

Vol. 11, 2022, page 1 - 11

Simulation of Solving Visiting Route in Johor Based on Traveling

Salesman Problem

Nor Syasya Aqilah Mohd Esa, Wan Rohaizad Wan Ibrahim*
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia

*Corresponding author: wrohaizad@utm.my

Abstract
The purpose of this study is to investigate the application of Traveling Salesman Problem (TSP). TSP is a
classical combinatorial optimization problem, which is simple to state but very difficult to solve. No current
algorithms are available which can solve these problems in polynomial time, which is the number of steps
grow as a polynomial according to the size of the input. The traveling salesman problem involves a salesman
who must make a tour of several cities using the shortest path available. The main objective of this research
is to determine the best route for traveler should take to traverse through a list of locations and return to the
start place. Therefore, a solution has been provided to solve this TSP problem by using simulation of Tabu
Search. Tabu Search enable traveler to find the optimal solution by visiting exactly once for each node. The
optimization problem for this study is generated through a software of Microsoft Visual C++ programming to
solve the TSP. Hence, the results indicate the shortest and the best route for traveler to traverse through a
list of locations and return to the start place in Johor.

Keywords: Tabu Search; Optimization, Tabu List; Optimal solution; Shortest path.

1. Introduction
The travelling salesman problem (TSP) is an algorithmic problem tasked with finding the shortest route
between a set of points and locations that must be visited. It is often used in computer science to find the
most efficient route for data to travel between various nodes. Applications include identifying network or
hardware optimization methods. It was first described by Irish mathematician W.R. Hamilton and British
mathematician Thomas Kirkman in the 1800s through the creation of a game that was solvable by finding a
Hamilton cycle, which is a non-overlapping path between all nodes.

TSP has been studied for decades and several solutions have been theorized. The simplest solution
is to try all possibilities, but this is also the most time consuming and expensive method. Many solutions use
heuristics, which provides probability outcomes. However, the results are approximate and not always
optimal. Other solutions include branch and bound, Monte Carlo and Las Vegas algorithms.

Consider planning a route to visit multiple locations in Johor. This will result in a lot of distance and
time consuming without a proper planning. According to the number of target locations, planning a
reasonably short path can be very complex and computationally expensive task. Given several target places
in Johor along with the distance and the time taken for traveling from one to the other, what is the shortest
path that a traveler should take to traverse through a list of locations in Johor and return to the start place.

In this research, the path planning will be evaluate using Tabu Search algorithm. The result of the
best route for traveler to use to minimize the distance and the time taken to visit all locations in Johor will be
simulated by computer programming.

This research aims to (1) determine the best route for traveler to use to minimize the distance and
the time taken to selected locations in Johor and (2) to simulate Tabu Search model in selecting the route
by Microsoft Visual C++.

Nor Syasya Aqilah & Wan Rohaizad Wan Ibrahim (2022) Proc. Sci. Math. 11: 1 - 11

2

2. Literature Review

2.1. Travelling Salesman Problem

2.1.1. Travelling Salesman Problem
Algorithm for solving the TSP can be divided into two classes, which are heuristic algorithms and exact
algorithms. Furthermore, TSP is an optimization problem that has various applications such as machine
sequencing, vehicle routing, scheduling, planning and logistics. These problems can be solved by using
various approaches such as Tabu Search and Simulated Annealing.

2.1.2. Heuristic Algorithm
Heuristic is an algorithm that are problem-dependent technique that use a systematic procedure derived from
relatively simple idea towards finding a good and better solution. Heuristic is a technique that find a solution
not necessary to be optimal at a reasonable computational cost [1]. There is no guarantee on the global
optimum although most of the solution found by heuristic algorithm resulted in good promising result as the
algorithm refers to find solution by ‘trial and error’ [2].

The following are known as heuristic algorithm examples that have been used in solving Traveling
Salesman Problem.

2.1.3. Simulated Annealing
Simulated Annealing (SA) is a probabilistic technique for approximating the global optimum of a given
function and a metaheuristic to approximate global optimization in a large search space for an optimization
problem.

