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Abstract The purpose of this study is to find the canonical form, fixed point, the stability of fixed point 

and to study the trajectory of ℓ-Volterra quadratic stochastic operators (QSOs) in 1-dimensional  

simplex. ℓ-Volterra quadratic stochastic operator was defined on (n - 1)-dimensional simplex, where ℓ 

∈ {0, 1,…, n}. The ℓ-Volterra operator is a Volterra operator if and only if ℓ = n. In this study, we are 

going to use ℓ =  1 and ℓ =  2. By utilize the technique of Jacobian, we study stability of the fixed 

points. Moreover, we fully study the dynamical behaviour of Volterra QSO defined on 𝑆1. 
 

Keywords: Quadratic stochastic operator; fixed point; Volterra; simplex 

 

 

1 Introduction 
 

A quadratic stochastic operator (QSO) has meaning of a population evolution operator, which arises 

as follows. Consider a population consisting of n species. Let 𝑥0 =  (𝑥1
0, … , 𝑥𝑛

0) be the probability 

distribution of species in the initial generations, and 𝑃𝑖𝑗𝑘 the probability that individuals in the 𝑖th and 

jth species reproduction to produce an individual 𝑘. Then, the probability distribution (𝑥)  =
 (𝑥1

′ , … , 𝑥𝑛
′  ) (the state) of the species in the first generation can be found by the total probability i.e. 

 

 
V(x)𝑘 =  ∑ 𝑃𝑖𝑗𝑘

𝑛

𝑖𝑗,𝑘

𝑥𝑖𝑥𝑗, 𝑘 = 1, … , 𝑛 
 

1.1 

 

 This means that the association 𝑥 →  𝑉 defines a map V called the evolution operator. The 

population evolves by starting from an arbitrary state  𝑥0  then passing to the state 𝑥′  =  𝑉(𝑥)  (in 

the next “generation”), then to the state 𝑥′′ = 𝑉(𝑉(𝑥)) and so on. Note that V (defined by (1.1)) is a 

non-linear (quadratic) operator, and it is higher-dimensional if 𝑛 ≥  3. Higher-dimensional 

dynamical systems are important but here are relatively few dynamical phenomena that are currently 

understood (see [1,2,20]). 

                                   𝑥, 𝑥′ = (𝑥), 𝑥′′ = ((𝑥)), 𝑥′′′ = 𝑉3(𝑥), …          1.2 

 

             In other words, each QSO describes the evolution of generations in terms of probabilities 

distribution.  
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           Ganikhodzhaev et al. (2011) has provided a self-contained exposition of the recent 

achievements and open problems in the theory of the QSO. What’s left to study in the nonlinear 

operator theory is the behaviour of nonlinear operators. Unfortunately, there is a lack of study on the 

utmost vital part, which is the dynamical phenomena on higher dimensional systems that are currently 

comprehendible. In case of QSOs, the degree of difficulty depends on the given cubic 

matrix(𝑃𝑖𝑗𝑘)𝑖𝑗,𝑘=1
𝑚 . An asymptotic behaviour of the QSOs is complicated, even for the small 

dimensional simplex (N. Ganikhodzhaev and Zanin, 2004; Mukhamedov, Saburov and Qaralleh, 2013; 

Mukhamedov, Qaralleh and Rozali, 2014; Vallander, 1972; Zakharevich, 1978). Many researchers 

introduced a certain class of QSO and studied their behaviour, for example Volterra-QSO, permutated 

Volterra-QSO, Quasi-Volterra-QSO, and ℓ-Volterra-QSO to solve this problem. 

 

 

  

 

 

2 Preliminaries  
 

Let V be a mapping on the (n-1) dimensional 

S𝑛−1 = {(𝑥1, 𝑥2, … , 𝑥𝑛)  ∈  R𝑛 , 𝑥𝑖 ≥ 0, ∑ 𝑥𝑖
𝑛
𝑖=1 = 1},                    

maps into itself, 𝑉 ∶  𝑆𝑛−1  → 𝑆𝑛−1. 𝑉 has such a form 

 

 (x)𝑘 = ∑ 𝑃𝑖𝑗,𝑘𝑥𝑖𝑦𝑗
𝑛
𝑖=1  , k = 1,2, … , n,         2.1 

  where 𝑃𝑖𝑗,𝑘 are coefficient of heredity and satisfy 

 

 P𝑖𝑗𝑘 ≥  0, P𝑖𝑗𝑘  =  P𝑗𝑖𝑘 , ∑P𝑖𝑗𝑘 = 1, i, j, k = 1,2, … , n.          2.2 

 

Then, 𝑉 is called Quadratic Stochastic Operators (QSOs). Next, i going to recall the definition of ℓ-

Volterra Quadratic Stochastic Operators. 

