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Abstract This research aimed in computing the perfect codes of conjugacy class graph of 

dihedral group of order at most 18. The conjugacy classes of dihedral groups were 

determined, and the conjugacy class graphs were then constructed. The features of the 

perfect codes obtained were studied in order to differentiate the pattern through the order of 

the dihedral groups. The results obtained were then divided into 3 cases where the number 

of 𝑛 of the dihedral groups, 𝐷𝑛  congruent to 1 mod 2, 2 mod 4 and 0 mod 4 where n is 

between 3 until 9. 
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1 Introduction 
 

This research involves three main areas which are the coding theory, the group theory as well as 

the graph theory in fulfilling the aims of this research. The group theory part concerned on the 

dihedral group, 𝐷𝑛  where 3 ≤ 𝑛 ≤ 9  with order 6 until 18. For 𝑛 ≥ 3 , the dihedral group is 

defined as the rigid motions taking a regular n-gon back to itself, with the operation being 

composition [1]. According to Conrad, rigid motions here is defined as a distance-preserving 

transformation such as reflections and rotations [1]. In this part, the elementary aspects of the 

dihedral groups such as its elements, relations between reflections and rotations, its center as well 

as its conjugacy classes were explored. In previous findings, Sehrawat and Pruthi [2] had found 

codes over the dihedral groups. Similarly, in this research, this group was chosen in order to 

differentiate the pattern of the perfect codes for different values of n between the elements in the 

dihedral group. The conjugacy class of each element in the dihedral group of order 6 until 18 were 

determined to picture the elements’ conjugacy class graph later in the second part involving the 

graph theory.  

 Next, the graph theory concerned about the conjugacy class graph. The conjugacy class 

were extended from the group theory which is obtain from the theorems and definitions of the 

conjugacy class [3]. The study on a graph related to the conjugacy classes of groups was 

introduced by Bertram et al. [4] in 1990 where the term was denoted as 𝛤𝐺
𝑐𝑙. According to findings 

by Bertram et al. [4], if the greatest common divisor of the sizes between any two conjugacy 
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classes is greater than one, then the vertices of this graph in which two distinct vertices are 

connected by an edge are non-central conjugacy classes of a group. In addition, the study on the 

application of a graph related to the conjugacy classes had been carried out by Bianchi et al. [5] 

while in 2005, You et al. [6] discovered a new graph related to the conjugacy classes of finite 

group which is the conjugacy class graph. Erfanian [7], later conducted a study on the triangle-

free commuting conjugacy class graph while Sarmin et al. [8] studied on the generalised conjugacy 

class graph of some dihedral groups in order to show the relation between orbits and their 

cardinalities which results in finding some properties of conjugacy class graph. In this research, 

the properties of the conjugacy class graph which were obtained based on the elements in the 

dihedral groups were then compared between one another in order to prove some theorems and 

lemmas.  

 Lastly, the study on perfect codes in graphs had also been carried out by many researchers 

such as Biggs [9] who developed a general theory that leads to a simple criterion for the existence 

of a perfect code in a distance-transitive graph. Furthermore, Mollard [10] studied on the perfect 

codes in Cartesian product of graphs. The findings discovered that the partition of the perfect 

codes is easily obtained in the Cayley graphs which leads in exploration of the example of 

applications as well as its generalizations. Meanwhile, Feng et al. [11] had done a research on the 

perfect codes in circulant graphs. Their research obtained a necessary and sufficient condition for 

a circulant graph of order n and degree 𝑝𝑙 − 1 to have a perfect code, where p is a prime and 𝑝𝑙 is 

the largest power of p dividing n [11]. Similarly, in this research, the properties and concepts of 

the perfect codes were explained to find the possible codes as well as the perfect codes of the 

conjugacy class graph of some dihedral groups of order at most 18. 

 

2 Preliminaries 

 
This section provides some concepts and previous research results that are used in this study in 

what follows. 
 

2.1 Dihedral Group 

 

Dihedral group can be defined as stated in Definition 2.1 while the centre of a group is defined as 

stated in Definition 2.2. 

