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Abstract 
The main purpose of this study is to obtain analytical solutions for the problem of free convection flow 
in Brinkman type fluid past through two vertical channels. In this paper, the dimensional governing 
equations of momentum and energy equations are introduced. The appropriate dimensionless variables 
are used to transform the dimensional governing equations into dimensionless forms. The dimensionless 
parameters are obtained through this dimensionless process such as Brinkman type fluid, 𝛽1, Prandtl 
number, Pr, Grashof number, Gr and time, t. The dimensionless equations with associated initial and 
boundary conditions are solved using the Laplace transform method and the mathematical solutions for 
velocity and temperature profiles are obtained. The analytical results for obtained profiles are graphically 
plotted to illustrate the effects of corresponding dimensionless parameters. It is observed that velocity 
increases with increasing Gr, and t, but decreases with increasing 𝛽1 and Pr. Furthermore, temperature 
profiles decrease with increasing Pr, while increasing with increasing t. Finally, the other published 
results were utilized to compare and validate the obtained results, and they provided identical results. 
 
Keywords: Free convection; Brinkman type fluid; two vertical channels; analytical  solutions; Laplace 
Transform method 
 
 
1. Introduction 
 

According to the researchers, non-Newtonian fluid flow is more important in real-world and industrial 
applications than Newtonian fluid flow. The Brinkman model is commonly used as the basis for non-
Newtonian fluid flow research in a variety of fields, including chemical engineering, pharmaceuticals and 
cosmetics [1]. The Brinkman model was used to investigate the flow of viscous incompressible fluid 
through a porous channel [2]. The Brinkman Type Fluid is a dimensionless number related to heat 
conduction from a wall to a flowing viscous fluid, commonly used in polymer processing. Brinkman type 
fluid, which is one of the complex models proposed by H.C. Brinkman, is one of the most common non-
Newtonian fluids currently that stated by [3]. He demonstrated that a Brinkman type fluid flows through 
a highly porous medium. The Brinkman model for incompressible flow may properly represent viscous 
fluid flow in a porous medium. This model features a particular term for viscosity and is useful for fluid 
flow through a high porous surface.     

Free convection is defined as fluid motion induced solely by density changes in the fluid caused by 
temperature gradients and not by any other external source. Besides, free convection is a method of 
heat transmission in which fluid masses, buoyancy, and gravity forces are moved from one temperature 
region to another. According to [4], free convection flow in a boundary layer area is caused by gravity 
interacting with density changes within a fluid. In many industrial operations, free convection flow in 
Brinkman type fluid is important. Natural convection flows through a vertical plate are essential in solving 
several industrial and technical difficulties, such as process filtration and design, drying of porous 
materials in textile industries, and solar energy collectors [5].   

Brinkman model was used by the following researchers during their studies which are [2], [6], and [7] 
talked more about the natural convection from a vertical plate in a porous medium using Brinkman’s 
model in that article where the Brinkman equation's significance is illustrated by problems with high 
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permeability near the boundary. [8] recently extended these solutions, as well as those corresponding 
to fluid motion due to a constantly or highly accelerating plate, to fluids of the Brinkman type. Then, [9] 
used Brinkman model to obtain exact solution by applying Laplace Transformation. Later, [10] utilized 
the Fourier transform approach to determine the exact solution for velocity and shear stress of unsteady 
and incompressible Brinkman type fluids enclosed inside a channel, taking into consideration the applied 
transverse magnetic effect. [11] explored the free convection flow of an incompressible and viscous fluid 
through a moving vertical plate with the impact of radiation when it is heated. This problem was solved 
analytically using Laplace transform method. Exact solutions of momentum and energy equations are 
achieved using the Laplace transform method, according to [12].  

In order to obtain the mathematical and analytical solution of free convection flow in Brinkman Type 
Fluid through two vertical channels, the Laplace Transform will be used. By solving the governing 
differential equations, the Laplace Transform technique was used to obtain the expression for velocity 
and temperature fields [13]. The Laplace Transform is a type of integral transform proposed by French 
mathematician Pierre-Simon Laplace (1749-1827) and systematically improved by British physicist 
Oliver Heaviside (1850-1925) to solve multiple differential equations that represent physical process 
easier. 

