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Abstract 
Contemporary variable selection via penalization or regularization for high-dimensional is data break down 

when data grows into ultrahigh dimensional space. Commonly used methods to overcome this problem is 

by screening before applying the penalization. Sure independence screening (SIS) selects variables 

based on the marginal utility ranking before regularization is applied on the model. However marginal utility 

from highly correlated variables tends to carry redundant information. Hence, in this paper, 3 stage 

variable selection method is implemented. Stage 1 is to select n -1 variables from ranked marginal utility. 

Stage 2 is to use a simple bivariate correlation to remove the highly positively correlated variables from 

the n-1 variables. Finally, Stage 3 is to apply the Least Absolute Shrinkage and Selection Operator 

(LASSO) regularization technique to further select variables automatically. Eight alternative models 

developed to evaluate the proposed method and tested on microarray gene expression dataset series 

GSE65194 for breast cancer type classification. The correlation-filtered model still produced high 

accuracy, but with fewer variables or genes in cancer classification. Over-pruning of variables, on the other 

hand, causes model accuracy to deteriorate. 
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Introduction 
High-dimensional data is a case where the number of variables, p , exceed the number of observations, 

n, frequently termed as the “large p and small n problem” ( p ≫ n ) [1, 2].  There are several challenges 

encountered in high-dimensional data, such as data visualizations, computational complexity [3, 4], 

overfitting [5] and poor interpretability due to a large number of variables. Variable selection via 

regularization is often the researchers’ option solving the problem of p ≫ n [6]. 

Though a regularization method such as Least Absolute Shrinkage and Selection Operator 

(LASSO) [7] is a promising method in automatic variable selection in high-dimensional data, this method 

breaks down when data is in ultrahigh dimensional space. Ultrahigh-dimensional data refers to a dataset 

with log (p ) = O (nα) for some 0< α<1 [8]. Selecting variables in ultrahigh-dimensional models correctly 

and automatically is a tough problem. Fan and Lv [8] introduced a breakthrough method known as sure 

independence screening (SIS) to address this problem in regression context. All-important variables in 

the model are retained with a probability close to 1 when variables are selected using the SIS method. 

The method is simple, straightforward, and computationally efficient, with the goal of lowering the number 

of independent variables before variable selection via regularized model learning, often known as two 

stage variable selection. 
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In this era of modern technologies with remarkable computing facilities, data is collected often in 

ultrahigh dimensional space. For example, microarrays, financial data, astronomical data, and image 

processing data. In gene expression data for cancer classification, it is common to have tens of thousands 

of variables while the number of observations or samples are only in tens or hundreds [9]. However, only 

a small number of genes are relevant to the disease while other genes are just noise [10, 11]. In addition, 

many genes are highly correlated, resulting in redundant data. Effective gene selection is important in 

predicting cancer types with high prediction accuracy. 

Multinomial Logistic Regression (MLR) is part of the generalized linear model (GLM) family 

suitable for multiclass classification problems [10, 12]. SIS method was extended to GLM by Fan et al. 

[9]. The negative log-likelihood for each independent variable is defined as marginal utility. The marginal 

utilities are ranked in ascending order and q-vector independent variables selected, usually q <n, before 

applying regularized model learning. However, the first q variables selected could be highly correlated 

variables carrying redundant information, resulting in a complex model with possible overfitting. To 

address this problem, 3 stages variable selection is proposed. Stage 1 – Variable selection via SIS. Stage 

2 – Variable selection via correlation filtering on variables selected in Stage 1. Stage 3 – Variable 

selection via regularization on variables selected in Stage 2. A correlation filtering at Stage 2 removes 

variables which are highly correlated, resulting in a more parsimony model for better interpretation and 

reducing overfitting. 