Annealing procedure defines the optimal molecular arrangements of metal particles where the
potential energy of the mass is minimized and refers cooling the metals gradually after subjected to high
heat.

In general manner, SA algorithm adopts an iterative movement according to the variable temperature
parameter which imitates the annealing transaction of the metals.

2.1.4. Tabu Search
The Tabu Search algorithm is to force an embedded heuristic from returning to recently visited areas of the
search space, which is called as cycling. The plan of this approach is to maintain a temporary memory for all
the changes of recent moves within the search space and preventing future moves from undoing those
changes.

2.1.5. Genetic Algorithms
A Genetic Algorithm is a randomized global search technique that solves problems by reproducing the natural
evolution of organism, generation after generation, by depending on the phenomena’s heredity and law
survives stated by Charles Darwin [3]. It generates a sequence of populations of candidate solutions to the
underlying optimization problem by using a set of genetically inspired stochastic solution transition operators to
transform each population of candidate solutions into a descendent population.

2.1.6 Nearest Neighbour Algorithm
The Nearest Neighbor algorithm (NN) is the first algorithm that has been introduced to solve TSP [2] It is
also a simple heuristic algorithm based on greedy procedure. It starts tour by selecting random city and
adds the nearest unvisited city to the last city in the tour until all cities are visited.

2.1.7 Ant Colony Optimization
This approach is driven by ant behavior searching for food. Ants will wander arbitrary and when the food is
found, the ants will return to the colony by placing the pheromone trace. Basically, the ACO replicates the
way ants promptly establish the shortest path between the nest and a food source [4].

Nor Syasya Aqilah & Wan Rohaizad Wan Ibrahim (2022) Proc. Sci. Math. 11: 1 - 11

3

2.2. C++ Programming

C++ Programming was created by Bjarne Stroustrup and this language was designed for the purpose of
upgrading existing capabilities of C Programming with object-oriented programming features SIMULA-67. [5]
However, C++ is a program that has more advanced features than C programming. C++ is a strong, efficient,
and fast language and allows exception of handling and overloading functionality in C. [6] Therefore, C++
programming is used in solving TSP to have clear and feasible solution.

2.3. Terminology in Tabu Search

Table 1: Terminologies in Tabu Search
TERMINOLOGY DEFINITION
A move A transition from a current solution to its neighbouring

solution.
An attribute The elements that constitute the move.
Tabu list A list of moves that are currently tabu (a list of forbidden

exchanges to avoid cycling between the same solutions
endlessly).

Tabu list size The number of iterations for which a recently accepted
move is not allowed to be reserved.

Aspiration criterion Criterion used to identify tabu restrictions that may be
overridden,

Neighbourhood The set if all possible neighbour solution that can be
reached with one move.

Neighbourhood solution One move from the current solution.
Forbidding strategy The tabu condition that forbid a move from being

reserved.
Freeing strategy The conditions that allow a move to become nontaboo

because either its tabu status has become not tabu or
such a move satisfies an aspiration criterion.

3. Research Methodology

3.1. Traveling Salesman Problem Model
We need to find a route with minimum total distance travelled for salesman who need to visit various of cities.
However, the city travelled must be visited only once which started and ended form a home location. Suppose
that there are 25 places in Johor that a traveler needs to visit and move in the shortest path and must cover
all the selected places, visiting each location only one and back at the place of origin (depot). Therefore, our
goal is to find the best route with minimal distance.

3.2. Basic Form of Tabu Search
The most basic form of the tabu search algorithm consists of the following:
1) Generating an initial solution.
2) Generating neighboring solution of the current solution.
3) A function that measures each neighboring solution.
4) A tabu list – to prevent cycling and leads the search to unexplored regions of the solution space.
5) An aspiration criterion.

Nor Syasya Aqilah & Wan Rohaizad Wan Ibrahim (2022) Proc. Sci. Math. 11: 1 - 11

4

3.3. The Data
The data can be collected by listing all the locations so that the coordinate can be read to be plot on the map.

3.4. Plotting the map
The location that has been collected will be plot onto the map to get clear coordinates. Figure 1 shows the
location of the places to visit in Johor.