The current research is focused on free convection flow in a Brinkman type fluid through two vertical 
channels. For the boundary condition, the vertical channel will be fixed because it is not moving and has 
a constant temperature. The method of Laplace transform is applied in this study to solve that problem 
analytically with fixed and constant temperature.  

 

2. Methodology 
 
2.1. Problem Formulation 
 
Consider the free convection flow of Brinkman Type Fluid past through two vertical channel plates which 
is separated by distance d with constant temperature. The x-axis is in upward direction along the two 
vertical channel plates and y-axis is in normal direction to the plates. Initially at time 𝑡∗ ≤ 0, the fluids 
and plates are both at rest and assumed at the same temperature 𝑇"∗. Then, at the time 𝑡∗ > 0, plate 
temperature is raised to 𝑇#∗ at 𝑦∗ = 0 while plate temperature at 𝑦∗ = 𝑑 is remain at constant 
temperature 𝑇"∗ and velocity for both plates are not moving 𝑢∗(𝑦, 𝑡) = 0. The corresponding governing 
equations are obtained in a set of partial differential equations as below 

𝜕𝑢∗

𝜕𝑡  = 𝑣
𝜕$𝑢∗

𝜕𝑦$ − 𝛽
∗𝑢% + 𝜌𝑔𝛽(𝑇∗ − 𝑇"∗) (1) 

 

𝜌𝐶&
𝜕𝑇∗

𝜕𝑡∗  = 𝑘
𝜕$𝑇∗

𝜕𝑦∗$  (2) 

 
 
with the associated initial and boundary conditions 

𝑢∗(𝑦∗, 0) = 0	; 0 ≤ 𝑦∗ ≤ 𝑑,      
𝑢∗(0, 𝑡∗) = 0	;	𝑡∗ > 0,  (3) 
𝑢∗(𝑑, 𝑡∗) = 0; 𝑡∗ > 0,      

 

and 

𝑇∗(𝑦∗, 0) = 𝑇"∗; 0 ≤ 𝑦∗ ≤ 𝑑,      
𝑇∗(0, 𝑡∗) = 𝑇#∗; 𝑡∗ > 0,    (4) 
𝑇∗(𝑑, 𝑡∗) = 𝑇"∗; 𝑡∗ > 0.      
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In order to transform the governing equations (1) and (2) and the corresponding conditions of equation 
(3) and (4) into dimensionless form, the dimensionless variable are defined as 

 

𝑢 =
𝑢∗𝑑
𝑣 , 𝑦 =

𝑦∗

𝑑 , 𝑡 =
𝑡∗𝑣
𝑑$ , 𝑇 = 	

𝑇∗ − 𝑇"∗

𝑇#∗ − 𝑇"∗
 

where 𝑢∗ is the velocity component along x-axis, ν	is the kinematic viscosity of fluid, 𝛽∗ is the Brinkman 
parameter,  𝜌 is the density of fluid, g is the gravitational acceleration, β is the heat transfer coefficient, 
T is temperature of fluid, 𝑐& is the specific heat capacity of fluid at constant temperature, and 𝑘 is thermal 
conductivity. Dimensionless variables are unit less values that are used to eliminate units which is 
involved in governing equations and its corresponding conditions in order to simplify the equations by 
reducing the number of variables. Dimensionless momentum and energy equations are obtained by 
dropping out the * notation, substitute equation (1) and (2) with dimensionless variables equations (5) as 

 

𝜕$𝑢
𝜕𝑦$ − :𝛽'𝑢 +

𝜕𝑢
𝜕𝑡; 

= −𝐺𝑟𝑇	,  
(6) 

 

𝜕$𝑇
𝜕𝑦$ − Pr

𝜕𝑇
𝜕𝑡  = 0	, (7) 

 

with the associated dimensionless initial and boundary conditions 

𝑢(𝑦, 0) = 0	; 0 ≤ 𝑦 ≤ 1,      
𝑢(0, 𝑡) = 0	; 	𝑡 > 0,      (8) 
𝑢(1, 𝑡) = 0; 𝑡 > 0,      

 

and  

𝑇(𝑦, 0) = 0; 0 ≤ 𝑦 ≤ 1,      
𝑇(0, 𝑡) = 1; 𝑡 > 0,      (9) 
𝑇(1, 𝑡) = 0; 𝑡 > 0.     

