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Abstract 

The field of formal language theory involves the construction of words or sentences through a meticulous 

framework called a system. The set of words derived from the same system is called a language, where 

it is readily capable of undergoing set operations such as union, concatenation, concatenation closure, 

-free concatenation closure, homomorphism, inverse homomorphism, and intersection. Recently, a 

system depicting chemical bonding that generates languages in a parallel manner has been introduced, 

called bonded parallel insertion-deletion systems. The systems utilize the operations of insertion and 

deletion on letters with integers attached on either side to produce words where the sum of consecutive 

integers is zero. In this case, the integers are the bonds of each letter. The system is said to be parallel 

since the application of the insertion and deletion rules occurs simultaneously at each possible position. 

The aim of this research is to determine the characteristics of the languages generated by these systems 

under various set operations. 

Keywords: insertion-deletion systems; bonded systems; parallel systems; formal language theory; 

closure properties 

 

Introduction 

The advent of parallelism in the modern day has brought upon rapid advancement in technology beyond 

even the predictions of Moore [1]. The efficiency and work rate of computer processes has seen 

monumental increment, where even the lowest consumer-oriented processors now completely dwarfing 

top of the line processors of yesteryears. Parallelism, however, was not a man-made concept. Parallelism 

occurs naturally in life: in the development of cells, in the growth of plants, and in the lineage succession 

of humanity. 

It is this concept of parallelism in nature that became the impetus for Lindenmayer’s work in 1968 

that birthed the concept of L-systems [2,3], a mathematical model he called developmental systems that 

utilizes parallel production rules instead of sequential ones. His work blossomed into a rapidly growing 

area of formal language theory, with research into the classification of the generative power, closure 

properties, and complexity of L-systems being the focus of numerous researchers [4-10]. 

More recently, L-systems were used as a comparison to determine the generative power of parallel 

variants of bonded systems [11-13], which are systems that execute production rules on letters in a 

bonding alphabet introduced in [14]. The bonding alphabet consists of letters that are attached to integers 

on either side to represent its bond number, such that these letters can only be inserted or deleted to form 

a well-formed word. This concept simulates the chemical bonding between atoms during the formation of 

molecules or compounds. 

In this research, the focus is on determining the characteristics of the languages generated by 

bonded parallel insertion-deletion systems [13] by proving the closure under the set operations of union, 

concatenation, concatenation closure, -free  concatenation closure, homomorphism, inverse 

homomorphism, and intersection with regular languages. 

 

 

 

 



 
 

82 

 

Yosman et al. (2022) Proc. Sci. Math. 6:81-85 

 

 

Materials and methods 

We present our findings through direct proofs with reference to previous work in this field. The results on 

closure properties of L-systems have been studied extensively in [8-10] while the closure under set 

operations have been clarified in [15]. Based on these, the results in this research are obtained. For further 

clarification, some fundamental concepts and definitions pertinent to this research are presented. The 

reader may refer to [14-18] for more in-depth reading. 

 

First off, we recall some basic notations in formal language theory as shown in Table 1. 

 

Table 1: Some basic notations in formal language theory 

Notations Meaning 

A B   The inclusion of a set A  in a set B  

A B   The proper inclusion of a set A  in a set B  

   An alphabet, which is a set of symbols 
*   The set of all words over the alphabet   

*L     A language over an alphabet   

L   A family of languages is a set of languages 

   The empty word 

 

Next, we present the definition of bonding alphabet in Definition 1. 

 

 

Definition 1 [14] Let  be the set of integers as well as 

    0 00, 1, 2, 0,1,2, .and− +−= =−   

Let   be an alphabet. Then the set 0 0

+ −

 = B  is a bonding alphabet over .  An element ( ), ,i a j−  

of B  is called a letter a  with left bond i  and right bond .j−  To simplify the presentation, i ja−
    is written 

instead of ( ), ,i a j−  for a letter a  from .B  

Let  

 
2 3 4 5 2 20 1 2 11 2 3 n ni i i i i i i niw a a a a

− −

       =           

be a nonempty sequence of letters from .B  The sequence w  is said to be well-formed if all bonds fit, i.e. 

2 1 2 0,  j jii − + = for 1 1,j n  −  where n  is an integer. If additionally, 0 2 1 0nii −+ =  holds, then w  is said to 

be a balanced word or for short a word. If 0 2 1 0,ni i − +  then the word is said to be unbalanced. Moreover, 

a word is neutral if 0 2 1 0.ni i −= =   

For a well-formed word 

 
1 2 20 1 3 11 2 3 ,

n ni i i i i i i n iw a a a a
−− − − −

      =          

the word w  is said to have the left bond 0i  and the right bond ni−  as the outer bonds and 1 1, , ni i −  as the 

inner bonds. If the inner bonds are not of interest, then the word is written as 

 
0 1 2 3 .

ni n ia a a a −
 
    

The set of all well-formed words built from letters of B  including the empty word is referred to as 


B  while 

the set of all balanced words built from letters of B  including the empty word is referred to as .

