation (4) has infinitely many solutions of the 

form (35), where 𝑥(0) is any real number while 𝑥′(0) = −
1

4
𝐹4(4).   

 

4.5          𝒏-periodic solution (𝒌 = 𝒏) 
 

From equation (4), we consider the periodicity by applying definition of periodic solution which 

equivalent to 𝑛-periodic solution, 𝑥′′(𝑡) = 𝑥′′(𝑡 + 𝑛). Then, we obtain the system of linear 

equation as the following, 

𝑥′′(𝑡) + 𝑝𝑥′′ (𝑡 −
1

2
) = 𝑓(𝑡) 

𝑥′′ (𝑡 +
1

2
) + 𝑝𝑥′′(𝑡) = 𝑓 (𝑡 +

1

2
) 
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                                          𝑥′′(𝑡 + 1) + 𝑝𝑥′′ (𝑡 +
1

2
) = 𝑓(𝑡 + 1)                                           (38) 

⋮                        ⋮                       ⋮ 

𝑥′′(𝑡 + 𝑛 − 1) + 𝑝𝑥′′ (𝑡 + 𝑛 −
3

2
) = 𝑓(𝑡 + 𝑛 − 1) 

         𝑥′′ (𝑡 −
1

2
) + 𝑝𝑥′′(𝑡 + 𝑛 − 1) = 𝑓 (𝑡 + 𝑛 −

1

2
) 

By assuming the right sides of the system of equation (38) is known, we consider the system with 

respect to 𝑥′′ (𝑡 −
1

2
) , 𝑥′′(𝑡), 𝑥′′ (𝑡 +

1

2
) , 𝑥′′(𝑡 + 1), 𝑥′′ (𝑡 +

3

2
) , 𝑥′′(𝑡 + 2),… , 𝑥′′(𝑡 + 𝑛 − 1). 

Then, we determine the solvability condition of the system of equations (38) by using determinant, 

 
|

|

𝑝 1 0 … 0 0
0 𝑝 1 … 0 0
0 0 𝑝 ⋱ 0 0
⋮ ⋮ … ⋱ … ⋮
0 0 0 … 𝑝 1
1 0 0 … 0 𝑝

|

|
= 𝑝2𝑛 − 1 ≠ 0. (39)    

Since the determinant of the system of equations is not equal to zero, then the we can obtain the 

solution 𝑥(𝑡) as the system is solvable. Now, we solve the system of linear equations (38) and 

obtain 

       𝑥′′(𝑡) =
1

1 − 𝑝2𝑛
[−𝑝2𝑛−1𝑓 (𝑡 +

1

2
) + 𝑝2𝑛−2𝑓(𝑡 + 1) − 𝑝2𝑛−3𝑓 (𝑡 +

3

2
) +⋯

+ 𝑝4𝑓(𝑡 + 𝑛 − 2) − 𝑝3𝑓 (𝑡 + 𝑛 −
3

2
) + 𝑝2𝑓(𝑡 + 𝑛 − 1) − 𝑝𝑓 (𝑡 + 𝑛 −

1

2
)

+ 𝑓(𝑡)] .                                                                                                              (40) 

Next, we integrate the equation (40) twice and obtain solution for 𝑛-periodic solution as 

 𝑥(𝑡) = 𝑥(0) + 𝑥′(0)𝑡 + 𝐹𝑛(𝑡),    (41) 
where 

  𝐹𝑛(𝑡) =
1

1 − 𝑝2𝑛
∫ ∫ [−𝑝2𝑛−1𝑓 (𝑠 +

1

2
) + 𝑝2𝑛−2𝑓(𝑠 + 1) − 𝑝2𝑛−3𝑓 (𝑠 +

3

2
) +⋯

𝑡1

0

𝑡

0

+ 𝑝4𝑓(𝑠 + 𝑛 − 2) − 𝑝3𝑓 (𝑠 + 𝑛 −
3

2
) + 𝑝2𝑓(𝑠 + 𝑛 − 1) − 𝑝𝑓 (𝑠 + 𝑛 −

1

2
)

+ 𝑓(𝑠)] 𝑑𝑠𝑑𝑡1                                                        

          =
1

1 − 𝑝2𝑛
∫ ∫ 𝑓(𝑠) +∑ (−1)𝑘𝑝2𝑛−𝑘𝑓 (𝑠 +

𝑘

2
)

2𝑛−1

𝑘=1

𝑡1

0

𝑡

0

𝑑𝑠𝑑𝑡1.                           (42) 

 From solution (41), we have two unknown variables which are 𝑥(0) and 𝑥′(0). Hence, 

we need to find the values for 𝑥(0) and 𝑥′(0) as it is essential to ensure the equation (4) has 

solution, and find its existing conditions. We find the values of 𝑥(0) and 𝑥′(0) by using solution 

(41) and (42), 

 
                 𝑥(𝑛) = 𝑥(0) + 𝑛𝑥′(0) + 𝐹𝑛(𝑛)  

𝑥′(𝑛)  = 𝑥′(0) + 𝐹𝑛′(𝑛)
 }. (43) 

Since the solution is continuous and periodic, we know that 𝑥(0) = 𝑥(𝑛) and 𝑥′(0) = 𝑥′(𝑛) 
which obtains 

                                                              
𝑛𝑥′(0) = −𝐹𝑛(𝑛)  

   0 = 𝐹𝑛′(𝑛)
 }.                                                    (44) 
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In order to verify the values for 𝑥(0) and 𝑥′(0), we find determinant of the system of equation 

(𝑥(0), 𝑥′(0)) from (44), and we obtain 

 𝐷𝑛 = |
0 𝑛
0 0

| = 0, (45) 

which means that the system can have many solutions or no solution. In our case, since 𝐹𝑛
′(𝑛) =

0, then the value of 𝑥(0) can be any real number while 𝑥′(0) is a unique value. From the equation 

(44), we produce the following theorem. 