 

Definition for Volterra 

Definition 1.1 The QSO defined by (3.2.2), (3.2.3), is called an ℓ -Volterra QSO if 

                                    P𝑖𝑗𝑘 =  0 for k ∉ {i, j}, k =  1, … , ℓ, i, j = 1, … , n;                             2.3 

                                                           𝑃𝑖𝑗𝑘   >  0                                                              2.4     

for at least one set 𝑖, 𝑗, 𝑘, 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑘 for any 𝑘 ∈ { ℓ +  1, . . . , 𝑛}.    

  Denote by 𝑉ℓ the set of all ℓ-Volterra QSOs 

Remark 1.2 

1. The condition (2.4) guarantees that 𝑉ℓ1  
∩  𝑉ℓ2  

=  ∅ for any ℓ 1 =  ℓ2. 

2. Note that ℓ-Volterra QSO is Volterra if and only if ℓ =  𝑛. 

3. Quasi-Volterra operators are particular case of ℓ-Volterra operators. 

4. The class of ℓ-Volterra QSO for a given ℓ does not coincide with a class of non-Volterra 
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QSOs.  

Definition 1.3 Let f be mapping from set X to set X again. If any c ∈ X and f(c) = c then c is a fixed 

point of 𝑓. 

 

Definition 1.4 A fixed point 𝑥0 for 𝐹 ∶  𝑅𝑛  →  𝑅𝑛 is called hyperbolic if all the eigenvalues of the 

Jacobian matrix J of the mapping F at the point 𝑥0 are not equal to 1. 

There are three types of hyperbolic fixed points: 

1. P is an attracting fixed point if all of the eigenvalues of J(P) are less than one in absolute value. 

2. P is a repelling fixed point if all of the eigenvalues of J(P) are greater than one in absolute 

value. 

3. P is a saddle point otherwise. 

 

In this project, i going to consider 𝑛 = 2. Therefore, ℓ ∈ {1,2}.  In what follows, i consider 1-Volterra 

and 2-Volterra. In case 2-Volterra, i simply Volterra QSO. 

 

3           Volterra Quadratics Stochastic Operators 

 

First to study the Canonical form of Volterra’s discrete model. 

 

3.1         Canonical form of Volterra’s QSO 

 
In this section, we are going describe the canonical form of  Volterra acting on one dimensional 

simplex where 𝑛 = 2 on  𝑆1. 

Recall the definition for Volterra,  

 

                        𝑃𝑖𝑗,𝑘 = 0 for k ≠ {i, j}, where k = 1, … , n,      i, j = 1, … , n.                  3.1 

 

Recall 𝑆1(i.e., see 3.2) reduce to  

 

                                        S1 = {(x1, x2), x1, x2 ≥ 0, x1 + x2 = 1} .                             3.2 

 

Furthermore, 𝑉(𝑥) = (𝑉(𝑥1), 𝑉(𝑥2)) given by (2.2) can be written as 

 

                                   V(x)1 = P11,1x1
2 + 2P12,1x1x2 + P22,1x2

2,                                      3.3 

                                   V(x)2 = P11,2x1
2 + 2P12,2x1x2 + P22,2x2

2,                                      3.4 

where P11,1, P12,1, P22,1, P11,2, P12,2, P22,2 𝜖 [0,1). 

 

Because of stochasticity (i.e. 𝑃𝑖𝑗,1 + 𝑃𝑖𝑗,2 = 1), so i has 

𝑃11,1 +  𝑃11,2 = 1 

𝑃22,1 +  𝑃22,2 = 1 

From (3.6), i has 

𝑃11,2 = 0, 𝑃22,1 = 0 

Therefore, i denote 

                                                        𝑃11,1 = 1, 𝑃22,2 = 1                                                     3.5 

Substitute (3.5) into (3.3) and (3.4), then I has 

V(x)1 =  x1
2 + 2P12,1x1x2    

                                                                                                                                          3.6 

V(x)2 = 2P12,2x1x2 + x2
2 

where P12,1, P12,2 are unknown. 

 
Therefore i taking into account P12,1 + P12,2 = 1, I has P12,2 = 1 − P12,1, Let  P12,1 = a 
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Therefore,  P12,2 = 1 − 𝑎 . 

Subtitute P12,2 = 1 − 𝑎 into (4.4) then equation will become  

 

𝑉(𝑥1) =  𝑥1
2 + 2𝑎𝑥1 𝑥2  

                                                                                                                                              3.7  
    V(x2) = 2(1 − a)x1x2 + x2

2 

 

By using properties  𝑥2 = 1 − 𝑥1, then 

 

𝑉(𝑥)1 = 𝑥1
2 + 2𝑎𝑥1(1 − 𝑥1), 

         = x1
2 + 2ax1 − 2ax1

2, 
          = 𝑥1

2 + 2𝑎𝑥1 − 2𝑎𝑥1
2, 

           = 2𝑎𝑥1 + (1 − 2𝑎)𝑥1
2. 

