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Abstract 

In recent years, research on graph associated to rings has been extensively done. Let 𝛤(𝑅) be the non-

zero divisor graph with vertices of all non-zero elements of a ring, 𝑅 such that two distinct elements 𝑥 

and 𝑦 are adjacent if and only if 𝑥𝑦 ≠ 0. In this research, the main focus is to determine the total perfect 

code of a non-zero divisor graph of a commutative ring. A code is said to be a total perfect code in a graph 

if every vertex of the graph  has exactly one neighbor. The non-zero divisors were found first in order to 

establish the non-zero divisor graph. Finally, the total perfect code of the graph constructed is obtained. 

The non-zero divisor graph, 𝛤(ℤ10) is found to be a simple, undirected graph with nine vertices and 32 

edges. This graph also admits a total perfect code.   
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Introduction 

After its discovery in the late 19th century, zero-divisor graph has been an important object of study in the 

field of graph theory. The zero-divisor graph was first introduced by Beck [1] in 1988. The main focus was 

on the graph coloring where the author found the chromatic and clique number of the graph. A few decades 

later, the concept was further explored by researchers using different types of groups, rings and fields. 

Redmond [2] defined the undirected zero divisor graph of a non-commutative ring. The vertices of this 

zero-divisor graph are all the non-zero zero divisors of the ring and for two distinct vertices, 𝑎 and 𝑏, there 

is an edge connecting them if and only if 𝑎𝑏 =  0 or 𝑏𝑎 =  0. In the following year, the zero-divisor graph 

of a commutative Von Neumann regular ring is investigated by Anderson et al. [3]. Von Neumann regular 

ring is a ring in which for each element of 𝑥 in the ring, there exist an element 𝑦 in the ring such that 𝑥 =

 𝑥2𝑦. In 2007, Akhbari and Mohammadian [4] studied and defined the zero-divisor graphs of matrix rings 

and group rings.  In recent years, Anderson and Weber [5] studied the zero-divisor graphs of a 

commutative ring without identity.  

Total perfect codes have been studied extensively by many researchers and the concept has 

appeared in the literature under various names such as efficient open domination sets, total domination 

sets and exact transversals. The first research on the total perfect code was conducted by Cockayne et 

al. [6] in 1980 where the authors found total dominating set of a graph or known as the set of neighborhood 

elements of a vertex. In 2008, Abay-Asmerom et al. [7] found the total perfect codes in tensor products of 

graphs. Zhou [8] continued the study of this concept by studying the total perfect codes in Cayley graphs. 

The author considered the partition of a graph to find the perfect code. There are few other perfect codes 

that have been explored by other researchers such as the e-error-correcting code and perfect t-code. In 

2021, Zaid et al. [9] studied the perfect codes of commuting zero divisor graph of some matrices of 

dimension two. The authors found that Γ𝑐𝑜𝑚𝑚(𝑅1) has no 1-perfect code. Mudaber et al. [10] extended the 

concept of perfect codes by finding the perfect codes over induced subgraphs of unit graphs of ring of 

integers modulo 𝑛.  
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 In this research, the main focus of this research is to determine the perfect code of non-zero 

divisor graph of a commutative ring. The zero divisors of the ring are established and then, the non-zero 

divisor graph is constructed with the assistance of MAPLE Software. Finally, the perfect code of the graph 

is determined.  

 
Preliminaries 

In this section, some definitions and properties related to the main topic are presented. 

 

Definition 1 [11] Zero Divisors  

Zero divisors of a ring are the elements that have product zero when multiplied with each other. If 𝒑 and 

𝒒 are two nonzero elements of a ring 𝑹 such that 𝒑𝒒 =  𝟎, then 𝒑 and 𝒒 are divisors of 𝟎. 

Next, some definitions related to graph theory are presented. Graph theory is one of the oldest 

and most geometric branches of topology. It deals with the presentation of graphic drawing and is based 

on the data structures which actually come from mathematics. 

 

Definition 2 [12] Graph 

A finite graph, denoted as 𝑮 is an object with two sets, which are the edge set, 𝑬(𝑮) and the non-empty 

vertex set, 𝑽(𝑮). The 𝑬(𝑮) may be empty, but otherwise its elements are two-element subsets of the 

vertex set. 

 

Definition 3 [13] Non-Zero Divisor Graph 

The non-zero divisor graph of 𝑹, denoted by 𝚪(𝑹), is a simple graph with vertices of all non-zero elements 

of a ring, 𝑹 such that two distinct elements 𝒙 and 𝒚 are adjacent if and only if 𝒙𝒚 ≠ 𝟎. 

In this research, some properties of the graph known as the total perfect code are further found 

from the construction of the non-zero divisor graph. The definition of total perfect code of a graph is given 

as follows.  