 
 
Reduce number of variables by grouping them into dimensionless parameters which can be obtained 

as 

𝐺𝑟 =
𝑑(𝜌𝑔𝛽
𝑣$

(𝑇#∗ − 𝑇"∗), 𝛽' =
𝛽𝜕$

𝑣 , Pr =
𝜇𝐶&
𝑘 , 

where 𝐺𝑟 is the Grashof number,  𝛽' is Brinkman Type Fluid number, and Pr is the Prandtl number. 

 

 

   (5) 

     (10) 
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3.2. Problem Solution 
 
Temperature and Velocity Profiles 
 
In order to obtain the analytical solution of equation (6) and (7), apply Laplace transform into equations 
(6) and (7) subjected to the initial equations (8) and (9), yields 
 
 

𝑑!

𝑑𝑦! 𝑢$
(𝑦, 𝑠) − (𝛽" + 𝑠)𝑢$(𝑦, 𝑠) 

 
= 

 
−𝐺𝑟𝑇$(𝑦, 𝑠)	, 

 
(11) 

 
𝑑!

𝑑𝑦! 𝑇
$(𝑦, 𝑠) − 𝑠Pr𝑇$(𝑦, 𝑠)  

= 
 

0	, 
 

(12) 
 
 
with the corresponding Laplace transform for boundary conditions 
 
 

𝑢$(0, 𝑠) = 0	, 
 

   
 (13) 

𝑢$(1, 𝑠) = 0	.      
 
 
and 
 

𝑇$(0, 𝑠) = 1
𝑠	, 

   
 

 (14) 
 

𝑇$(1, 𝑠) = 0	.      
 

 
Therefore, the inverse Laplace transform of equations (11) and (12) by imposed of equations (13) 
can be expressed as 
 
 
 

𝑢(𝑦, 𝑡) 
 
= 𝑏)C[𝑢'(𝑦, 𝑡)] −

*

+,-

𝑏)C[𝑢$(𝑦, 𝑡)]
*

+,-

− 𝑏)C[𝑢((𝑦, 𝑡)] + 𝑏)C[𝑢.(𝑦, 𝑡)]
*

+,-

*

+,-

 
   
 

 
 
 

𝜕𝑢∗

𝜕𝑡  

 
= −𝑏)C[𝑢)(𝑦, 𝑡)]

*

+,-

+ 𝑏)C[𝑢/(𝑦, 𝑡)] + 𝑏)C[𝑢0(𝑦, 𝑡)] − 𝑏)C[𝑢1(𝑦, 𝑡)]
*

+,-

*

+,-

*

+,-

	, 
   

 (15) 

 
 
 

𝑇(𝑦, 𝑡) 
 
= CF𝑒𝑟𝑓𝑐 I

√Pr(2𝑛 + 𝑦)
2√𝑡

M − 𝑒𝑟𝑓𝑐 I
√Pr(2𝑛 + 2 − 𝑦)

2√𝑡
MN

*

+,-

	. 