 

The canonical form is 𝑉(𝑥)𝑘 = 2𝑎𝑥𝑘 + (1 − 2𝑎)xk
2. 

 

3.2          Fixed Point of Volterra QSO 

 

In this section, i going to solve all fixed point of Volterra QSO. As i know, the fixed point of Volterra 

on 1-dimensional simplex are (1,0), (0,1). 

Proof., The fixed point of volterra Quadratic Stochastics Operator in S1. 

 

𝑥 = (2𝑎 − 1)(𝑥1
2 − 𝑥1), 

0 = (2a − 1)x1(x1 − 1), 
x1 = 0, x1 − 1 = 0, 

x1 = 0 or 1, 
x1 + x2 = 1, 
x2 = 1 − x1. 

Sub x1into x2, 

x2 = 0 or 1. 

 

Therefore, V(x1, x2) = (0,1) or V(x1, x2) = (1,0) 

Proven. 

 

3.3  Stability of Fixed Point of Volterra QSO 

 

In this subsection, i going to study stability of fixed point. 

V(x) = x′ = x2 + 2ax(1 − x), 
                                                                                                                                               3.8 

y′ = 1 − (x2 + 2ax(1 − x)). 

i) First, i going to consider fixed point for 𝑥 = 1 

f(x) = x2 + 2ax(1 − x), 
f(x) = x2 + 2ax − 2ax2, 
f ′(x) = 2x + 2a − 4ax, 
|f ′(1)| = |2 + 2a − 4a|, 

= |2 − 2a|, 
= |2(1 − a)|, 
= 2(1 − a). 

Suppose 2(1 − a) < 1, then I has  

(1 − a) <
1

2
   ⟹     −a < −

1

2
 

a >
1

2
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From this, i conclude that 

If a ∈ (
1

2
, 1]  then (1,0) attracting. 

If a ∈ [0,
1

2
]  then (1,0) repelling. 

If a =
1

2
 then (1,0) non − hyperbolic fixed point. 

 

ii) Secondly, i going to consider fixed point for x = 0 ; 
f ′(0) = 2a. 

Suppose 

2a < 1  ⟹  a <
1

2
. 

 

From this, i can get; 

If a ∈ [0,
1

2
)  then (0,1) repelling. 

If a ∈ (
1

2
, 1] then (0,1) attracting. 

If a =
1

2
  then (0,1) non − hyperbolic fixed point. 

  

V(x) = x1
′ = x2 + 2ax(1 − x)              0 ≤ x ≤ 1, 

x2
′ = 1 − (x2 + 2ax(1 − x))   0 ≤ x ≤ 1. 

 

3.4 Dynamics of Volterra QSO 

  

To study dynamics of V(x) it enough to study x1
′  since x2

′ = 1 − x1
′  

 

f(x) = x2 + 2ax(1 − x) 

                                                                                                                                                3.9 

          = (1 − 2a)x2 + 2ax 

 

Here, i going to completely describe dynamics of volterra QSO on one dimensional simplex by 

considering all the posibble cases. I  considering 3 cases as the folowings : 

 

(1)  a ∈ [0,
1

2
) 

(2)  a =
1

2
 

(3)  a ∈ (
1

2
, 1] 

 

First Case 

 

I  divide first case into two subcases: subcase 1: (a = 0), subcase 2: (0 < a <
1

2
 ) 

 

Subcase 1: i let a = 0. Now define 

 

                                                                    f(x) = x2                                                              3.10 

 

I  assume for ∀ 𝑥 ∈  [0, 1], 𝑓(𝑥)  ∈  [0, 1]. Now, let me prove the assumption.   

     

Proposition 4.1   Let f(x) = x2 given by (3.15), then 

 

∀ 𝑥 ∈  [0, 1], 𝑓(𝑥)  ∈  [0, 1] 
 



Masa and Embong (2021) Proc. Sci. Math. 5:68-83 

 

 

 73 

Proof. Consider 𝑥 ∈  [0, 1] and compute 𝑓 ′(𝑥)  = 2𝑥. It is obvious that 𝑓′(𝑥) takes positive values 

only on interval [0, 1]. Thus f(x) is increasing on interval [0,1]. Then I has 

 

0 ≤  𝑥 ≤  1 ⟹  𝑓(0)  ≤  𝑓(𝑥)  ≤  𝑓(1) ⟹  0 ≤  𝑓(𝑥)  ≤  𝑎 ⟹  𝑓(𝑥)  ∈  [0, 1] 
 

Thus 𝑓(𝑥)  ∈  [0, 1]. 
 

It suggests that iterations of 𝑥 ∈  [0, 1] will converge to 0. Furthemore, |𝑓′(0)| = 0 < 1 implies that 𝑥1 

is a super attracting fixed point and |𝑓′(1 )|  =  2 >  1 implies that 𝑥2 is a repelling fixed point. Let 

me find the recurrent equation for 𝑓(𝑥) =  𝑥2.  First of all, compute f 2(x) and f 3(x). 