 

Definition 2.1 [1] Dihedral group, 𝐷𝑛 is the symmetry group of an n-sided regular polygon where 

𝑛 > 1. 
 

Definition 2.2 [8] The center 𝑍(𝐺) of a group 𝐺 is the set of elements in 𝐺 that commute with 

every element of 𝐺. In symbols, 𝑍(𝐺) = {𝑎 ∈ 𝐺|𝑎𝑥 = 𝑥𝑎 for all 𝑥 ∈ 𝐺}. 
 

The theorems listed below explained on the properties of the dihedral group.  

 

Theorem 2.1 [1] 𝐷𝑛 has an order of 2𝑛. 

 

Theorem 2.2 [1] The n rotations in 𝐷𝑛 are {𝑒, 𝑎, 𝑎2, . . . , 𝑎𝑛−1}. 

 

Theorem 2.3 [1] The n reflections in 𝐷𝑛 are {𝑏, 𝑎𝑏, 𝑎2𝑏, . . . , 𝑎𝑛−1𝑏}. 
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Theorem 2.4 [1] The group 𝐷𝑛 has 2𝑛 elements where 𝐷𝑛 = {𝑒, 𝑎, 𝑎2, . . , 𝑎𝑛−1, 𝑏, 𝑎𝑏, . . . , 𝑎𝑛−1𝑏}.  

All elements in 𝐷𝑛 with order greater than 2 is a power of a. 

 

Theorem 2.5 [1] When 𝑛 ≥ 3 is odd, the center of 𝐷𝑛 is trivial. However, when 𝑛 ≥ 3 is even, 

the center of 𝐷𝑛 is {𝑒, 𝑎
𝑛

2}. 

 

 According to Conrad, for 𝑎𝑗 where j is the power of a, to commute with 𝑏, 𝑎𝑗𝑏 = 𝑏𝑎𝑗 

which is equivalent to 𝑎𝑗𝑏 = 𝑎−𝑗𝑏, which then implies that 𝑎2𝑗 = 𝑒 [1]. Since a has order n, 

𝑎2𝑗 = 𝑒 only if  𝑛|2𝑗 . For the odd n, this implies 𝑛|𝑗, which gives j is a multiple of n and thus, 

𝑎𝑗 = 𝑒. Therefore, for odd n, the only rotation that could be in the center of 𝐷𝑛 is 𝑒. Thus, the 

center of 𝐷𝑛 is {𝑒} [1]. 

 For the n even case, the condition where  𝑛|2𝑗 is equivalent to  
𝑛

2
|𝑗. For 0 ≤ 𝑗 ≤ 𝑛 − 1, 

the only possible choices for 𝑗 are 𝑗 = 0 and 𝑗 =
𝑛

2
. Then, 𝑎𝑗 = 𝑎0 = 𝑒 or 𝑎𝑗 = 𝑎

𝑛

2. Certainly 𝑒 is 

in the center. As 𝑎
𝑗

2 commutes with every rotation and reflection in 𝐷𝑛, then 𝑎
𝑗

2 is also the center 

of 𝐷𝑛 [1].  

 

2.2 Conjugacy Class Graph 

 

Next, the conjugate between two elements in a group 𝐺 as well as the conjugacy class are defined 

as in Definition 2.3 and Definition 2.4, respectively. 

 

Definition 2.3 [8] Let 𝑎 and 𝑏 be two elements in finite group 𝐺, then 𝑎 and 𝑏 are called conjugate 

if there exists an element 𝑔 in 𝐺 such that 𝑔𝑎𝑔−1 = 𝑏. 

 

Definition 2.4 [12] Let 𝑎 and 𝑏 be two elements in finite group 𝐺, then 𝑎 and 𝑏 are conjugate in 

𝐺 (and call b a conjugate of a) if 𝑥−1𝑎𝑥 = 𝑏 for some 𝑥 ∈ 𝐺. The conjugacy class of a is the set 

𝑐𝑙(𝑎) = {𝑥−1𝑎𝑥|𝑥 ∈ 𝐺}. 

