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Abstract 
The effects of varying viscosity on solute dispersion are investigated in blood flow through a stenosed 
artery. Blood is considered as Bingham fluid model. The Bingham fluid model in a circular straight pipe 
is formulated mathematically. The momentum and constitutive equations are solved to determine the 
velocity of the Bingham fluid model. To determine the concentration of solute, dispersion function and 
mean concentration, the Generalized Dispersion Model (GDM) is used to solve unsteady convective-
diffusion. Bingham fluid with varying viscosity and yield stress affects blood velocity and diverts the 
solute dispersion process. The effect of varying viscosity on blood velocity, solute concentration, 
dispersion function and mean concentration have been graphically discussed. When the yield stress is 
increased without the presence of varying viscosity, the blood velocity decreases further. When the 
height of the stenosis rises, the velocity drops significantly, and when varying viscosity is present, the 
velocity drops only slightly. The effect of varying viscosity and stenosis height on blood flow were to 
increase the rate of blood flow in the artery. Increased in yield stress tends to raise the concentration 
of solute at the core region, which then increases the mean solute concentration. In terms of dispersion 
function, the solute of dispersion function increases when the stenosis height increases in the plug core 
region near the center of artery and lower in the outer region. As the time increases, the dispersion 
function decreases slightly. The presence of varying viscosity causes the mean concentration to be 
disturbed. This study can help to predict the transportation of the drug to the targeted stenosed region 
where an abnormal plaque has formed. 
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1.  Introduction 

 
 Viscosity is a fluid property that refers to the internal friction between adjacent fluid layers as they 
slide past one another. The chemical nature of the fluid and whether it is homogeneous or 
heterogeneous in composition determine the interactions between fluid layers [1]. Blood is non-
Newtonian, unlike water, because its viscosity increases at low flow velocities. The viscosity of plasma 
is increased further when formed elements (red cells, white cells, and platelets) are added. Increased 
viscosity increases blood flow resistance, increasing the heart's workload and impairing organ 
perfusion. 
 The presence of stenosis inside an arterial blood vessel changes its flow pattern and 
hemodynamics conditions, according to Cooper et al. [2] and its continuous growth inside the blood 
vessel increases the risk of heart failure. Many researchers have studied the stenosis effects on blood 
flow while taking into account different shapes and sizes of stenosis. Mekheimer and Kot [3] proposed 
a mathematical model for the geometry of stenosis by specifying the shape and tapering parameters 
and determined that impedance lowers as the stenosis length and shape parameter values increase, 
while it increases when the stenosis size grows. Caro et al. [4] stated that when blood flows through 
larger arteries at high shear rates, it is Newtonian (homogenous/inhomogeneous), and when it flows 
through smaller arteries at low shear rates, it is non-Newtonian. Blood viscosity varies in the radial 
direction in bigger arteries stated by Roy et al. [5]. This occurs because of the inhomogeneous condition 
of blood causing suspended blood particles to migrate in a radial direction stated by Lighthill [6]. Blood 
inhomogeneity, and hence nonuniform viscosity, can drastically alter the rheology of blood. 
 To author’s knowledge, there is no attempt to observe the effect of varying viscosity in Bingham 
fluid for dispersion of solutes in blood flow through tapered stenosed artery. The aim of this study is to 
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formulate a Bingham fluid model and mathematically investigate the dispersion of solutes in the 
bloodstream with the effect of varying viscosity through a tapered artery.  
 
 
2 Mathematical Formulation 

 
Figure 1: The geometry of pipe (artery) of Bingham fluid  

 
The geometry of fluid flow with the effect of electric field is shown in Figure 1, where  is the length of 
artery,  is length of stenosis,  is semi-width of the cross-sectional artery,  is constant radius of 

artery,  is stenosed radius and  is angle of tapering.  
 
2.1  Governing Equation  
 
The constitutive equation of Bingham fluid model as follows:   

  (1) 

where  is the Bingham varying viscosity, is the shear stress where �̅� is the radius 

of the plug region and 𝑢$ is the velocity in radial direction.  is the yield stress. From Eq. (1), the 

constitutive equation for Bingham fluid for  is shown as follows: 

  (2) 

where  signify the radially varying viscosity in the core region, which is 

[7]. where the viscosity is taken to be constant represents the coefficient of viscosity of plasma,  
is the yield stress, n is the Bingham fluid parameter,  is the viscosity index appearing in the expression 
for variable viscosity and is the constant viscosity relation.  