 

𝑓2(𝑥) = 𝑓(𝑓(𝑥)) = 𝑓(𝑥2) = 𝑥4 = 𝑥22
 

𝑓3(𝑥) = 𝑓(𝑓2(𝑥)) = 𝑓(𝑥4) = 𝑥8 = 𝑥23
 

 

I  see that the trajectory of f takes the following form: f n(x) = x2n
. I prove this trajectory by the 

following proposition : 

 

Proposition 4.2.  Let 𝑓(𝑥) = 𝑥2 given by (3.15) then 

 

f n(x) = x2n
 

 

Proof. I will use technique of induction. Let 𝑓(𝑥)  = 𝑥2 and assume that 𝑓𝑛(𝑥)  = x2n
 . Firstly, i test 

the assumption by n = 1. I has 

 

f 1(x) = x21
= 𝑥2  

 

Thus, it is true for n=1. Secondly, assume that it is also true for 𝑛 = 𝑘, so I has 

 

f k = x2k
 

 

Lastly, i prove that it is also true for 𝑘 + 1. 

f k+1(x) = f (f k(x)) 

= f (x2k
) 

= (x2k
)2 

= x2(2k) 

= x2k+1
 

This complete the induction. The assumption is also true for k=1, thus 𝑓𝑛(𝑥)  = x2n
 is proven. 

 

As n goes to infinity, I has  

 

lim
n→∞

f n(x) = lim
n→∞

x2n
= 0 

 

For example, if the initial point x =
1

2
, then I has, 

lim
n→∞

(
1

2
)

2n

= lim
n→∞

1

22n = 0 

 

Conclusion: 

𝑉𝑛(𝑥) = (x2n
, 1 − x2n

) 

 

Where 𝑉𝑛(𝑥) is given by (2.1). As n → ∞ for ∀ 𝑥 ∈  [0, 1] 
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lim
n→∞

f n(x) = 0 

lim
n→∞

Vn(x) = (0,1) 

 

Subcase 2:  I let  a ∈ (0,
1

2
). Let 

 

                                                             f(x) = (1 − 2a)x2 + 2ax                                                  3.11 

 

and my aim is to study the dynamics of this function. 

 

Solving the fixed point, one has 

 

 

x = (1 − 2a)x2 + 2ax ⟹ x1 = 0, x2 =
𝑎

2𝑎 − 1
 

 

Clearly that in this case 1 − 2a > 0. Then, 𝑓(𝑥) must be concave up. One also can check 𝑥2  ∈  [0, 1] 
by the followings :  

 

1 − 2a > 0 ⟹
𝑎

2𝑎 − 1
> 0 

 

The derivative of f(x) is given by 

 

f′(x) = 2(1 − 2a)x + 2a 

 

Then, solve 𝑓′(𝑥) = 0. Thus, critical point is given has 

 

𝑓′(𝑥) = 0  ⟹ x =
a

(2a − 1)
 

 

Thus, one sees that x < 0, therefore there is no critical point in [0,1]. Clearly for any 

x ϵ [0,1], f′(x) > 0. Therefore, f(x) must be increasing function. Hence, 

 

f(0) ≤ f(x) ≤ f(1) 

 

Which gives 0 ≤ f(x) ≤ 1 for any x ϵ [0,1]. 
 

 

 

 

Proposition 3.3 Let f(x) = (1 − 2a)x2 + 2ax  given by (3.17), then 

 

lim
n→∞

f n(x) =
𝑎

2𝑎−1
 for ∀x ϵ [0,1]. 

 

Take all x ϵ [0,1] and let 

 

h(x) = f(x) − x = (1 − 2𝑎)𝑥2 + 2𝑎𝑥 − x           

           

Then, solve for ℎ(𝑥) = 0   

                                        

0 = (1 − 2𝑎)𝑥2 + (2𝑎 − 1)𝑥    ⟹ 𝑥1 = 0,      𝑥2 =
2𝑎 − 1

2𝑎 − 1
= 1 
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Because of 𝑥 ≥ 0, (1 − 2𝑎) > 0 and (𝑥 − 1) < 0, therefore ℎ(𝑥) ≤ 0 implies that 𝑓(𝑥) − 𝑥 ≤ 0. 

Since 𝑓(𝑥) increasing, then the followings hold 

 

𝑓(𝑥) ≤ 𝑥 

𝑓(𝑥)2 ≤ 𝑓(𝑥) 

𝑓(𝑥)3 ≤ 𝑓(𝑥)2 

⋮ 
𝑓𝑛(𝑥) ≤ 𝑓𝑛−1(𝑥)  

 

For all n ϵ ℕ. The sequence of   𝑓, 𝑓2, 𝑓3, … , 𝑓𝑛 , … is monotone decreasing and bounded below for 

∀ 𝑥 ∈  [0, 1]. Therefore, {f n(x)}n=1
∞  converges. Thus, the limit exist. Next, compute the followings  

 

lim
n→∞

f n(x) = x∗, x∗ = lim
n→∞

f n+1(x) = lim
n→∞

f(f n(x)) = f ( lim
n→∞

f n(x)) = f(x∗) 

 

 

This shows that  x∗ is a fixed point either  x∗ = 0 or    x∗ = 1. 