 

Then, Theorem 2.6 shows the concept of conjugacy classes in the dihedral group. 

 

Theorem 2.6 [13] The conjugacy classes of 𝐷𝑛 are as follows: 

 

If 𝑛 is odd,  

(i) the identity element: {e}, 

(ii) (
𝑛−1

2
) conjugacy classes of size 2: {𝑎1}, {𝑎2}, . . . , {𝑎(

𝑛−1

2
)}, 

(iii) all the reflections: {𝑎𝑖𝑏: 0 ≤ 𝑖 ≤ 𝑛 − 1}. 

 

If 𝑛 is even, 

(i) Two conjugacy classes of size 1: {𝑒}, {𝑎
𝑛

2}, 

(ii) (
𝑛−1

2
) conjugacy classes of size 2:  {𝑎1}, {𝑎2}, . . . , {𝑎(

𝑛

2
−1)}, 

(iii) the reflections fall into two conjugacy classes: {𝑎2𝑖𝑏: 0 ≤ 𝑖 ≤
𝑛

2
− 1} and {𝑎2𝑖+1𝑏: 0 ≤

𝑖 ≤
𝑛

2
− 1}. 

 

The conjugacy class graph is defined as stated by Bertram et al. [8] in Definition 2.5. 
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Definition 2.5 [4] Suppose 𝐺 is a finite group with 𝑍(𝐺) as the center of 𝐺. The vertices of the 

conjugacy class graph of 𝐺, 𝑉(𝛤) where non-central conjugacy classes of 𝐺 denoted as 𝑉(𝛤𝐺), 

for which 𝑉(𝛤𝐺) = 𝐾(𝐺) − |𝑍(𝐺)|, where 𝐾(𝐺) is the number of conjugacy classes in 𝐺. Two 

vertices are adjacent if their cardinalities are not coprime, that is, the greatest common divisor of 

the number of vertices is not equal to one. 

 

2.3 Perfect Codes 

 

Codes and neighbourhood are defined as in Definition 2.6 and Definition 2.7, respectively. 

 

Definition 2.6 [14] Let 𝛤 be a graph with vertex set 𝑉(𝛤) and edge set 𝐸(𝛤), every subset of 𝑉(𝛤) 

can be considered as a code. Thus, 𝐶 ⊆ 𝑉(𝛤), then 𝐶 is called a code. 

 

Definition 2.7 [14] Let 𝑥 be an element in 𝐹𝑞
𝑛, q-nary code of length 𝑛 where 𝐹𝑞 is a field of size 

𝑞 and 𝑟 ≥ 0. Then, the neighbourhood of 𝑥 with radius 𝑟 is denoted as 𝑆𝑟(𝑥) and defined as the 

following : 

 

𝑆𝑟(𝑥) = {𝑌 ∈ 𝐹𝑞
𝑛 | 𝑑(𝑥, 𝑦) ≤ 𝑟}. 

 

Next, the perfect code is defined as in Definition 2.8. 

 

Definition 2.8 [15] Let 𝐶 ⊆ 𝐹𝑞
𝑛 be a q-nary code of length n where 𝐹𝑞 is a field of size q. Then C 

is called a perfect code if it has the following conditions: 

 

i. 𝑆1(𝑥) ∩ 𝑆1(𝑦) = 𝜙 where 𝑥, 𝑦 ∈ 𝐶, 𝑥 ≠ 𝑦. 

ii. 𝐹𝑞
𝑛 = ⋃ 𝑆1(𝑥𝑖)𝑛

𝑖=1  where 𝑥 ∈ 𝐶. 

 

In addition, Theorem 2.7 explained the properties of perfect codes when it evolves in graphs. 

 

Theorem 2.7 [11] Let 𝛤 be a graph and 𝐶 ⊆ 𝑉(𝛤) is a code. Then 𝐶 is a perfect code if and only 

if it satisfy the following two conditions: 

i. 𝐶 is an independent set, 

ii. Every vertex in 𝑉(𝛤) is either in 𝐶 or it is adjacent to exactly one element in 𝐶. 