Figure 1 The location of the places to visit in Johor

3.5. Initial Solution
Following the procedure of Tabu Search in solving the Traveling Salesman Problem, the traveler must begin
their journey from the depot, which is located at Pantai Stulang Laut, Johor Bahru and then move to the next
location. An initial solution is generated by choosing the nearest location, for the purpose of solving TSP.

3.6. Initial Solution with Euclidean Distance
The simplest TSP which is symmetric, involving the traveler and the distance between two places. This type
of TSP is known as Euclidean Distance, where the total cost for the problem is given by the total distance
travelled by the traveler.

To calculate the distance travelled, the formula of the ordinary Euclidean distance between two places
as.

𝑑𝑖𝑗	 = #(𝑥! 	−	𝑥")# 	+	(𝑦! 	−	𝑦")#	 𝑖,	𝑗	=	0,1,2,3,4,	…	𝑛	 (1)

where (𝑥𝑖,	𝑦𝑖)	 is the coordinate for the location number one and (𝑥𝑗,	𝑦𝑗)	 is the coordinate for location number
two with n is the total number of locations in the system.

3.7. Searching Method
The movement of the traveler is defined by randomly selecting two paths and swap it. The difference between
each method is on how to accept the new solution after changing path or move has been done. After changing
the path, the route will be different, and we need to calculate the new distance.

3.8. Microsoft Visual Studio C++
To obtain the solution for TSP using Tabu Search as the basic heuristic requires thousands of iterations and
it is impossible to be calculated manually. Hence, this software is implemented as one of the tools. Figure 2
shows the interface of the program that has been used to solve the problem.

Nor Syasya Aqilah & Wan Rohaizad Wan Ibrahim (2022) Proc. Sci. Math. 11: 1 - 11

5

Figure 2 The interface of the program

Based on Figure 2, the field mark (1) shows the space for displaying the locations and route travelled

by the traveler starting from the depot. Next, field mark (2) displays the information of calculations such as
the cost and number of iterations involved. Field mark (3) is the control buttons. Apart from that, field mark
(4) displays compute button for Greedy Method, Simulated Annealing as well as Tabu Search. The function for
each button is described in the Table 2 below:

Table 2: Button Function

Button Function
Clear To reset the program, clear screen and all

variables involved.
Read Data To read the data from the input file.
Display City To reset the route and display only the location

of the cities
Reset Random Number To reset the random number
Reset Random Counter To reset the number counter
Set Initial Solution To compute an initial solution
Compute - Greedy Compute the solution for Greedy Method
Compute – S.A Compute the solution using Simulated

Annealing
Compute – T.S Compute the solution using Tabu Search

3.9. Input Data
This program read the data from a text file named “input.txt”. The text file consists of the coordinate for each
location selected in Johor with range number between 0 to 100 for both x-axis and y-axis. Each coordinate
for x-axis and y-axis must entered by pair in one line and separated by using space or tab. Figure 3 displays
the coordinates of all the locations in Johor. Figure 3 shows the coordinate for each location in input file.

Nor Syasya Aqilah & Wan Rohaizad Wan Ibrahim (2022) Proc. Sci. Math. 11: 1 - 11

6

Figure 3 The coordinate for each location in input file

The program will read and display all the coordinates by clicking “Read Data” button as shown in
Figure 4.

Figure 4 The location of each coordinate on display window

The information about the coordinate will be stored and used to calculate the distance between each
location. Figure 5 displays the coding used to calculate the distance between the location.

Nor Syasya Aqilah & Wan Rohaizad Wan Ibrahim (2022) Proc. Sci. Math. 11: 1 - 11

7

double CMainFrame::calcdist(CPoint p1,CPoint p2)

{

double L;

L=sqrt(pow((double)p1.x-p2.x,2)+pow((double)p1.y-p2.y,2));

return L;

}

DEPOT - 1 - 2 - 3 - 25 - 24 - 15 - 14 - 22 - 19 - 18 - 17 - 16 - 20 - 21 - 23 - 4 - 5 - 6 - 7 - 8 - 11 - 10 - 9 -
12 - 13 - DEPOT

Initial Cost = 547.67

Figure 5 C++ coding to calculate distance between locations

Initial solution must be obtained before we can proceed to the next step so that the comparison between

initial cost and cost from Tabu Search method can be made. Figure 6 illustrates the initial solution route
travelled in Johor by the traveler.