 

Definition 4 [7] Total Perfect Code 

A code 𝑪(𝑮) is said to be a total perfect code in 𝑮 if every vertex of 𝑮 has exactly one neighbor in 𝑪(𝑮), 

that is, |𝑵(𝒗)  ∩  𝑪(𝑮)|  =  𝟏 for all 𝒗 ∈  𝑽 (𝑮), where 𝑵(𝒗) is the open neighbourhood of a vertex 𝒗 in 𝑮. 

 
Results and discussions 

In this section, non-zero divisor and its non-zero divisor graph of some finite commutative rings are 

discussed. The scope of this research is the ring of integers modulo 10, denoted as ℤ𝟏𝟎. The non-zero 

divisor graph is then constructed for this ring. The total perfect code of the graph is then determined.  

 

Proposition 1. The ring of integers modulo 10, ℤ𝟏𝟎 has nine non-zero divisors. 

Proof. To find the pairs of elements where the multiplication of these non-zero elements is not equal to 

zero, we first find the zero divisors using Definition 1. The zero divisors of ℤ𝟏𝟎 are determined. The set of 

zero divisors of ℤ𝟏𝟎 are {𝟐, 𝟒, 𝟓, 𝟔, 𝟖} since 𝟐 · 𝟓 = 𝟓 · 𝟐, 𝟒 · 𝟓 = 𝟓 · 𝟒, 𝟔 · 𝟓 = 𝟓 · 𝟔 and 𝟖 · 𝟓 = 𝟓 · 𝟖. Since 

there are only nine non-zero elements in ℤ𝟏𝟎, the total pairs of elements are 𝟗 · 𝟗 = 𝟖𝟏. Therefore, the 

pairs of elements where the multiplication of these pairs of those non-zero elements is not equal to zero 

is 81 − 8 (pairs of elements from zero divisors) = 73. 

Next, the non-zero divisor graph of the commutative ring is constructed based on the non-zero 

divisors found in Proposition 1.  

 
Proposition 2. Let 𝚪(ℤ𝟏𝟎) be the non-zero divisor graph of ℤ𝟏𝟎, then, 𝚪(ℤ𝟏𝟎) is an undirected graph with 

nine vertices and 32 edges.  

Proof. Based on Proposition 1, it can be seen that the total pair of elements (𝒙, 𝒚) in which  

𝒙 · 𝒚 ≠ 𝟎 is equal to 73. To prevent the existence of loops in the non-zero divisors graph, the edges 𝒙 · 𝒙 ≠

𝟎 are excluded as in the definition. The non-zero divisor graph is constructed as in Figure 1. 
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Figure 1 The non-zero divisor graph of ℤ𝟏𝟎. 
 

Based on Γ(ℤ10), the set of elements adjacent of its corresponding vertices are determined and the total 

perfect code is obtained.  

 

Proposition 3. Let 𝚪(ℤ𝟏𝟎) be the non-zero divisor graph of ℤ𝟏𝟎. Then, 𝚪(ℤ𝟏𝟎) has a total perfect code.  

Proof. Based on the Definition 4, the set of all neighborhood elements of ℤ𝟏𝟎 are, when 

𝒆 = 𝟏, the set 𝑺𝟏(𝒙), which is the set of all neighborhood elements with distance less than or equal to one 

for all 𝒙 in 𝑽(𝚪(ℤ𝟏𝟎)). The sets of all neighborhoods are listed as follows:  

 

• 𝑺𝟏(𝟏) = {𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖, 𝟗}  

• 𝑺𝟏(𝟐) = {𝟏, 𝟐, 𝟑, 𝟒, 𝟔, 𝟕, 𝟖, 𝟗} 
• 𝑺𝟏(𝟑) = {𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖, 𝟗} 
• 𝑺𝟏(𝟒) = {𝟏, 𝟐, 𝟑, 𝟒, 𝟔, 𝟕, 𝟖, 𝟗} 
• 𝑺𝟏(𝟓) = {𝟏, 𝟑, 𝟓, 𝟕, 𝟗} 

• 𝑺𝟏(𝟔) = {𝟏, 𝟐, 𝟑, 𝟒, 𝟔, 𝟕, 𝟖, 𝟗} 
• 𝑺𝟏(𝟕) = {𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖, 𝟗} 
• 𝑺𝟏(𝟖) = {𝟏, 𝟐, 𝟑, 𝟒, 𝟔, 𝟕, 𝟖, 𝟗} 
• 𝑺𝟏(𝟗) = {𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖, 𝟗}

 

Let 𝐶(ℤ10) = {1} be a code. Based on Definition 4, since for all 𝑥 ∈ ℤ10, |𝑆1(𝑥)  ∩ 𝐶(ℤ10)| = 1, therefore 

Γ(ℤ10) admits a total perfect code. 

 

Conclusion 

In this research, the non-zero divisor graph of the commutative ring of integers modulo 10 is found. The 

non-zero divisors are first determined using their definition. The non-zero divisor graph of the commutative 

ring is found to be a simple, undirected graph with nine vertices and 32 edges. Furthermore, the total 

perfect code of the graph is determined with the code {1}.  
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