 

3     Methodology 
 

In this research, the elements of dihedral group were first determined while the conjugacy class of 

each of the elements was obtained by using the definition of conjugacy class. Then, the graph of 

the conjugacy class was constructed based on the conjugacy classes obtained earlier. Next, as the 

codes for each of the graph were computed, the perfect codes were determined based on the 

definition stated. The features of the perfect codes of the conjugacy class graph for the dihedral 

groups were also considered in this research. 

 

4          Results and Discussion 

 

The results obtained from this research are presented in the sections that follows. 
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4.1 The Conjugacy Classes of Dihedral Groups of Order at Most 18 

 

In this section, the conjugacy classes of each dihedral groups were determined based on Definition 

2.4 where the number of conjugacy class was denoted as 𝐾(𝐺). 

 

 

Proposition 4.1 Let 𝐺  be a dihedral group of order 6, namely 𝐷3  such that 𝐺 =
{𝑒, 𝑎, 𝑎2, 𝑏, 𝑎𝑏, 𝑎2𝑏}. Then, the number of conjugacy classes of 𝐷3, 𝐾(𝐷3) = 3. 

 

Proof Given the elements of group 𝐷3 were listed as 𝐺 = {𝑒, 𝑎, 𝑎2, 𝑏, 𝑎𝑏, 𝑎2𝑏}. 

 

First, let 𝑥 = 𝑒, then 𝑐𝑙(𝑒) = {𝑒}. 

Thus, it has order of 1. 

 

Next, let 𝑥 = 𝑎, where 𝑐𝑙(𝑎) = 𝑔(𝑎)𝑔−1, 𝑔 ∈ 𝐷3. 

If 𝑔 = 𝑒, 𝑔−1 = 𝑒 then (𝑒)𝑎(𝑒) = 𝑎. 

If 𝑔 = 𝑎, 𝑔−1 = 𝑎2 then (𝑎)𝑎(𝑎2) = (𝑎2)(𝑎2) = 𝑎. 

If 𝑔 = 𝑎2, 𝑔−1 = 𝑎 then (𝑎2)𝑎(𝑎) = (𝑎2)(𝑎2) = 𝑎. 

If 𝑔 = 𝑏, 𝑔−1 = 𝑏 then (𝑏)𝑎(𝑏) = 𝑎2. 

If 𝑔 = 𝑎𝑏, 𝑔−1 = 𝑎𝑏 then (𝑎𝑏)𝑎(𝑎𝑏) = (𝑎𝑏)(𝑎2𝑏) = 𝑎2. 

If 𝑔 = 𝑎2𝑏, 𝑔−1 = 𝑎2𝑏 then (𝑎2𝑏)𝑎(𝑎2𝑏) = (𝑎2𝑏)(𝑏) = 𝑎2. 

Thus,  𝑐𝑙(𝑎) = {𝑎, 𝑎2}  which means 𝑐𝑙(𝑎) = 𝑐𝑙(𝑎2). 

Since both elements 𝑐𝑙(𝑎) and 𝑐𝑙(𝑎2) were in the same conjugacy class, then they have the same 

order which is 2. 

 

Next, let 𝑥 = 𝑏, where 𝑐𝑙(𝑏) = 𝑔(𝑏)𝑔−1, 𝑔 ∈ 𝐷3.  

If 𝑔 = 𝑒, 𝑔−1 = 𝑒 then (𝑒)𝑏(𝑒) = 𝑏. 

If 𝑔 = 𝑎, 𝑔−1 = 𝑎2 then (𝑎)𝑏(𝑎2) = (𝑎𝑏)(𝑎2) = 𝑎2𝑏. 

If 𝑔 = 𝑎2, 𝑔−1 = 𝑎 then (𝑎2)𝑏(𝑎) = (𝑎2𝑏)(𝑎) = 𝑎𝑏. 

If 𝑔 = 𝑏, 𝑔−1 = 𝑏 then (𝑏)𝑏(𝑏) = 𝑏. 

If 𝑔 = 𝑎𝑏, 𝑔−1 = 𝑎𝑏 then (𝑎𝑏)𝑏(𝑎𝑏) = (𝑎)(𝑎𝑏) = 𝑎2𝑏. 