Figure 6 Initial solution route travelled in Johor

The output file content is shown as below:

double CMainFrame::calcdist(CPoint p1,CPoint p2)

{

double L;

L=sqrt(pow((double)p1.x-
p2.x,2)+pow((double)p1.y-p2.y,2));

return L;

DEPOT - 1 - 2 - 3 - 25 - 24 - 15 - 14 - 22 - 19 - 18 - 17 - 16 - 20 - 21 - 23 - 4 - 5 - 6 - 7 - 8 - 11 - 10 - 9 -
12 - 13 - DEPOT

Initial Cost = 547.67

Nor Syasya Aqilah & Wan Rohaizad Wan Ibrahim (2022) Proc. Sci. Math. 11: 1 - 11

8

for (i=0;i<=nR-1;i++)

{

for (j=0;j<=i;j++)

{

distance[i][j]=calcdist(node[i],node[j]);

distance[j][i]=distance[i][j];

}

}

for (i=0;i<=nR-1;i++)

{

visit[i]=0;

connected[i]=0;

for (j=0;j<=nR;j++)

edge[i][j]=0;

}

visit[0]=1;

double lowest;

int select;

//c = currentnode

c=0;

totalcost=0.0;

dc.MoveTo(LPixel[c]);

connected[c]=1;

ofp << "DEPOT - ";

Figure 7 shows the coding to calculate the initial cost.

Figure 7 C++ code to calculate initial cost

By clicking the “Compute – T.S” button, it will activate the program to solve the problem using Tabu
Search algorithm. Figure 8 shows the C++ code for assigning the path number.

for (i=0;i<=nR-1;i++)

{

for (j=0;j<=i;j++)

{

distance[i][j]=calcdist(node[i],node[j]);

distance[j][i]=distance[i][j];

}

}

for (i=0;i<=nR-1;i++)

{

visit[i]=0;

connected[i]=0;

for (j=0;j<=nR;j++)

edge[i][j]=0;

}

visit[0]=1;

double lowest;

int select;

//c = currentnode

c=0;

totalcost=0.0;

dc.MoveTo(LPixel[c]);

connected[c]=1;

ofp << "DEPOT - ";

Nor Syasya Aqilah & Wan Rohaizad Wan Ibrahim (2022) Proc. Sci. Math. 11: 1 - 11

9

Figure 8 C++ code for assigning path number

4. Results and discussion

4.1. Run Results
By using Microsoft Visual C++, further runs have been repeated for five times using the same initial solution
and the result has been recorded as shown in Table 3 below.

Table 3: Results of five runs for Tabu Search

Run Number of Iteration Cost
Initial 547.670

1st 13964 419.107
2nd 13946 424.944
3rd 13933 411.504
4th 13931 424.313
5th 13873 411.504

Best Solution 411.504

From the table above, the best value obtain is at 13873 iterations. After a few runs, the value
generated is optimal. However, it is not the best solution for the problem

Nor Syasya Aqilah & Wan Rohaizad Wan Ibrahim (2022) Proc. Sci. Math. 11: 1 - 11

10

4.2. Result

Figure 9 The optimal solution

Table 5: The actual route and total distance

Actual Route Total Actual Distance

Pantai Stulang Laut – Zoo Johor – Puteri Harbour – Pulau Kukup
– Legoland – Gunung Pulai – Kota Tinggi Waterfall – Gunung
Belumut – Gunung Lambak – Tropical Village Ayer Hitam –
Hutan Lipur Soga Perdana – Pantai Minyak Beku – Perigi Batu
Pahat – Ladang Nanas Kampung Parit Tengah – Pantai Leka –
Muar Clock Tower – Masjid Jamek Sultan Ibrahim – Gunung
Ledang – Batu Hampar Flower Garden – Mersing Muzeum –
Pulau Besar – Tanjung Leman Beach – Jason Bay (Teluk
Mahkota) – Tanjung Balau – Desaru Beach
– Bukit Pengerang – Pantai Stulang Laut