 

Materials and methods 

Let dataset with 𝑲 category response variable 𝒀𝒊  ∈ [𝟎, 𝟏, . . , 𝑲] and 𝑿 = [𝑿𝟎, 𝑿𝟏, . . , 𝑿𝒑] where 𝑿𝟎 ≡ 𝟏  

be independent variables that influence the response variable. 𝒀𝒊~ 𝒎𝒖𝒍𝒕𝒊𝒏𝒐𝒎𝒊𝒂𝒍 (𝒏 = 𝟏, 𝒑 =

(𝒑𝒊𝟏, . . , 𝒑𝒊𝑲)) subject to: 

 

∑𝑲
𝒊=𝟏 𝒀𝒊𝒌 = 𝟏 and ∑𝑲

𝒊=𝟏 𝒑𝒊𝒌 = 𝟏    

 

Following Hosmer and Lameshow [13] the MLR model in the logit form taking category 𝟎 as the 

reference category can written as following equation: 

 

𝑔𝑗(𝑥) = 𝑙𝑛 {
𝑃(𝑌 = 𝑗|𝑥

𝑃(𝑌 = 0|𝑥
} =  𝛽𝑗0 + 𝛽𝑗1𝑥1+ , . ., 𝛽𝑗𝑝𝑥𝑝   , 𝑗 = 1,2, . . , 𝐾 

 

where 𝒈𝒋(𝒙) is the logit function, 𝝅𝒋(𝒙) =  𝑷(𝒙) =  
𝒆

𝒈𝒋(𝒙)

∑𝑲
𝒌=𝟎 𝒈𝒋(𝒙)

,  j = 0,1,..,K and 𝜷𝒋𝒑 is the coefficient for 

logit function 𝒈𝒋(𝒙) for independent variable 𝒑 can be estimated via maximum likelihood  𝑳(𝜷) or 

equally log-likelihood 𝒍(𝜷) respectively written as follows. 

 

𝑳(𝜷) =  ∏𝒏
𝒊=𝟏 ∏𝑲

𝒋=𝟎 [ 𝝅
𝒊𝒋

𝒀𝒊𝒋
(𝒙)]  and 

 𝒍(𝜷) =  ∑𝒏
𝒊 [𝒚𝟏𝒊𝒈𝒋(𝒙𝒊) + ⋯ + 𝒚𝒋𝒊𝒈𝒋(𝒙𝒊) − 𝒍𝒏 (𝟏 +  𝒆𝒈𝟏(𝒙𝒊)+ . . +𝒆𝒈𝒋(𝒙𝒊) ]   

Having these formulated, the 3 stages variable selection are performed as follows: 

 

Stage 1: Variable Selection via SIS 

All independent variables are standardized via a robust standardization method to minimize the 

effect of different scales of measurements. Following the SIS method [8],  the marginal utility 𝑳𝒋 

which is the negative log-likelihood are computed. The marginal utility for the 𝒋th independent 

variable 𝒙𝒋 for 𝒋 = 𝟏, . . , 𝒑, with response variable 𝒚𝒊, 𝒊 = 𝟏, . . , 𝒏, is defined by: 

 𝑳𝟎 =  𝒍(𝜷) =𝒍𝒐𝒈 𝒍𝒐𝒈 𝑳(𝒚𝒊, 𝜷𝟎)   and 𝑳𝒋 =  𝒍(𝜷) =𝒍𝒐𝒈 𝒍𝒐𝒈 𝑳(𝒚𝒊, 𝜷𝟎 +  𝒙𝒊,𝒋𝜷𝒋)          
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The marginal utilities  𝑳𝟏 , . . , 𝑳𝒑 are then ranked in ascending order giving, 

𝑳𝒗(𝟏), 𝑳𝒗(𝟐), . . , 𝑳𝒗(𝒒), … , 𝑳𝒗(𝒑) from where 𝒒 vector of independent variables (𝒙𝒗(𝟏), 𝒙𝒗(𝟐), . . , 𝒙𝒗(𝒒))  

selected  for Stage 2 screening. Here,  𝒒 = 𝒏 − 𝟏, as suggested by Fan and Lv [8]. With, 𝒒 < 𝒏 , 

computational complexity is reduced, and low dimensional statistical methods can be applied. 