If 𝑔 = 𝑎2𝑏, 𝑔−1 = 𝑎2𝑏 then (𝑎2𝑏)𝑏(𝑎2𝑏) = (𝑎2)(𝑎2𝑏) = 𝑎𝑏. 

Thus,  𝑐𝑙(𝑏) = {𝑏, 𝑎𝑏, 𝑎2𝑏} which means 𝑐𝑙(𝑏) = 𝑐𝑙(𝑎𝑏) = 𝑐𝑙(𝑎2𝑏). 

Since the elements 𝑐𝑙(𝑏), 𝑐𝑙(𝑎𝑏) and 𝑐𝑙(𝑎2𝑏) were in the same conjugacy class, then they have 

the same order which is 3. 

 

It follows that the conjugacy class of 𝐷3 were listed as follows: 

i. 𝑐𝑙(𝑒) = {𝑒}. 

ii. 𝑐𝑙(𝑎) = {𝑎, 𝑎2} = 𝑐𝑙(𝑎2). 

iii 𝑐𝑙(𝑏) = {𝑏, 𝑎𝑏, 𝑎2𝑏} = 𝑐𝑙(𝑎𝑏) = 𝑐𝑙(𝑎2𝑏). 

 

Thus, 𝐾(𝐷3) = 3. 

 

Proposition 4.2 Let 𝐺  be a dihedral group of order 8, namely 𝐷4  such that 𝐺 =
{𝑒, 𝑎, 𝑎2, 𝑎3, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏}. Then, the number of conjugacy classes of 𝐷4, 𝐾(𝐷4) = 5. 

 

Proof Similar to the proof of Proposition 4.1. 
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Proposition 4.3 Let 𝐺  be a dihedral group of order 10, namely 𝐷5 , 𝐺 =
{𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏}. Then, the number of conjugacy class of 𝐷5, 𝐾(𝐷5) = 4. 

 

Proof Similar to the proof of Proposition 4.1. 

 

Proposition 4.4 Let 𝐺  be a dihedral group of order 12, namely 𝐷6 , 𝐺 =
{𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 𝑎5𝑏}.  Then, the number of conjugacy class of 𝐷6 , 

𝐾(𝐷6) = 6. 

 

Proof Similar to the proof of Proposition 4.1. 

 

Proposition 4.5 Let 𝐺  be a dihedral group of order 14, namely 𝐷7 , 𝐺 =
{𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 𝑎5𝑏, 𝑎6𝑏}. Then, the number of conjugacy class of 𝐷7, 

𝐾(𝐷7) = 5. 

 

Proof Similar to the proof of Proposition 4.1. 

 

Proposition 4.6 Let 𝐺  be a dihedral group of order 16, namely 𝐷8 , 𝐺 =
{𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 𝑎5𝑏, 𝑎6𝑏, 𝑎7𝑏}.  Then, the number of conjugacy 

class of 𝐷8, 𝐾(𝐷8) = 7. 

 

Proof Similar to the proof of Proposition 4.1. 

 

Proposition 4.7 Let 𝐺  be a dihedral group of order 18, namely 𝐷9 , 𝐺 =
{𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 𝑎5𝑏, 𝑎6𝑏, 𝑎7𝑏, 𝑎8𝑏}.  Then, the number of 

conjugacy class of 𝐷9, 𝐾(𝐷9) = 6. 

 

Proof Similar to the proof of Proposition 4.1. 

 

4.2 The Conjugacy Class Graph of Dihedral Groups of Order at Most 18 

 

In this section, the conjugacy class graphs of each dihedral groups were determined based on 

Definition 2.5 where the conjugacy class graph was denoted as 𝛤𝐷𝑛
 . 

 

Lemma 4.1 Let 𝐺 be a dihedral group of order 6,𝐷3. Then, the conjugacy class graph of 𝐷3,  𝛤𝐷3
 

is an empty graph. 