 

In conclusion 

 

lim
n→∞

f n(x) = 0 

lim
n→∞

Vn(x) = (0,1) 

 

 

Second Case 

 

In this case, i let 𝑎 =
1

2
. Let 

f(x) = (1 − 2 (
1

2
)) x2 + 2 (

1

2
) x = x 

 

and my aim is to study the dynamics of this function. 

 

I assume for ∀ 𝑥 ∈  [0, 1], 𝑓(𝑥)  ∈  [0, 1]. Now, let me prove the assumption.   

By using Proposition 3.1.  Let f(x) = 𝑥  then 

 

∀ 𝑥 ∈  [0, 1], 𝑓(𝑥)  ∈  [0, 1] 
 

Proof. Consider 𝑥 ∈  [0, 1] and compute 𝑓 ′(𝑥)  = 1. It is obvious that 𝑓′(𝑥) takes positive values 

only on interval [0, 1]. Thus f(x) is increasing on interval [0,1]. Then I has 

 

0 ≤  𝑥 ≤  1 ⟹  𝑓(0)  ≤  𝑓(𝑥)  ≤  𝑓(1) ⟹  0 ≤  𝑓(𝑥)  ≤
1

2
⟹  𝑓(𝑥)  ∈  [0, 1] 

 

Thus 𝑓(𝑥)  ∈  [0, 1]. 
 

It suggests that iterations of 𝑥 ∈  [0, 1] will converge to 0. Furthemore, |𝑓′(0)| = 0 < 1 implies that 𝑥 

is a non − hyperbolic fixed point. Let me find the recurrent equation for 𝑓(𝑥) =  𝑥.  First of all, 

compute f 2(x) and f 3(x). 

 

𝑓2(𝑥) = 𝑓(𝑓(𝑥)) = 𝑓(𝑥) = 𝑥4 = 𝑥 

𝑓3(𝑥) = 𝑓(𝑓2(𝑥)) = 𝑓(𝑥) = 𝑥8 = 𝑥 
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I see that the trajectory of f takes the following form : 𝑓𝑛(𝑥) = 𝑥. 

 

 

Therefore, if a =
1

2
 , lim

n→∞
f n(x) = x → lim

n→∞
Vn(X) = (x1, 1 − x1) where X=(x,y) 

 

I note that in this case all points are fixed point. 

In conclusion 

 

lim
n→∞

f n(x) = 0 

lim
n→∞

Vn(x) = (0,1) 

 

Third Case 

 

Let  a ∈ (
1

2
, 1]. I divide into two subcase; subcase 1: (𝑎 = 1) , subcase 2: (

1

2
< 𝑎 < 1) 

 

Subcase 1 

i let 𝑎 = 1. Let 

𝑓(𝑥) = −𝑥2 + 2𝑥 

and my aim is to study the dynamics of this function. 

Solve for the fixed point : 

𝑥 = −𝑥2 + 2𝑥 ∈  [0,1] ⟹  x1 = 0, x2 = 1 

 

The derivative of f(x) is given by 

 

𝑓′(𝑥) = −2𝑥 + 2 

 

Then, solve 𝑓′(𝑥) = 0. Thus, critical point is given has 

 

𝑓′(𝑥) = 0  ⟹ x = 1 

 

Thus, one sees that x = 1, therefore there is critical point in [0,1]. Clearly for x ϵ [0,1], f′(x) ≤ 0. 

Therefore, f(x) must be decreasing function. Hence, 

 

f(1) ≤ f(x) ≤ f(0) 

 

Which gives 1 ≤ f(x) ≤ 0 for any x ϵ [0,1]. 
This completes the proof. 

 

Proposition 3.3 Let f(x) = −𝑥2 + 2x  given by (3.18), then 

 

lim
n→∞

f n(x) = −𝑥2 + 2x   for ∀x ϵ [0,1]. 

 

Take ∀x ϵ [0,1] and let 

 

h(x) = f(x) − x = −𝑥2 + 2x  − x           

           

Then, solve for ℎ(𝑥) = 0   

                                       
0 = −𝑥2 + x     ⟹ 𝑥1 = 0,      𝑥2 = 1 
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Because of 𝑥 ≥ 0, −𝑥2 + 2x  < 0 and (𝑥 − 1) ≤ 0, therefore ℎ(𝑥) ≥ 0 implies that 𝑓(𝑥) − 𝑥 ≥ 0. 