 

Stage 2: Variable Selection via Correlation Filtering 

The q variables selected from Stage 1, further filtered with a simple bivariate correlation, 𝒓𝒋𝒍 , 

between independent variable 𝒋 and 𝒍,  computed by the following formula: 

 

𝑟𝑗𝑙 =
∑𝑛

𝑖=1 (𝑥𝑖𝑗 − 𝑥𝑗)(𝑥𝑖𝑙 − 𝑥𝑙)

√∑𝑛
𝑖 (𝑥𝑖𝑗 − 𝑥𝑗)

2
(𝑥𝑖𝑙 − 𝑥𝑙)

2
 

When two variables are correlated with a cut-off correlation greater than or equal to r, one of the 

variables will be dropped. A positive correlation indicates both carry similar information, thus 

impacting the response variable in the same way; hence one variable is redundant and can be 

dropped.  The cut-off correlation is selected to be 0.7, 0.8 or 0.9 in this paper. An only positive 

correlation is considered as the negative correlation indicates the opposite impact of the independent 

variable to the response variable. Denoting the variables selected as 𝒎 after positive correlation 

filtering, where 𝒎 ≤ 𝒒,  

 
Stage 3: Variable Selection via Regularization 

The m, variables selected in Stage 2, may still include many unimportant independent variables. 

This is addressed via LASSO [7] regularized likelihood in Stage 3. The final parameter estimation is 

defined as: 

𝜷̂  = [ ∑𝒏
𝒊=𝟏 ∑𝒎

𝒍=𝟎 𝒍(𝜷) +  𝝀 ∑𝑲
𝒌=𝟎 ∑𝒎

𝒍=𝟏 𝜷𝒌𝒍 ]  

where 𝜆 is the tuning parameter selected via cross validation. The final estimated parameter matrix 

is sparse, where non-zero columns, c << n.  

To the best knowledge the additional filtering of variables via correlation after sure 

independence screening has not been implemented yet in literature. 

To demonstrate the usefulness of the suggested methodology, 8 alternative models 

developed and tested with a real data set. Four models consist of MLR models and four MLR models 

with LASSO regularization (LASSO MLR).  

Microarray dataset from breast cancer samples with the identification GSE65194 were 

downloaded from the Gene Expression Omnibus (GEO) of the National Center for Biotechnology 

Information (NCBI). This dataset consists of only 178 observations but with a whopping of 54763 

independent variables but with no missing values. The responses variable consists of six classes i.e 

normal tissue (Healthy) and five different types of cancer known as Luminal A, Luminal B, Triple 

Negative Breast Cancer/Basal-like (TNBC), TNBC cell lines (Cell line), (Human Epidermal Growth 

Factor Receptor 2 (Her2). Split ratio of 70:30 applied on data for training set and test set for model 

building and model testing respectively. 

 

Results and discussion 

Model development and evaluation of the proposed method is implemented with Python Programming. 

Confusion matrix and classification report available in Python Scikit-Learn library [14] are used to 

compute these performance metrics: 

a. Accuracy: Metric to measure model ability to correctly identify each cancer type. 

b. Sensitivity: Metric to measure model ability to identify true positive of each cancer type. 

c. Specificity: Metric to measure model ability to identify true negative of each cancer type. 

 

 

(6) 
 
 

(7) 
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Table 1: Sensitivity and specificity values for test dataset 

Model 

trained 

on 70% 

of 

dataset 

Correl

ation 

used 

to filter 

variabl

es 

Sensitivity 

(Specificity) 

  

Accuracy 

On 30% 

of 

dataset 

[10 fold 

cross 

validatio

n] 

  

Genes 

Selected 

Stage 

Cancer Type 

1 2 3 

0 1 2 3 4 5 

1. MLR - 0.75 

(1.0

0) 

0.75 

(1.0

0) 

0.91 

(1.0

0) 

1.00 

(0.9

8) 

0.9 

(1.0

0) 

