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Abstract 

Most of the studies solved numerically on the Casson fluid flow in the cylindrical domain by considering 

no-slip velocity effect. Due to the lack of fractional analytical approaches, this present study is trying to 

obtain the analytical solution for the fractional time derivative model of Casson fluid flow in the cylinder 

with slip velocity effect. The momentum governing equation was expressed by using the Caputo-Fabrizio 

fractional derivative. The joint methods of Laplace transform and finite Hankel transform are applied to 

obtain an analytical solution of fluid flow velocity. The results showed that the velocity profiles increased 

when the Casson parameter, fractional parameter and slip velocity parameter were increased. This study 

is significant to explore more on fluid behavior with fractional-derivative approach model and the obtained 

results can be applied in biomedical applications. 
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Introduction 
Casson fluid is one of the non-Newtonian fluids with unique behavior. It behaves like an elastic solid and 

initiates the flow depending on the applied shear stress. Examples of Casson fluid are blood, honey, jelly, 

tomato sauce and others (Alderman and Pipelines, 1977). Nowadays, researchers are interested in 

studying the Casson fluid with fractional derivative models such as Caputo, Riemann-Liouville, Caputo-

Fabrizio and Atangana-Baleanu. The concept of the fractional derivative is to discuss the n-notation of 

the derivative if it is a fractional or complex number. It is an important tool to describe physical memory in 

many applications such as fluid mechanics, biological materials and others (Zheng, 2017; Ray et al., 

2014). However, some fractional derivative models have limitations and difficulty in modelling the physical 

problems due to the power law kernel. Thus, the most appropriate for modelling the fluid flow with a non-

singular kernel is introduced, which is Caputo-Fabrizio fractional derivative model (Shaikh et al., 2019). 

Motivated with this derivative, Maiti et al., 2020 studied analytically Casson fluid flow in the cylinder with 

the Caputo-Fabrizio fractional derivative model. Then, Jamil et al., 2021extended the problem with the 

Casson fluid flow in an inclined cylinder. All of them solved the problems analytically by using Laplace 

transform and finite Hankel transform methods.  

Most of the previous studies on Casson fluid flow in the cylinder consider no-slip velocity effect. 

However, slip velocity at the boundary plays a vital role to study since it influences fluid velocity and exists 

in real-life applications such as blood flow in the arteries and the oil and gas drilling process. Slip velocity 

can be defined as a finite velocity of fluid occurring at the boundary. In another word, it exists when a 

velocity gradient occurs between two mediums which are the surface and the adjacent particles of the 

fluid flow freely on the surface (Rao and Rajagopal, 1999; Nubar, 1971). Due to its importance, many 

researchers are attracted to study the slip effect on the fluid flow such as Padma et al., 2019. They 

explored the Jeffrey fluid flow behavior in the cylinder with the presence of slip and no-slip effect. They 

obtained an analytical solution by using Laplace and finite Hankel transform methods. Then, Jalil and 

Iqbal, 2021 solved numerically the impact of slip velocity on the Casson fluid in the cylinder. None of them 

studied the slip effects on the fluid flow in the cylinder with the Caputo-Fabrizio fractional derivative model.  
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Based on the above literature, many researchers studied analytically the Casson fluid flow in the 

cylinder with Caputo-Fabrizio fractional derivative approach but all of them consider no-slip boundary 

conditions. However, based on the cited above, researchers studied the slip effect and solved them 

analytically on the other fluid models and some of them solved numerically for the Casson fluid model. 

Thus, the aim of this study is to obtain analytical solutions for an incompressible Casson fluid flow in the 

cylinder with the Caputo-Fabrizio fractional derivative approach model and slip velocity effect. Besides, 

the obtained analytical solution of fluid velocity will be analyzed to understand the fluid flow behavior. 

In order to achieve the objectives, several steps need to be considered. Firstly, the dimensionless 

momentum governing equation is transformed into the Caputo-Fabrizio Fractional order derivative. 

Secondly, the joint transformation techniques of Laplace transform and finite Hankel transform have been 

used to obtain analytical solutions of fluid velocity. Lastly, the obtained solution of the fluid velocity will be 

plotted by using Maple software to analyze fluid velocity behavior with the related parameters. 

Mathematical Formulation 

Consider the unsteady free convection flow of an incompressible Casson fluid in a vertical cylinder of 

radius, r0. The axis of the cylinder in a vertical upward is considered as the z-axis and the r-axis is taken 

as normal to it. Initially, at t*=0, both fluid and cylinder are at rest. Then, at t*>0, the fluid begins to flow 

due to the existence of the velocity gradient between fluid particles and the wall of the cylinder or also 

known as slip velocity, us occurred at the boundary of the cylinder. The fluid velocity is the function of r 

and t only. The fluid flow problem can be represented in the schematic diagram as shown in Figure 1.  

