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Abstract 

Energy of a graph is the sum of the absolute value of the eigenvalues of the graphs’ adjacency matrix. 

The energy of graphs has various applications in mathematics and other areas of science, for example, 

in understanding the partition problem of the adjacency matrix associated to the optimization problem.  

Thus, many researches have been conducted in investigating the energy of graphs including the energy 

of Cayley graphs of symmetric groups and energy of connected and undirected graph of order less than 

ten.  In this research, the main objective is to compute the energy of the composite order Cayley graphs 

of the quaternion groups of order at most 32.  A composite order Cayley graph of a group is a pair of 

set of vertices and set of edges, where the set of vertices contains the elements of the group and two 

distinct vertices x and y are adjacent when 𝑥𝑦−1 ∈ 𝑆, where S is a subset of composite order elements 

of the group.  In order to compute the energy of the composite order Cayley graphs of the quaternion 

groups of order at most 32, the structures of the graphs are first examined by reconstructing the graphs 

by using GeoGebra software based on the definition of the composite order Cayley graph and the 

presentation of each of the groups.  Then, by referring to the adjacency of the graph’s vertices, the 

adjacency matrix of the graph is determined, and the energy of the graph is computed based on the 

eigenvalues of the adjacency matrix.  Maple software is used to assist in the computation of the 

eigenvalues of the graph’s adjacency matrix.  As a result, the energy of the composite order Cayley 

graphs of quaternion group of order eight, 16 and 32 are found to be 12, 28 and 60, respectively. 

Keywords: Energy of graph; Cayley graph; quaternion groups; adjacency matrix; eigenvalues. 

 

1. Introduction 

A graph is a structure consisting of vertices and edges such that there exists a connection on these 

vertices with the edges. In the construction of the graph, the vertices and edges are usually represented 

by dots and lines respectively. The theory of graph has been introduced by Euler, who was a great 

mathematician. Euler introduced this theory after he solved the Seven Bridge of Königsberg problem 

[1]. After graph theory was introduced and studied in more detail, it has become essential knowledge 

in modern mathematics and being utilised in many applications, such as linguistic, computer science, 

chemistry and many more [2]. 

 The energy of a graph is the sum of the absolute values of the eigenvalues of its adjacency matrix 

where the adjacency matrix of a graph is the square matrix with the entries in matrix depend on the 

adjacency of the graph’s vertices. Moreover, the energy of a graph has been defined by Gutman in 

1978 [3]. Gutman became motivated to introduce the energy of a graph after finding out that Hückel 

proposed the Hückel Molecular Theory in 1930s. This theory is an approximate method that has been 

used by chemist in approximating energies correlated with 𝜋 −electron orbitals in conjugated 

hydrocarbons.  
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 The energy of various graph of groups became well known and has been extensively investigated 

since 1978. For example, Shalini and Joseph [4], investigated the energy of connected and undirected 

graphs of order less than 10. Since then, there are many researchers who investigate the energy of 

certain graph of groups such as Gaidhani [5] and Prasad [6]. In addition, Ahmad Fadzil et. al also 

investigated the energy of Cayley graphs for symmetric groups of order 24 [7]. 

 Although many researches have been conducted on energy of graphs, there is no research done 

yet on the energy of the composite order Cayley graph of quaternion groups. Therefore, the energy of 

composite order Cayley graph of quaternion groups of order at most 32 is determined in this research. 

 A Cayley graph (also known as Cayley color graph or Cayley diagram) is one of the graph that 

can be associated to group and is denoted by 𝐶𝑎𝑦(𝐺, 𝑆), where 𝑆 is a non-empty subset of a finite group 

𝐺. Tolue in [8] has introduced a new type of Cayley graph namely composite order Cayley graph. A 

composite order Cayley graph denoted as 𝐶𝑎𝑦𝑐(𝐺, 𝑆), is a graph with a set of vertices consisting of the 

elements of 𝐺 and two distinct vertices 𝑥 and 𝑦 are adjacent if 𝑥𝑦−1 ∈ 𝑆, where 𝑆 is a subset of 𝐺 

containing elements of composite order.  

 Cayley graphs has been introduced by Cayley in 1878 to explain the concept of abstract groups 

[9]. From the Cayley diagram, the elements of the group were represented by points and the operation 

on the elements was represented by a directed line connecting the two points. This diagram concept 

was developed and leads to the formation of a new type of Cayley graph [10]. 

 In addition, the quaternion group of order 2𝑛 is a nonabelian group with presentation 

𝑄2𝑛 = 〈𝑎, 𝑏 | 𝑎2𝑛−1
= 𝑒, 𝑏2 = 𝑎2𝑛−2

, 𝑏−1𝑎𝑏 = 𝑎−1〉, 

where 𝑛 ≥ 3 [11]. This research will be focus for 𝑛 = 3, 4 and 5 which are the quaternion group of order 

eight, 𝑄8, order 16, 𝑄16 and order 32, 𝑄32. 

  Therefore, the energy of composite order Cayley graph of quaternion groups of order at most 32 

is determined in this research. 

 

2. Basic Concepts in Graph Theory and Group Theory  

In this section, the definition of graph and some related definitions which are referred in computing the 

energy of the graph are presented. To begin with, the definition of a graph is given as follows: 

 

Definition 2.1 [12]     Graph 

A graph is a pair Г = (𝑉(Г), 𝐸(Г)) of sets such that 𝐸 ⊆ [𝑉]2. Each element of 𝑉(Г) is called a vertex 

while the element of 𝐸 is called an edges. An edge that connect two distinct vertices 𝑢, 𝑣 ∈ 𝑉(Γ) can be 

denoted as {𝑢, 𝑣}.  