 

Proof Based on Proposition 4.1,  the number of conjugacy classes is three which are 𝑐𝑙(𝑒), 𝑐𝑙(𝑎) 

and 𝑐𝑙(𝑏). The non-central conjugacy classes are 𝑐𝑙(𝑎) and 𝑐𝑙(𝑏) with order 2 and 3 respectively. 

Since the greatest common divisor between the order of 𝑐𝑙(𝑎) and 𝑐𝑙(𝑏)is 1, thus the vertices 

among these classes is not connected which results to an empty graph.  

 

Lemma 4.2 Let 𝐺 be a dihedral group of order 8,𝐷4. Then, the conjugacy class graph of 𝐷4,  𝛤𝐷4
 

is 𝐾3. 
 

Proof Follows from Proposition 4.2 and similar to the proof of Lemma 4.1. 
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Lemma 4.3 Let 𝐺 be a dihedral group of order 10,𝐷5. Then, the conjugacy class graph of 𝐷5, 𝛤𝐷5
 

is 𝐾2 ∪ 𝐾1. 
 

Proof Follows from Proposition 4.3 and similar to the proof of Lemma 4.1. 

 

Lemma 4.4 Let 𝐺 be a dihedral group of order 12,𝐷6. Then, the conjugacy class graph of 𝐷6, 𝛤𝐷6
 

is 𝐾2 ∪ 𝐾2. 
 

Proof Follows from Proposition 4.4 and similar to the proof of Lemma 4.1. 

 

Lemma 4.5 Let 𝐺 be a dihedral group of order 14,𝐷7. Then, the conjugacy class graph of 𝐷7, 𝛤𝐷7
 

is 𝐾3 ∪ 𝐾1. 
 

Proof Follows from Proposition 4.5 and similar to the proof of Lemma 4.1. 

 

Lemma 4.6 Let 𝐺 be a dihedral group of order 16,𝐷8. Then, the conjugacy class graph of 𝐷8, 𝛤𝐷8
 

is 𝐾5. 
 

Proof Follows from Proposition 4.6 and similar to the proof of Lemma 4.1.. 

 

Lemma 4.7 Let 𝐺 be a dihedral group of order 18,𝐷9. Then, the conjugacy class graph of 𝐷9, 𝛤𝐷9
 

is is 𝐾4 ∪ 𝐾1. 
 

Proof Follows from Proposition 4.7 and similar to the proof of Lemma 4.1. 

 

4.3 The Perfect Codes of Conjugacy Classes of Dihedral Groups of Order at Most 18 

 

In this section, the perfect codes of conjugacy class graphs of dihedral groups of order 6 until 18 

were determined based on Definition 2.8. The results obtained are shown as the following 

theorems. 

 

Theorem 4.1 Let 𝑉(𝛤𝐷3
) = {𝑎, 𝑏}. Then, the perfect codes of conjugacy class graph of order 6, 

𝐷3 is {𝑎, 𝑏}. 

 

Proof Based on Lemma 4.1, the vertex set of 𝐷3, 𝑉(𝛤𝐷3
) = {𝑎, 𝑏}. Based on Definition 2.7, the 

neighbourhood of 𝑉(𝛤𝐷3
) are : 

 

𝑆1(𝑎) = {𝑎}. 
𝑆1(𝑏) = {𝑏}. 
 

Firstly, let 𝐶 = {𝑎} and  {𝑏} be a code. 

Based on Definition 2.8, the code 𝐶 did not satisfy the second condition of perfect code such that: 

i. 𝑆1(𝑎) ∪ 𝑆1(𝜙) = {𝑎} ∪ {𝜙} = {𝑎} ≠ 𝛤𝐷3
. 

ii. 𝑆1(𝑏) ∪ 𝑆1(𝜙) = {𝑏} ∪ {𝜙} = {𝑏} ≠ 𝛤𝐷3
. 

Hence, {𝑎} and  {𝑏} are not perfect codes. 
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Next, let 𝐶 = {𝑎, 𝑏} be a code. Based on Definition 2.8, the code, 𝐶 satisfies the two conditions of 

perfect codes such that: 

i. 𝑆1(𝑎) ∩ 𝑆1(𝑏) = {𝑎} ∩ {𝑏} = 𝜙. 
ii. 𝑆1(𝑎) ∪ 𝑆1(𝑏) = {𝑎} ∪ {𝑏} = 𝛤𝐷3

. 