Theorem 5 The equation (4) has n-periodic solution if and only if 𝐹𝑛
′(𝑛) = 0. Otherwise, the 

equation (4) has no solution. In this case, the equation (4) has infinitely many solutions of the 

form (41), where 𝑥(0) is any real number while 𝑥′(0) = −
1

𝑛
𝐹𝑛(𝑛).  

 

4.6         Examples 

 

The following are the examples for 2-periodic, and 3-periodic solution problems. 

 

Example 1 Assume 𝑝 = 3, 𝑓(𝑡) = cos𝜋𝑡 and apply the 2-periodic solution. After substituting the 

values of 𝑝 and function 𝑓(𝑡) into equation (4), the equation has the form 

                                         𝑥′′(𝑡) + 3𝑥′′ (𝑡 −
1

2
) = cos𝜋𝑡.                                                       (46) 

Therefore, the solution 𝑥(𝑡)  for 𝑡 ∈ [0,2) when substitute 𝑥′(0) and 𝐹2(𝑡) into solution (22) is 

                       𝑥(𝑡) = x(0) + 0.0955t −
3𝜋𝑡 − 3 sin𝜋𝑡 + cos𝜋𝑡 − 1

10𝜋2
,                             (47) 

where 𝑥(0) is any real number. Since 𝑥(0) can be any real number, we can plot the graph of 𝑥(𝑡) 
with variety values of 𝑥(0). In this example, we show the graph for 𝑥(0) = 0 and 𝑥(0) = 0.1.  

 

 
 

 
 

 

Example 2 Assume 𝑝 = 3, 𝑓(𝑡) = cos
2𝜋

3
𝑡 and apply the 3-periodic solution. After substituting 

the values of 𝑝 and function 𝑓(𝑡) into equation (4), the equation has the form 

                                                𝑥′′(𝑡) + 3𝑥′′ (𝑡 −
1

2
) = cos

2𝜋

3
𝑡 .                                            (48) 

The solution, 𝑥(𝑡)  for 𝑡 ∈ [0,3) when substitute 𝑥′(0) and 𝐹3(𝑡) into solution (30) is 

Figure 1: The graph of 𝑥(𝑡) for 2-periodic solution of Example 1 when 

𝑥(0) = 0 (red) and 𝑥(0) = 0.1 (blue) 
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             𝑥(𝑡) = x(0) + 0.0304𝑡 +
1

52𝜋2
[
27√3 tan (

𝜋𝑡
3
) − 45

tan2 (
𝜋𝑡
3
) + 1

− 9√3𝑡 + 45],            (49) 

where 𝑥(0) is any real number. Since 𝑥(0) can be any real number, we can plot the graph of 𝑥(𝑡) 
with variety values of 𝑥(0). In this example, we show the graph for 𝑥(0) = 0 and 𝑥(0) = 0.1.  

 

 
 
 

 

 

5 Conclusion 
 

In summary, we obtain the final result of the research. Based on the patterns obtained in 1-periodic, 

2-periodic, 3-periodic and 4-periodic solutions, we find the general formula for 𝑛-periodic solution 

of equation (4) with the similar existing conditions. The results show that the solution has infinitely 

many solutions since value of 𝑥(0) can be any real number while the value of 𝑥′(0) is a unique 

real number for each case. We also obtain the necessary condition and sufficient condition for the 

solution exists. Generally, the equation (4) is solvable in any periodic if and only if it satisfies the 

existing conditions.   

 

 

References 

 

[1] Thompson, S. (2007). Delay-differential equations. Scholarpedia. 2(3): 2367. 

https://doi.org/10.4249/scholarpedia.2367 

[2] Ismail, F., and Khassawneh, R. A. A. (2008) ‘Solving delay differential equations using 

embedded singly diagonally implicit runge-kutta methods’, Acta Mathematica Vietnamica. 

33(2): 95-105. 

[3] Radzi, H. M., Abdul Majid, Z., Ismail, F., and Suleiman, M. (2012) ‘Two- and three-point 

one-step block methods for solving delay differential equations’, Journal of Quality 

Measurement and Analysis.  8(1): 29-41.  

[4] European Mathematical Society. (2020). Periodic solution. Encyclopedia of Mathematics. 

https://encyclopediaofmath.org/wiki/Periodic_solution  

[5] Chen, H., Tang, H. and Sun, J. (2012) ‘Periodic solutions of second-order differential 

equations with multiple delays’, Advances in Difference Equation. 43.  

Figure 2: The graph of 𝑥(𝑡) for 3-periodic solution of Example 2 when  

𝑥(0) = 0 (red) and 𝑥(0) = 0.1 (blue) 



Rosli and Muminov (2021) Proc. Sci. Math. 5:117-127 
 

 
 

127 

[6] Kaplan, J. L. and Yorke, J. A. (1974) ‘Ordinary differential equations which yield periodic 

solutions of delay differential equations’, Journal of Mathematical Analysis and 

Applications. 48(2): 317-324. 

[7] Muminov, M. I. and Murid, A. H. M. (2020) ‘Existence conditions for periodic solutions of 

second-order neutral delay differential equations with piecewise constant arguments’, Open 

Mathematics. 18(1): 93-105.  