#B  By 

definition, . #B B  

The empty word is the neutral element of both structures 


B  and ,

#B  written as 
0 0i i−

 
   for some number 

0 0 .i +  The empty word is always a balanced word. 

The length of a bond word w  from  


B  and 

#B  is denoted by w  and is equal to the number of letters in 

.w  In particular, the empty bond word is of length 0.  
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 Furthermore, the bond erasing homomorphism as presented in Definition 2 removes the bonds 

on the derived words to enable comparison of bond words with words from common families in formal 

language theory. 

 

Definition 2 [14] The bond erasing homomorphism is a homomorphism 

*:  beh  →#B  defined by ( )  be i jh a a−
  =   for every .i ja− 

   B  

Now, the definition of bonded parallel insertion-deletion systems (bPINSDEL-systems) is presented in 

Definition 3. 

 

Definition 3 [13] Let   be a finite alphabet, A  #B  be a finite set of axioms that contains 

only neutral words, and ,I D 

 B  be a finite set of insertion strings and deletion strings, respectively, such 

that the insertion strings in I  and the deletion strings in D  need not be balanced. A bonded parallel 

insertion-deletion system (bPINSDEL-system) is a quadruple ( ), , ,A I D =  , where the derivation relation 

  of a bPINSDEL-system ( ), , ,A I D =   is defined as follows: for any ,A   ,       #B  if and 

only if at least one of the following is true:  

• 1 2 1,  n n   =   and , 1 i i n 

  B  are nonempty subwords and there are insertion strings 

,  1 1i I i n    +  such that 1 1 2 2 1 1 1n n n n n         − − +=  and there are no insertion strings that can be 

inserted into subwords .i


B  

• 21 2 3 11 1 1,  1n n n n n n          − − +
         =   and ,  1i i n 


  B  are nonempty subwords and there are 

deletion strings ,  1 1i D i n    +  such that 1 2 n     =  and there are no removable deletion strings 

left inside subwords ,,  1i i n 


  B  i.e. .0,  i D


 


 =   Here, a removable deletion string is a string 

that once removed results in a well-formed word. 

The reflexive and transitive closure of   is denoted by 
* .  If there is no risk of ambiguity,   and *  

are written instead of   and 
* ,  respectively. The language generated by a  

bPINSDEL-system ( ), , ,A I D =   is defined as 

  * ,( ) ( )be there is an axiom  such that L h A     =  ∣   

where beh  is the bond erasing homomorphism. The family of all languages generated by bPINSDEL-

systems is denoted by ( ).bPINSDELL  

 

Results and discussion 

In this section, the results of this research are presented as new theorems. 

 

Theorem 1 

( )bPINSDELL  is closed under union such that for any 
1 2 ,, ( )bPINSDELL L L  

 1 2 1 2 ( ).| bPIr NSDE o  LL L a a L a L =   L  

 

Theorem 2 

( )bPINSDELL  is closed under concatenation such that for any 
1 2 ,, ( )bPINSDELL L L

 1 2 1 2 1 2 ( ).|  and bPINSDELL L a a a L a L=   L  

 

Theorem 3 

( )bPINSDELL  is closed under concatenation closure such that for any ( ),bPINSDELLL

0

( ),bPINSDELi

i

L L




=

= L  where  0 .L =  
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Theorem 4 

( )bPINSDELL  is closed under -free  concatenation closure such that for any ( ),bPINSDELLL

1

( ).i

i

L L


+

=

= L bPINSDEL  

 

Theorem 5 

( )bPINSDELL  is closed under homomorphism such that for a homomorphism 1 2:h  →   and a language 

( ) ( ) 1 1 1 1 ( )., | bPINSDE LL h L h w w L  =  L  

 

Theorem 6 

( )bPINSDELL  is closed under inverse homomorphism such that for a homomorphism 1 2:h  →   and a 

language ( ) ( ) 1

2 2 2 2 ( )., | bPINSD ELL h L w h w L −  =  L  

 

Theorem 7 

( )bPINSDELL  is closed under intersection with regular languages such that for any ( ),bPINSDELLL  

and regular language ,R    ( ).|  a End S bPIN D LL R a a L a R =   L  

 

A corollary of these results is presented as follows. 

 

Corollary 1  

( )bPINSDELL  is a full abstract family of languages (AFL). 

 

Conclusion 

The characteristics of the family of languages generated by bPINSDEL-systems ( )( ) ,bPINSDELL  

specifically their closure properties have been determined, where it is closed under the operations of 

union, concatenation, concatenation closure, -free  concatenation closure, homomorphism, inverse 

homomorphism, and intersection with regular languages. Thus, ( )bPINSDELL  is a full AFL. These results 

are essential in the advancement of theoretical knowledge in the field of formal language theory as well 

as contributing to progress in DNA computing through mathematical models of atomic behavior. In the 

future, variants of bPINSDEL-systems can be introduced by restricting the rules of insertion or deletion. 

From there, the generative power and characteristics of the new systems can be determined. Other than 

that, the computational complexity of bPINSDEL-systems is yet to be studied. 
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