1112.46 km

DEPOT - 1 - 2 - 25 - 3 - 24 - 22 - 14 - 15 - 4 - 5 - 6 - 7 - 8 - 11 - 10 - 9 - 12 - 13 - 17 - 16 - 18 - 19 -
20 - 21 - 23 - DEPOT

Total distance (cost) = 411.504

Total iteration = 13873

Total computation time = Less than a second

Nor Syasya Aqilah & Wan Rohaizad Wan Ibrahim (2022) Proc. Sci. Math. 11: 1 - 11

11

Conclusion
After the simulation, the cost (total distance) is 411.504 with total iteration of 13873. Meanwhile the actual
route and total distance for this problem is 1112.46km. The objective of this study to determine the best route
for traveler to use to minimize the distance and the time taken to visit all locations in Johor is succeeded.
Therefore, it is proven that Tabu Search can be used to solve a Travel Salesman Problem.

Acknowledgement
The researcher would like to thank all people who have supported the research and Directorate of Research
and Community Service, Directorate General of Strengthening for Research and Development, Ministry of
Research, Technology and Higher Education of Malaysia, Universiti Teknologi Malaysia which has funded
this research.

References
[1] Reeves, C., 1995. Modern Heuristic Techniques for Combinatorial Problems. Mc-Greenhill
[2] Halim, A. H., and I. Ismail, (2017). Combinatorial Optimization: Comparison of Heuristic Algorithms in

Travelling Salesman Problem. Archives of Computational Methods in Engineering.
[3] El-Sherbeny, N. A. (2010). Vehicle routing with time windows: An overview of exact, heuristic and

metaheuristic methods. Journal of King Saud University – Science, 22(3), 123-131.
Doi:https://doi.org/10.1016/j.jksus.2010.02.002

[4] Prakasam, A., & Savarimuthu, N. (2016). Metaheuristic algorithms and probabilistic behaviour: a
comprehensive analysis of Ant Colony Optimization and its variants. Artificial Intelligence Review, 45(1), 97-
130.

[5] O’Regan, G. (2018). Introduction to Programming Languages. In World of Computing (pp. 155- 178):
Springer.

[6] Thornton, K. (2003). Libsequence:a C++ class library for evolutionary genetic analysis.
Bioinformatics, 19(17), 2325-2327.

[7] Laporte, G. (1991). The traveling salesman problem: An overview of exact and approximate algorithms.
Centre de recherche sur les transports, Université de Montréal.

[8] Wu Berbeglia, G., Laporte, G., & Cordeau Jean-Franç ois. (2010). A hybrid tabu search and constraint
programming algorithm for the dynamic dial-a-ride problem. CIRRELT.

[9] Bortfeldt, A., Gehring, H., & Mack, D. (2002). A parallel tabu search algorithm for solving the container
loading problem. Fachbereich Wirtschaftswiss., Fernuniv.

[10] Dorigo, M., & Stü tzle Thomas. (2004). Ant colony optimization. MIT press.
[11] Fiechter, C.-N. (1994). A parallel tabu search algorithm for large traveling salesman problems.

Discrete Applied Mathematics, 51(3), 243–267. https://doi.org/10.1016/0166-218x(92)00033-i
[12] Glover, F., & Laguna, M. (1997). Tabu search background. Tabu Search, 1–24.

https://doi.org/10.1007/978-1-4615-6089-0_1
[13] Greco, F., & Gerace, I. (2008). The symmetric circulant traveling salesman problem. Traveling

Salesman Problem. https://doi.org/10.5772/5581
[14] Helshani, L., & Ramollari, E. (2016). Comparative study of genetic algorithm and simulated annealing

algorithm. Proceedings of The 5th International Virtual Scientific Conference.
https://doi.org/10.18638/ictic.2016.5.1.269