 

     
                             (16) 

    

where 
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𝑢'(𝑦, 𝑡) = 
1
2 expR𝑏/S𝛽'T𝑒𝑟𝑓𝑐 :

𝑏/
2√𝑡

+ S𝛽'𝑡; +
1
2 expR−𝑏/S𝛽'T𝑒𝑟𝑓𝑐 :

𝑏/
2√𝑡

− S𝛽'𝑡;	,  

 

𝑢$(𝑦, 𝑡) = 
1
2 expR𝑏0S𝛽'T𝑒𝑟𝑓𝑐 :

𝑏0
2√𝑡

+ S𝛽'𝑡; +
1
2 expR−𝑏0S𝛽'T𝑒𝑟𝑓𝑐 :

𝑏0
2√𝑡

− S𝛽'𝑡;	,  

 

𝑢((𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 :
𝑏1
2√𝑡

;	,  

 

𝑢.(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 :
𝑏2
2√𝑡

;	,  

 

𝑢)(𝑦, 𝑡) = 
1
2 expR𝑏.𝑡 + 𝑏/S𝛽' + 𝑏.T𝑒𝑟𝑓𝑐 :

𝑏/
2√𝑡

+ S(𝛽' + 𝑏.)𝑡;  

 
𝜕𝑢∗

𝜕𝑡  = +
1
2expR𝑏.𝑡 − 𝑏/S𝛽' + 𝑏.T𝑒𝑟𝑓𝑐 :

𝑏/
2√𝑡

− S(𝛽' + 𝑏.)𝑡;	, 
     

 

𝑢/(𝑦, 𝑡) = 
1
2 expR𝑏.𝑡 + 𝑏0S𝛽' + 𝑏.T𝑒𝑟𝑓𝑐 :

𝑏0
2√𝑡

+ S(𝛽' + 𝑏.)𝑡;  

 
𝜕𝑢∗

𝜕𝑡  = +
1
2expR𝑏.𝑡 − 𝑏0S𝛽' + 𝑏.T𝑒𝑟𝑓𝑐 :

𝑏0
2√𝑡

− S(𝛽' + 𝑏.)𝑡;	, 
     

 

𝑢0(𝑦, 𝑡) = 
1
2 expR𝑏.𝑡 + 𝑏1S𝑏.T𝑒𝑟𝑓𝑐 :

𝑏1
2√𝑡

+ S𝑏.𝑡;  

 
𝜕𝑢∗

𝜕𝑡  = +
1
2expR𝑏.𝑡 − 𝑏1S𝑏.T𝑒𝑟𝑓𝑐 :

𝑏1
2√𝑡

− S𝑏.𝑡;	, 
     

 

𝑢1(𝑦, 𝑡) = 
1
2 expR𝑏.𝑡 + 𝑏2S𝑏.T𝑒𝑟𝑓𝑐 :

𝑏2
2√𝑡

+ S𝑏.𝑡;  

 
𝜕𝑢∗

𝜕𝑡  = +
1
2expR𝑏.𝑡 − 𝑏2S𝑏.T𝑒𝑟𝑓𝑐 :

𝑏2
2√𝑡

− S𝑏.𝑡;	. 
     

 
 
where 
 
 

𝑏. =
𝛽'

Pr − 1	,				𝑏) =
𝐺𝑟
𝛽'
	,				𝑏/ = (2𝑛 + 2 − 𝑦)	,				𝑏0 = (2𝑛 + 𝑦)	,	 

		𝑏1 = (2𝑛 + 2 − 𝑦)√Pr	, 𝑏2 = (2𝑛 + 𝑦)√Pr	.		 
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3. Results and discussion 
 
In order to verify the accuracy of the present results in this problem for equation (15), the limiting case 
of the present result is compared to published results by [14]. This is known as the verification test, 
and it is carried out by comparing the solution result with equation (11) in [14], which states that no 
Brinkman type fluid is included in the problem by setting the Casson value to zero. Figure 1 depicts the 
comparison. It is discovered that the findings are identical. Therefore, the accuracy of the obtained 
results is confirmed. 