Since (𝑥)  decreasing,  then the followings hold 

 

𝑓(𝑥) ≥ 𝑥 

𝑓(𝑥)2 ≥ 𝑓(𝑥) 

𝑓(𝑥)3 ≥ 𝑓(𝑥)2 

⋮ 
𝑓𝑛(𝑥) ≥ 𝑓𝑛−1(𝑥)  

 

For all n ϵ ℕ. The sequence of   𝑓, 𝑓2, 𝑓3, … , 𝑓𝑛 , … is monotone increasing and bounded above for 

∀ 𝑥 ∈  [0, 1]. Therefore, {f n(x)}n=1
∞  converges. Thus, the limit exist. Next, compute the followings  

 

lim
n→∞

f n(x) = x∗, x∗ = lim
n→∞

f n+1(x) = lim
n→∞

f(f n(x)) = f ( lim
n→∞

f n(x)) = f(x∗) 

 

 

This shows that  x∗ is a fixed point either  x∗ = 0 or    x∗ = 1. 

 

In conclusion 

 

lim
n→∞

f n(x) = 0 

lim
n→∞

Vn(x) = (0,1). 

 

Subcase 2 

 

I let  a ∈ (
1

2
, 1). Let 

 

f(𝑥) = (1 − 2𝑎)𝑥2 + 2𝑎𝑥 

 

Clearly that in this case 1 − 2𝑎 < 0. Then f(x) must be concave down.  

Solving the fixed point, one has 

 

x = (1 − 2𝑎)𝑥2 + 2𝑎𝑥, 

x = 0, x =
2𝑎 − 1

2𝑎 − 1
= 1. 

The derivative of f(x) is given by 

f′(x) = 2(1 − 2a)x + 2a 

Thus, critical point is given has 

x =
−2a

2(1 − 2a)
 

One sees that x > 0, therefore there is no critical point in [0,1] 
Clearly for any x ϵ [0,1], f′(x) > 0 

Therefore, f(x) must be decreasing function. Hence, 

f(0) ≤ f(x) ≤ f(1) 

Which gives 

0 ≤ f(x) ≤ 1 

for any x ϵ [0,1]. 
Now, let me study the trajectory of f(x). Define 

 

h(x) = f(x) − x 

h(x) = (1 − 2𝑎)𝑥2 + 2𝑎𝑥 − x 

                                                             = (1 − 2𝑎)𝑥2 + (2𝑎 − 1)𝑥 

                                                             = (1 − 2𝑎)𝑥2 + (1 − 2𝑎)𝑥 
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                                                             = 𝑥(1 − 2𝑎)(𝑥 − 1) 

 

Because of 𝑥 ≥ 0, (1 − 2𝑎) > 0 and (𝑥 − 1) < 0, therefore 

h(x) ≤ 0 

Hence 

f(x) − x ≤ 0 

f(x) ≤ x 

Due to increasing property of f then 

 f n(x) ≤ f n−1(x)  
For all n ϵ ℕ. The sequence of 

f, f 2, f 3, … , f n , … 

is montone decreasing and bounded below. Thus, the limit exist. Since limit point must fixed 

point, then  

lim
n→∞

f n(x) = 0. 

 

 

In conclusion 

 

lim
n→∞

f n(x) = 0 

lim
n→∞

Vn(x) = (0,1). 

 

Example 

 

I let 𝑎 =  
3

4
.  Let  

𝑓(𝑥) =  − 
1

2
 𝑥2  + 

3

2
 𝑥 

Clearly that in this case −
1

2
< 0. Then f(x) must be concave down.  

Solving the fixed point, one has  

𝑥 =   −
1

2
 𝑥2 +

3

2
𝑥, 

0 =   −
1

2
 𝑥2 +

3

2
𝑥 − 𝑥 = −

1

2
 𝑥2 +

1

2
𝑥, 

x = 0, x =

1
2
1
2

= 1 

The derivative of f(x) is given by 

𝑓′(𝑥) =  − 𝑥 + 
3

2
  

Thus, critical point is given has 

x =
−

3
2

−1
=

3

2
 

One sees that x > 0, therefore there is no critical point in [0,1] 
Clearly for any x ϵ [0,1], f′(x) > 0 

Therefore, f(x) must be decreasing function. Hence, 

f(0) ≤ f(x) ≤ f(1) 

Which gives 

0 ≤ f(x) ≤ 1 

for any x ϵ [0,1]. 
Now, let us study the trajectory of f(x). Define 

h(x) = f(x) − x 
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h(x) = − 
1

2
 𝑥2  +  

3

2
 𝑥 − 𝑥 

 = − 
1

2
 𝑥2  + 

1

2
 𝑥 

Because of 𝑥 ≥ 0, (1 − 2𝑎) > 0 and (𝑥 − 1) < 0, therefore 

h(x) ≤ 0 

Hence 

f(x) − x ≤ 0 

f(x) ≤ x 

Due to increasing property of f then 

 f n(x) ≤ f n−1(x)  
For all n ϵ ℕ. The sequence of 

f, f 2, f 3, … , f n , … 

is montone decreasing and bounded below. Thus, the limit exist. Since limit point must fixed point, 

then  

lim
n→∞

f n(x) = 0. 