The boundary condition of Eq. (2) for the expression for the shear stress is given by 

  (3) 
Then, the momentum equation with electric field is defined as follows [2] 

  (4) 

where  is the axial pressure gradient,  is the fluid pressure,  is the axial coordinate for a 

circular piper,  is the fluid density and  is the electric field in non-axial coordinate. 
The boundary condition of Eq. (4) for the expression for the shear stress is given by: 
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  (5) 

where is given by 

  (6) 

where is the non-stenotic radius of the straight artery,  is the tapering angel,   is the height 

of the stenosis, is the circle radius,  is  the half-length stenosis,  is the length of artery into 
stenosis and is the tapered vessel slope.   
A two-dimensional unsteady convective-diffusion equation is as follows  

  (7) 

where  is the time,  is the velocity in the  direction,  is the axial coordinate,  is the radial 

coordinate of a circular pipe, and  is the molecular diffusivity.  
The subscript in in Eq. (7) is taken out of the equation and becomes 

  (8) 

The initial and boundary condition of solute concentration [8] are given by:  

  (9) 

  (10) 

  (11) 

2.2 Non-Dimensional Variables 
 
The following is the non-dimensional variables: 

  (12) 

 
where  is the fluid characteristic velocity,  are the concentration of the 

solute, velocity of the blood flow, mean velocity, radius artery, axial distance, length of solute, time, 
shear stress and yield stress respectively.  
 
2.3 Method of Solution 
 
Using non-dimensional variables Eq. (12) in Eq. (4), yields  

 (13) 

Integrating Eq. (13) with respect to the expression for the shear stress is given as follows:          
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Substituting Eq. (14) into Eq. (13) and integrate the resulting equation in term of  in the outer non-
plug core region, the velocity expression is obtained as 

 (15) 

Evaluating  in the Eq. (15), the velocity of the blood in the plug flow region is obtained as follows: 

 (16) 

 
The mean velocity of the Bingham fluid is defined as [3]  

 (17) 

Substituting Eq. (15) and Eq. (16) into Eq.(17), a velocity of Bingham fluid is formed as

         (18) 

 

2.4 Generalized Dispersion Model 

The GDM for is given by [8] 

  (19) 

where  is the transport coefficient given by  

  (20) 

with the Kronecker delta  given by 

  (21) 

From Eq. (20), the longitudinal convection coefficient is  and the longitudinal diffusion coefficient 

is  The effective axial diffusivity is the coefficient expresses  in the entire dispersion process 
in a simple diffusion process.  
 

2.5 Method of Solution for Dispersion Function 

The dispersion function  is given by  

  (22) 

where is the dispersion function in the steady state and is the dispersion function in the 
unsteady state. 
The differential equation of dispersion function at the steady state in plug flow region is obtained as [8] 

  (23) 

and in outer flow regions obtained as [8] 
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  (24) 

Eq. (23) is used to solve the differential equation of dispersion function at steady state in the plug flow 
region and it is obtained as follows:  

  (25) 

and in outer flow region, 

  (26) 

where  and is obtained  

  (27) 

The unsteady dispersion function of  is given as  

  (28) 

 
2.6 Method of Solution for Mean Concentration  

 Since the value of  for Newtonian fluid is negligibly small from Eq. (19), 

, the terms and so on are ignored by ignoring the terms 
involving these coefficients [9]. As a result, Eq. (21) is reduced to  

  (29) 

The mean concentration of solute in Fourier transform is given by 
  (30) 
The boundary conditions of Fourier transform for Eq. (30) is given by [8] 
 

  (31) 

and 

  (32) 

Using Inverse Fourier Transform (IFT) in Eq. (30), the mean concentration of solute  is 
obtained as follows:  

  (33) 

where erf is the error function.  
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3 Results and Discussions 
 
3.1 The Effect of Varying Viscosity  
 
 Figure 2 shows the variation of velocity u for different values of yield stress, in the blood flow 

through non tapered arteries without the effect of varying viscosity,  with

and  The velocity in Figure 2 indicates that the velocity 
reduces when the yield stress value increases from 0.02 to 0.10 due to the presence of stenosis that 
inhibits blood flow in the artery. The velocity is higher because constant viscosity enhanced the velocity. 
Yield stress acts as the way of the way of the flow of human blood and important in viscoelasticity 
change. 
 Figure 3 shows the variation of velocity u for different values of yield stress,  in the blood flow 

through non tapered arteries with the effect of varying viscosity,  with 

and  Figure 3 exhibits that the yield stress in the 
blood flow increases, the velocity also decreases. The radius of the artery in Figure 3 becomes smaller 
than the radius of the artery in Figure 2. This shows that velocity of the blood flow in Figure 3 is enhanced 
by varying viscosity.   
 