  

 

 

 

 

 

 

 

 

 

 

 

Then, under Boussinesq’s approximation, the corresponding partial differential equation of momentum 

(Padma, Selvi and Ponalagusamy, 2019) is given as 
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Introducing the following dimensionless variables (Padma, Selvi and Ponalagusamy, 2019; Khan et al., 

2018) 

         (3) 

where ρ is the density of the fluid, u* is the velocity component along the z-axis, µ is the dynamic viscosity 

of the fluid, β is the non-Newtonian Casson parameter, u0 is the average velocity of the fluid, ν is the 

kinematic viscosity of the fluid. Then, substitute equation (3) into equations (1) and (2) for the non-

dimensionalization process to obtain the dimensionless partial differential equation of momentum as 

written below 
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Figure 1. Schematic diagram of the fluid flow 
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 are the constant parameters. Employing Caputo-Fabrizio fractional 

derivative to the above fluid classical model (4), yields 
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 for 0<α<1 is the definition of the Caputo-Fabrizio 

fractional derivative (Maiti, Shaw and Shit, 2020). In order to obtain an analytical solution of the fluid 

velocity, the joint methods of Laplace transform and finite Hankel transform are utilized. Both of the 

transformations are useful when dealing with the cylindrical domain that is involved with the time, t. 

Applying Laplace transform into momentum equation (4) and boundary condition (5) subjected to the initial 

condition (5), give 
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where 0 1 1 ,a = − 1 0 ,a a =  are the fractional constant parameters, ( , )u r s  is the Laplace transform of 

the function u(r,t) and s is the transform variable. Then, the finite Hankel transform is applied to the 

equation (7) by using boundary condition (8) and the simplification of the obtained equation can be written 

as 
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Where 
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 is the finite Hankel transform of the function and rn, with 

n=0,1,…are the positive roots of the equation, where J0 is being the Bessel function of first kind and zero 

order, J1 is being the Bessel function of first kind and first order. Next, applying the inverse Laplace 

transform of equation (9), give 
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Finally, the inverse finite Hankel transform is applied to Eq. (10) and the velocity of fluid flow is obtained 

as: 
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Results and Discussions 

Figure 2 represents the velocity profile of Casson fluid flow in the cylinder at two different values of slip 

velocity us= 0.2 and 0.4 with three different values of fractional parameter α=0.3,0.7 and 1.0. It shows 

that fluid velocity increased with the increase of fractional parameters. Fractional parameters play a vital 

role to control the fluid flow velocity. In this figure at t=1.0, it showed that Casson fluid flow with classical 

model α=1 is faster than Casson fluid flow with fractional model 0<α<1. It is due to the fact that fractional 

Casson fluid flow is more realistic compared to the classical Casson fluid flow as time increases. As we 

can see in Figure 3, as time increases from t=0.1 to t=1.0, the classical model of fluid flow drastically 

increases while the fractional model of fluid flow slightly increases. Besides that, the impacts of the slip 

velocity on the fluid flow behavior can be notified at the wall of the cylinder at r=1. Based on the 

observations in Figure 2, slip velocity effect at the boundary increased will cause fluid velocity at the wall 

of the cylinder increased. Meanwhile, fluid velocity decreases as it is approaching the center of the 

cylinder. It is due to the viscosity of the Casson fluid. It needs an additional shear stress or other forces 

to enhance the fluid flow at the center of the cylinder.  

Moreover, the influence of the Casson parameter, β on the fluid flow velocity is exhibited in 

Figure 4. It is clearly seen that an increase in the Casson parameter led to an increase in velocity profiles. 

It is because yield stress falls and the boundary layer thickness decrease when the Casson parameter 

increases which results in fluid velocity enhancement. 

 

 

 

 

 

Figure 2 Impact of slip velocity, us and 

fractional parameter, α when β=1, t=1. 

 

Figure 3 Classical and fractional fluid 

flow behavior for t=0.1, 1.0 
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Figure 4 Impact of Casson parameter, β and fractional parameter, α when us=0.4, t=1. 

Conclusion 

In the present study, the unsteadiness of the incompressible Casson fluid model has been considered in 

the cylindrical domain with the slip velocity effect. The momentum governing equation for Casson fluid has 

been modeled in a partial differential equation and Caputo-Fabrizio fractional derivative approach model 

is applied. Then, the analytical solution has been obtained by using the Laplace transform and finite Hankel 

transform of zeroth-order. Finally, the analytical solution is satisfied with the initial and boundary 

conditions. Furthermore, the obtained solutions are discussed graphically with the effects of Casson 

parameter β, fractional parameter α, and slip velocity parameter us. The velocity profiles increase when β, 

α and us are increased. Besides, the fluid flow velocity is higher at the boundary of the cylinder and 

decreases as it is approaching the center of the cylinder. It is significant to study the fluid velocity behavior 

with the fractional derivative model since it is more realistic. Moreover, these findings are beneficial to 

analyzing and controlling the fluid flow which is related to the human blood system to overcome the blood 

disease problems. Besides, this study can be developed in the future with nanofluid and hybrid nanofluid 

models and add the other effects. 
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