 

In conclusion 

lim
n→∞

f n(x) = 0 

lim
n→∞

Vn(x) = (0,1). 

 

4            ℓ-Volterra Quadratic Stochastic Operators 

 

4.1         Canonical Form of  ℓ-Volterra QSO 

 

In this section, I going describe the canonical form of  ℓ-Volterra acting on one dimensional simplex 

where 𝑛 = 2 on  𝑆1. 

Recall the definition for ℓ-Volterra,  

                                    P𝑖𝑗𝑘 =  0 for k ∉ {i, j}, k =  1, … , ℓ, i, j = 1, … , n;                                     4.1 

             𝑃𝑖𝑗𝑘   >  0 for at least one set 𝑖, 𝑗, 𝑘, 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑘 for any 𝑘 ∈ { ℓ +  1, . . . , 𝑛}.             4.2 

Recall 𝑆1(i.e., see 3.2) reduce to  

 

                                             S1 = {(x1, x2), x1, x2 ≥ 0, x1 + x2 = 1}.                                     4.3 

 

Furthermore, 𝑉(𝑥) = (𝑉(𝑥1), 𝑉(𝑥2)) given by (3.2) can be written as 

 

                                               V(x)1 = P11,1x1
2 + 2P12,1x1x2 + P22,1x2

2,                                     4.4 

                                                V(x)2 = P11,2x1
2 + 2P12,2x1x2 + P22,2x2

2,                                    4.5 

where P11,1, P12,1, P22,1, P11,2, P12,2, P22,2 𝜖 [0,1). 

 

The canonical form is 𝑉(𝑥)𝑘 = 2𝑎𝑥𝑘 + (1 − 2𝑎)xk. Now let me consider 𝑛 = 2.  

In this case ℓ = 1, 

                                                      𝑃22,1 = 0, 𝑃22,2 = 1, 𝑃11,2 > 0.                                            4.6 

 

Because of stochasticity (i.e. 𝑃𝑖𝑗,1 + 𝑃𝑖𝑗,2 = 1), so I has 

𝑃11,1 + 𝑃11,2 = 1, 
𝑃22,1 + 𝑃22,2 = 1. 

Based on definition of ℓ-Volterra, I has 

𝑃11,2 > 0, 𝑃22,1 = 0 

Therefore, I denote 

                                                             𝑃22,2 = 1.                                                                          4.7 
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Substitute (4.7) into (4.5) and (4.6), then I has 

 

                                                 V(x)1 =   𝑃11,1x1
2 + 2P12,1x1x2,                                                    4.8 

V(x)2 = 𝑃11,2𝑥1
2 + 2P12,2x1x2 + x2

2, 
where  𝑃11,1, P12,1, P12,2 are unknown. 

 

Therefore i taking into account P12,1 + P12,2 = 1 and 𝑃11,1 + 𝑃11,2 = 1, I has P12,2 = 1 − P12,1, Let  

P12,1 = b,  𝑃11,1 = 𝑎  

Therefore,  P12,2 = 1 − 𝑏, 𝑃11,2 = 1 − 𝑎  . 
Subtitute P12,2 = 1 − 𝑎 into (4.6) then equation will become  

 

𝑉(𝑥1) =  𝑎𝑥1
2 + 2𝑏𝑥1𝑥2, 

                                                                                                                                                          4.9 
    V(x2) = (1 − a)x1

2 + 2(1 − 𝑏)x1x2 + x2
2. 

By using properties  𝑥2 = 1 − 𝑥1, then 

 

𝑉(𝑥)1 = 𝑎𝑥1
2 + 2𝑏𝑥1𝑥2, 

= 𝑎𝑥1
2 + 2𝑏𝑥1(1 − 𝑥1) 

= 𝑎x1
2 + 2bx1 − 2bx1

2, 
= 𝑎𝑥1

2 + 2𝑏𝑥1 − 2𝑏𝑥1
2, 

= 2𝑏𝑥1 + (𝑎 − 2𝑏)𝑥1
2. 

Thus, 

𝑉(𝑥1) =  𝑎𝑥2 + 2𝑏𝑥(1 − 𝑥) 

    V(x2) = (1 − a)𝑥2 + 2(1 − 𝑏)x1(1 − x) + (1 − x)2. 
 

4.2          Fixed Point of 𝓵-Volterra QSO. 
 

In this section, i going to find all the fixed point of ℓ-volterra quadratic stochastic operators on 1-

dimensional simplex. 