Hence, {𝑎, 𝑏} is a perfect code. 

 

Thus, the perfect codes of 𝛤𝐷3
 is {𝑎, 𝑏}. 

 

Theorem 4.2 Let 𝑉(𝛤𝐷4
) = {𝑎, 𝑏, 𝑐}. Then, the perfect codes of conjugacy class graph of order 8, 

𝐷4 are {𝑎}, {𝑏} and {𝑐}. 

 

Proof Follows from Lemma 4.2 and similar to the proof of Theorem 4.1. 

 

Theorem 4.3 Let 𝑉(𝛤𝐷5
) = {𝑎, 𝑏, 𝑐}. Then, the perfect codes of conjugacy class graph of order 10, 

𝐷5 are {𝑎, 𝑐} and {𝑏, 𝑐}. 

 

Proof Follows from Lemma 4.3 and similar to the proof of Theorem 4.1. 

 

Theorem 4.4 Let 𝑉(𝛤𝐷6
) = {𝑎, 𝑏, 𝑐, 𝑑}. Then, the perfect codes of conjugacy class graph of order 

12, 𝐷6 are {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑑} and {𝑏, 𝑑}. 

 

Proof Follows from Lemma 4.4 and similar to the proof of Theorem 4.1. 

 

Theorem 4.5 Let 𝑉(𝛤𝐷7
) = {𝑎, 𝑏, 𝑐, 𝑑}. Then, the perfect codes of conjugacy class graph of order 

14, 𝐷7 are {𝑎, 𝑑}, {𝑏, 𝑑} and {𝑐, 𝑑}. 

 

Proof Follows from Lemma 4.5 and similar to the proof of Theorem 4.1. 

 

Theorem 4.6 Let 𝑉(𝛤𝐷8
) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Then, the perfect codes of conjugacy class graph of 

order 16, 𝐷8 are {𝑎}, {𝑏}, {𝑐}, {𝑑} and {𝑒}. 

 

Proof Follows from Lemma 4.6 and similar to the proof of Theorem 4.1. 

 

Theorem 4.7 Let 𝑉(𝛤𝐷9
) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Then, the perfect codes of conjugacy class graph of 

order 18, 𝐷9 are {𝑎, 𝑒}, {𝑏, 𝑒}, {𝑐, 𝑒} and {𝑑, 𝑒}. 
 

Proof Follows from Lemma 4.7 and similar to the proof of Theorem 4.1. 

 

5 Conclusion  
 

 As a conclusion, the result could be summarized into the odd number of 𝑛 in the dihedral 

group, 𝐷𝑛 and for even number of 𝑛 in the dihedral group, 𝐷𝑛 such that  𝑛 ≡ 0 mod 4 and  𝑛 ≡
2 mod 4. First, for the odd number of 𝑛 in the dihedral group, 𝐷𝑛,  it is observed that the graphs 

is a graph which consists of rotation elements with an isolated vertex of one reflection element 

and could be generalized as 𝛤(𝐷𝑛) = 𝐾
(

𝑛−1

2
)

∪ 𝐾1 while the perfect codes would be a code of size 

2 which consists of a pair of rotation and reflection elements of dihedral group in its conjugacy 

class graphs. Next, for the dihedral group, 𝐷𝑛 of 𝑛 ≡ 0 mod 4, the conjugacy class graphs for this 
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case can be generalised as 𝛤(𝐷𝑛) = 𝐾(
𝑛

2
+1) while the perfect codes are the size 1 code of each 

element of the conjugacy class graph of dihedral groups. Lastly, for the dihedral group of 𝑛 ≡
2 mod 4, the general notation of the conjugacy class graph and the perfect codes could not be 

summarised as only one case were analysed in this research such that the dihedral group of order 

6 with the perfect code is a code of size 2 which consists of a pair of rotation and reflection 

elements in its conjugacy class graph. 
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