 
 
Figure 2: Variation of velocity for different 
values of yield stress,  without the effect of 

varying viscosity,  
 

  

 
 
Figure 3: Variation of velocity for different     
values of yield stress,  with the effect of 

varying viscosity,  
 

 
3.2 Steady Dispersion of Solute,  
 
 Figure 4 shows the variation of steady dispersion function,  for different values of yield stress, 

 in the blood flow through non tapered arteries without the presence of varying viscosity,  with 

and The dispersion function moves further than in Figure 4 
because the viscosity is assumed to be constant  Bingham fluid is a non-Newtonian fluid with a 
yield stress, making it suitable for narrow arteries. Yield stress increases, the steady dispersion function 
decreases near the wall and opposite behaviour at the center of artery.  
 Figure 5 shows the variation of steady dispersion function,  for different values of yield stress, 

 in the blood flow through non tapered arteries with the presence of varying viscosity,  with 

and The steady dispersion function decreases when the 
value of varying viscosity is present and the dispersion function in the whole region of the artery 
decreases slowly.  
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Figure 4: Variation of steady dispersion,  for 
different values of yield stress,  in the blood flow 

without the presence of varying viscosity,  
 

 
 

Figure 5: Variation of steady dispersion,  for 
different values of yield stress,  in the blood 

flow with the presence of varying viscosity,  
 

 
 
3.3 Unsteady Dispersion of Solute,  
 
 Figure 6 represents the variation of unsteady dispersion function,  for different values of time, 

t in the blood flow through non tapered arteries without the presence of varying viscosity,  with 

and  The dispersion function decreases when the time increases. 
The unsteady dispersion function in Figure 6 is smaller than in Figure 7 because of the presence of the 
varying viscosity.  
 Figure 7 represents the variation of unsteady dispersion function,  for different values of time, 

t in the blood flow through non tapered arteries with the presence of varying viscosity,  with 

and  In time , the unsteady dispersion function shows 
the maximum result and as time increases, the unsteady dispersion function decreases near to zero for 
both figure. The unsteady dispersion in Figure 7 is higher than Figure 6 because of the presence of 
varying viscosity in the blood flow.  
 

 
 
Figure 6: Variation of unsteady dispersion,  for 
different values of time, t in the blood flow without 
the presence of varying viscosity,  

 

  

 
 
Figure 7: Variation of unsteady dispersion,  
for different values of time, t in the blood flow 
with the presence of varying viscosity,  

 
 
 
3.4 Dispersion Function,  
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 Figure 8 shows the variation of dispersion function,  for different values of yield stress,  in 

the blood flow through non tapered arteries without the presence of varying viscosity,  with 

 and The dispersion function increase when the yield stress 
increase in the blood flow. Figure 9 shows the variation of dispersion function,  for different values of 

yield stress,  in the blood flow through non tapered arteries with the presence of varying viscosity, 

 with  and  In Figure 9, the dispersion function 
is smaller than in Figure 8 due to the presence of varying viscosity. The dispersion function increase 
when the yield stress increase and the presence of varying viscosity can distract the dispersion function 
of the blood flow. It shows that without the presence of varying viscosity, the medicine in the body flows 
faster through stenosed artery than with the presence of varying viscosity.  

 

 
 

Figure 8: Variation of steady dispersion,  for 
different values of yield stress, in the blood 
flow without the presence of varying viscosity, 

 

 

  

 
 
Figure 9: Variation of steady dispersion,  for 
different values of yield stress, in the blood flow 

with the presence of varying viscosity,  

 

 
3.5 Mean Concentration of the Solute,  
 
  Figure 10 shows variation of mean concentration,  with different values of yield stress,  with 

and  Increases in yield stress heighten the solute 
concentration at the core, which increases the mean solute concentration. It shows that the mean 
concentration is higher when the diameter of the artery in the circular pipe is small. The mean 
concentration increases rapidly around because the drug enters the body at a faster rate 
than it is removed. When drugs removed from the body, the mean concentration goes down slowly at 

. It shows that when yield stress increases, the mean concentration decreases.  

 Figure 11 shows variation mean concentration,  with different value of yield stress,  with 

the presence of varying viscosity,  with  The 
presence of varying viscosity increases in the body, the concentration of blood flow through the artery 
decreases. As the solute concentrations increases, the heart pumps blood at a high rate. With a higher 
mean concentration of solute at the highest-pressure gradient, solute dispersion, such as medication, 
reaches its maximum efficacy. 
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Figure 10: Variation of mean concentration, 𝐶! 
for different values of yield stress,  without 

the presence of varying viscosity,  
 

 

 
Figure 11: Variation of mean concentration, 𝐶! 
for different values of yield stress, 𝜏" with the 
presence of varying viscosity, 

 

 
4 Conclusion 
 
 The Bingham fluid model is a mathematical model that has been developed to analyze the 
concept of dispersion solute in the blood flow. The effect of varying viscosity through a tapered stenosed 
artery on the dispersion of solute in the Bingham fluid is investigated. The effective axial diffusivity and 
relative axial diffusivity of solute dispersion were calculated using the generalized dispersion model. 
The higher the yield stress, decrease the velocity of blood and the presence of varying viscosity can 
disturb the velocity of the blood flow. The presence of varying viscosity in mean concentration disturbs 
the mean concentration of solute and the highest mean concentration exhibits the most effective 
concentration. Mathematica is used to find the solution for solute concentration, dispersion function and 
mean concentration in a tapered stenosed artery. Graphical results are represented using various 
parameter given in the Mathematica.  
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