 

From previous section, i get 𝑉(𝑥) = (𝑉(𝑥)1, 𝑉(𝑥)2). Since V(x)1 + V(x)2 = 1,
thus it is enough to study V(x)1 only. 

 

Let 

f(x) = αx2 + 2βx(1 − x)  

 

Solve for the fixed point : 

 

αx2 + 2βx(1 − x) = x                                                          
αx2 + 2βx − 2βx2 = x, 

αx2 − 2βx2 + 2βx − x = 0, 
(α − 2β)x2 + (2β − 1)x = 0, 
x[(α − 2β)x + (2β − 1)] = 0, 

𝑥 = 0, 𝑥 =
−(2β − 1)

α − 2β
. 

 

This show that 𝑥 is a fixed point either 𝑥 = 0 or 𝑥 =
−(2β−1)

α−2β
. 

I know that 𝑉(𝑥)2 = 1 − 𝑉(𝑥)1. 

So, 

1 − 𝑥 = 1 −  
−(2β − 1)

α − 2β
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=
α − 2β

α − 2β
−

−2β + 1

α − 2β
 

=
α−1

𝛼−2𝛽
. 

 

Therefore, the fixed point 𝑉(𝑥) = (
−(2β−1)

α−2β
,

α−1

𝛼−2𝛽
) , (0,1). 

                     

Now, i want to check whether 𝑥0 =
−(2β−1)

α−2β
 inside [0,1] or not. If 𝛼 = 1, then i will get 𝑥0 = 1. 

Suppose that 𝑥0 =
(1−2β)

α−2β
< 1,   then I has two cases 

i) Case 1: (α − 2β) > 0,  thus 
(1 − 2β) < α − 2β 

 1 < α 

Which is a contradiction (since 𝛼 ≤ 1). Therefore, in this case 𝑥0 > 1. Thus, 𝑥0 is not in range [0,1]. 
 

 

ii)         Case 2: α − 2β < 0, thus 

1 − 2𝛽 > α − 2β  
1 > a 

 

 

Therefore, if α − 2β < 0, then 𝑥0 < 1. To make sure 𝑥0 ≥ 0, we impose 1 − 2𝛽 ≤ 0  

Or equivalently 𝛽 ≥
1

2
. I can conclude the following: 

The fixed point of ℓ-Volterra QSO is 

i. (0,1) for any ℓ- Volterra QSO 

ii. (
1−2𝛽

𝛼−2𝛽
,

α−1

α−2β
)  if 𝛼 − 2𝛽 < 0 and 𝛽 ≥

1

2
 

 

4.3          Stability of Fixed Point of 𝓵-Volterra QSO. 

 

In this subsection, I going to study stability of fixed point. 

                                                   x′ = α𝑥2 + 2βx(1 − x),                                                                4.10 

y′ = (1 − 𝛼)𝑥1
2 + 2(1 − β)x(1 − x) + (1 − x)2. 

i) Firstly, I going to consider fixed point for x = 0 ; 
f(x) = α𝑥2 + 2βx − 2βx2. 

f ′(x) = 2αx + 2β − 4βx, 
f ′(0) = 2β 

 

Suppose 

2β < 1  ⟹  β <
1

2
 

From this, I can conclude that 

If  β ∈ (0,
1

2
)  then (0,1] attracting. 

If  β ∈ (
1

2
, 1]  then  (0,1] repelling. 

If β =
1

2
   then   (0,1) non − hyperbolic fixed point 

 

ii) Secondly, i going to consider fixed point for x =  
1−2𝛽

𝛼−2𝛽
; 

Let 𝑥0 =
1−2𝛽

𝛼−2𝛽
 

     f(x) = α𝑥2 + 2βx − 2βx2. 
f ′(x) = 2αx + 2β − 4βx, 
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                                                           f ′(𝑥0) = 2α(x0) + 2β − 4β(x0) 

                                                                       = 𝑥0(2𝛼 − 4𝛽) + 2𝛽 

                                                                       = 2 (
1−2𝛽

𝛼−2𝛽
) (𝛼 − 2β) + 2β 

                                                                       = 2(1 − 2β) + 2β 

                                                                       = 2 − 2β = 2(1 − β) 

Since 𝛽 ≥
1

2
, then –𝛽 ≤ −

1

2
  

                          1 − 𝛽 ≤ 1 −
1

2
=

1

2
. Thus, 

 

f ′(𝑥0) = 2(1 − β)θ ≤ 2 (
1

2
) = 1 

Hence, |𝑓′(𝑥0)| ≤ 1. Therefore, if 
1

2
< 𝛽 ≤ 1, then the fixed point (

1−2𝛽

𝛼−2𝛽
, 1 −

1−2β

α−2β
) is attracting. If 

𝛽 =
1

2
, the fixed point (

1−2𝛽

𝛼−2𝛽
, 1 −

1−2β

α−2β
) is non-hyperbolic. 
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