 

 
 

 

 

 

Figure 2 and Figure 6 depicts the behaviour of velocity and temperature towards time changes. When 
the value of time, t is increased, the velocity and temperature increases. It is due to the external energy 
given to the fluid flow, which results in enhanced fluid particle movement as time is increasing. The effect 
of Grashof number, Gr, on velocity profiles is shown in Figure 3. Grashof number, Gr, is a dimensionless 
number used in heat transfer research including free or natural convection, according to [15]. Then, a 
parameter that defines the ratio of buoyancy forces and viscous forces is required, and the Grashof 
number is a dimensionless number that approximates the ratio of buoyancy force to viscous force 
flowing on a liquid [16]. As a result, during the free convection process, the buoyancy force is dominating, 
causing Gr to increase, consequently increasing velocity. Therefore, the result obtained when the 
Grashof number, 𝐺𝑟 increases, and the velocity increased because the density of fluid decreases and 
small viscous effects in momentum equation which leads to increment in fluid velocity. Next, Figure 4 
and Figure 7 illustrate the velocity and temperature profiles with different values of Prandtl number, Pr. 
Prandtl number, Pr is defined as the ratio of momentum diffusivity (kinematic viscosity) to thermal 
diffusivity. The increases of Prandtl number, Pr in the fluid flow will reduce thermal conductivity and 
increase fluid viscosity. The fluid becomes thick and increase in viscous force which results to decrease 
in fluid velocity. Thus, the velocity decreases as Pr are increased. The thermal boundary layer thickness 
decreases since decreasing fluid thermal conductivity with increasing Prandtl number which leads to 
decrease in temperature profiles. According to [17], the problem was formulated as a linear boundary 
value problem with an exact analytical solution in non-dimensional form. It turns out that the solutions 

 

0 0.2 0.4 0.6 0.8
0

0.1

0.2

    Present result, equation (15)
    Published result by (Mohamad et al., (2018)), equation (11)

y

u(
y,

t)

Figure 1 Comparison of velocity profile u(y,t) from equation (15) 
with equation (11) by Mohamad (2018) 
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for the non-dimensional velocity and temperature variables are affected by the fluid's Prandtl number, 
Pr. It also observed that the fluid velocity formula is not uniformly valid for all values of Pr. There are two 
different solutions, one valid for fluids with Prandtl numbers, Pr other than unity and the other for fluids 
with Prandtl number, Pr equal to unity that have been found separately. The graph in Figure 5 depicts 
the effect of the Brinkman type fluid parameter, 𝛽' on the velocity profiles. According to the observations, 
the velocity decreases in the boundary region as the value of the Brinkman type fluid parameter 
increases. The results obtained when the fluid velocity decreases as Brinkman parameter increases due 
to high viscosity of fluid. The velocity decrease with increasing values of Brinkman type fluid parameter, 
𝛽'. 

 

 
 

 

 

Figure 2 Velocity profiles for different values of time, t with 𝛽' = 5.0, Pr = 6.0, and	𝐺𝑟 = 5.0. 
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𝑡 = 0.2, 0.4, 0.6, 0.8 
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y

u(
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Figure 3 Velocity profiles for different values of Grashof number, Gr with 𝛽' = 5.0, Pr = 6.0, and	𝑡 = 1.0.
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y

u(
y,
t)

Figure 4 Velocity profiles for different values of Prandtl number, Pr with 𝛽' = 5.0, 𝐺𝑟 = 5.0, and	𝑡 = 1.0.
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Figure 5 Velocity profiles for different values of Brinkman type fluid parameter, 𝛽' with Pr = 6.0, 𝐺𝑟 = 5.0, and	𝑡 = 1.0.

 
Figure 6 Temperature profiles for different values of time, t with Pr = 1.0.
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Conclusion 
The free convection flow through two vertical channels is studied using the generalised Brinkman fluid 
model. The Laplace transform technique is used to obtain analytical solutions, and the effects of 
different parameters on velocity and temperature profiles are discussed. The obtained results are 
illustrated graphically for different values of parameters. This paper concludes the following main 
points: 
 

• Velocity increased when the Grashof number, Gr increases. 
• Velocity increased when the time, t increases. 
• Velocity decreased with increasing values of Prandtl number, Pr. 
• Velocity decreases with increasing values of Brinkman type fluid parameter, 𝛽'. 
• Temperature decreased when the Prandtl number, Pr increases. 
• Temperature increased with increasing values of time, t. 
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Figure 7 Temperature profiles for different values of Prandtl number, Pr with 𝑡 = 1.0.
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