0.95 

(1.0

0) 

0.95 
17

7 

N

A 

N

A 

2. MLR 0.90 0.75 

(1.0

0) 

0.75 

(1.0

0) 

0.91 

(1.0

0) 

1.0 

(0.9

8) 

0.90 

(1.0

0) 

0.95 

(1.0

0) 

0.96 
17

7 

9

4 

N

A 

3. MLR 0.80 0.75 

(1.0

0) 

0.75 

(1.0

0) 

0.91 

(1.0

0) 

1.00 

(0.9

8) 

0.88 

(1.0

0) 

0.95 

(1.0

0) 

0.96 
17

7 

2

1 

N

A 

4. MLR 0.70 0.11 

(1.0

0) 

0.27 

(1.0

0) 

0.71 

(0.9

0) 

0.69 

(0.9

0) 

0.33 

(1.0

0) 

0.70 

(1.0

0) 

0.89 
17

7 
5 

N

A 

5. LASSO 

MLR 

- 0.75 

(1.0

0) 

0.75 

(1.0

0) 

0.91 

(1.0

0) 

0.89 

(1.0

0) 

1.00 

(0.9

8) 

0.95 

(1.0

0) 

0.82 
17

7 

N

A 

4

9 

6. LASSO 

MLR 

0.90 0.75 

(1.0

0) 

0.75 

(1.0

0) 

0.91 

(1.0

0) 

0.89 

(1.0

0) 

1.00 

(0.9

8) 

0.95 

(1.0

0) 

0.80 
17

7 

9

4 

4

0 

7. LASSO 

MLR 

0.80 0.60 

(1.0

0) 

0.60 

(1.0

0) 

0.82 

(1.0

0) 

0.90 

(0.9

8) 

0.90 

(0.9

8) 

0.90 

(1.0

0) 

0.77 
17

7 

1

8 

1

5 

8. LASSO 

MLR 

0.70 0.00 

(1.0

0) 

0.21 

(1.0

0) 

0.67 

(0.8

5) 

0.60 

(0.8

7) 

0.15 

(1.0

0) 

0.63 

(1.0

0) 

0.72 
17

7 
5 5 

 

Cancer Type: 0 – Healthy, 1- Cell line, 2- Her, 3- Lumina A, 4- Lumina B, 5- TNBC 

 

The results are summarized in Table 1. From Table 1, Stage 1 resulted 177 genes selected to be 

included in the model. High sensitivity and specificity is recorded for the MLR model (1), but it is not a 

parsimonious model in relation to other models in Table 1. In model (2), with a cut off correlation of 0.90, 

the number of genes lowered to 94 with slightly increased accuracy of 0.96. Lower cut-off correlation of 

0.80 and 0.70 has further reduced the number of genes respectively to 21 and 5 but with deteriorating 

sensitivity and specificity performance metrics. LASSO MLR models (5) to (8) generated the final genes 

with the same trend of MLR models. LASSO MLR model (6) achieved an accuracy of 0.80 compared to 

LASSO MLR model (5) of 0.82, but the final number of genes is an improvement from 49 to 40. 
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Conclusion 

This paper investigates the problem of ultrahigh dimensional space variable selection for the MLR model. 

The concept of three-stage variable selection is proposed. In stage 1, the existing SIS method lowers the 

number of independent variables from high dimensional space to low dimensional space. In stage 2, these 

variables are further reduced if any two variables are highly correlated by filtering one of the variables. 

Finally, in stage 3, the regularization method performs automatic variable selection. Correlation filtering in 

stage 2, able to further reduce additional variables by removing variables that are highly correlated, giving 

an improved parsimony model. The performance metrics, however, deteriorated when correlation filtering 

was less than 0.80. A more parsimony classification model is essential for researchers to focus on genes 

responsible for different cancer types. The genes identified are useful in predicting cancer type in 

different subjects and will assist doctors investigate a patient's danger profile and to prescribe a route of 

treatment tailor-made to that profile. 
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