 The main idea to determine the energy of graph is by calculating the sum of the absolute value 

of the eigenvalues of the graphs’ adjacency matrix. The definition of the adjacency matrix of a graph is 

given as follows:  

 

Definition 2.2 [13]     Adjacency Matrix 

Let Γ be a graph with 𝑉(Γ) = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} and 𝐸(𝛤) = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑚}. The adjacency matrix of Γ 

denoted by 𝐴(Γ) is the 𝑛 × 𝑛 matrix defined as follows.  

𝐴(Γ) = {
𝑥𝑖𝑗 = 1 if 𝑣𝑖 ∼ 𝑣𝑗

      𝑥𝑖𝑗 = 0 if otherwise
 

where 𝑣𝑖 ∼ 𝑣𝑗 represents the adjacency of 𝑣𝑖 and 𝑣𝑗. Usually, 𝐴(Γ) is simply denoted by 𝐴. 

 In order to get the eigenvalues of the adjacency matrix, the characteristic polynomial need to be 

obtained first. 

 

Definition 2.3 [6]     The Characteristic Polynomial 

Let 𝐴 be an 𝑛 × 𝑛 matrix. The characteristic polynomial of 𝐴 is the function 𝑓(𝜆) given by 
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𝑓(𝜆) = det(𝐴 − 𝜆𝐼𝑛) 

   

Definition 2.4 [13]     Energy of Graph 

For any graph Γ, the energy of the graph, 𝜀(Γ), is the sum of the absolute value of the eigenvalues of 

the graph’s adjacency matrix. The energy of the graph can be written as 

𝜀(Γ) = ∑|𝜆𝑖|

𝑛

𝑖=1

 

where 𝜆1, 𝜆2, … , 𝜆𝑛 are the eigenvalues of the adjacency matrix of Γ. 

 

The following is the basic concept needed in order to determine the energy of the graph for composite 

order Cayley graph of quaternion groups, starting with the definition of generalized quaternion group. 

 

Definition 2.5 [11]     Generalized Quaternion Group 

A generalized quaternion group, also known as a generalized quaternion 2-group is a group of order 

2𝑛. For 𝑛 ≥  3, the group has the presentation: 

𝑄2𝑛 = 〈𝑎, 𝑏 | 𝑎2𝑛−1
= 𝑒, 𝑏2 = 𝑎2𝑛−2

, 𝑏−1𝑎𝑏 = 𝑎−1〉. 

 

The definition of graph associated to groups also provided in this section and the following are some 

important definitions of a graph related with group. 

 

Definition 2.6 [14]     Graph of Group 

A graph of group G denoted as Γ𝐺 , is an object consisting of a collection of a pair of vertices, 𝑉 and 

edges, 𝐸 labelled as Γ𝐺 = (𝑉, 𝐸). The elements of 𝐺 are the vertices of Γ𝐺  and the element of 𝐸(𝐺) are 

the lines that combine two elements of 𝑉(𝐺). 

 

 

Definition 2.7 [15]     Cayley Graph of a Group 

A graph Γ𝐺  is a Cayley graph on a group 𝐺, if there is a subset 𝑆  𝐺\𝑒 with 𝑆 = 𝑆−1 = {𝑠−1|𝑠 ∈ 𝑆}, such 

that 𝑉(Γ𝐺) = 𝐺, and two vertices 𝑔 and ℎ are adjacent if and only if ℎ𝑔−1 ∈ 𝑆. In other words, ℎ𝑔−1 ∈ 𝑆 

implies that ∃𝑠 ∈ 𝑆 with ℎ𝑔−1 = 𝑠 or ℎ = 𝑠𝑔. A Cayley graph can be denoted as 𝐶𝑎𝑦(𝐺, 𝑆). 

 

 In 2019, Tolue defined a new type of Cayley graph namely composite order Cayley graph [8]. 

The definition of composite order Cayley graph are stated as follows: 

 

Definition 2.8 [8]     Composite Order Cayley graph 

Let 𝐺 be a group and 𝑆 be a set of composite order elements of 𝐺. A composite order Cayley graph is 

a graph containing a set of vertex for the entire element of 𝐺 and two distinct vertices 𝑥 and 𝑦 are 

adjacent when 𝑥𝑦−1 ∈ 𝑆. A composite order Cayley graph can be denoted as 𝐶𝑎𝑦𝑐(𝐺, 𝑆).  

 

Theorem 2.1 [16] 

Let 𝑄2𝑛 be a quaternion group of order 2𝑛, where 𝑛 ≥ 3. Let 𝑆 be a subset of the composite order 

elements of 𝑄2𝑛. Then, 𝑆 = 𝑄2𝑛  \ 𝑍(𝑄2𝑛) = 𝑄2𝑛  \{𝑒, 𝑎2𝑛−2
}. 

 

 In this research, the energy of composite order Cayley graph of the quaternion groups are 

computed.  
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3. The Energy of Composite Order Cayley Graph of the Quaternion Group of Order Eight 

 

3.1. The Composite Order Cayley Graph of Quaternion Group of Order Eight 

The group presentation of 𝑄8 is given by: 

𝑄8 = 〈𝑎, 𝑏 | 𝑎4 = 𝑒, 𝑏2 = 𝑎2, 𝑏−1𝑎𝑏 = 𝑎−1〉. 

Based on the group presentation, eight elements of 𝑄8 is listed as follows: 

𝑄8 = {𝑒, 𝑎, 𝑎2, 𝑎3, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏}. 

 The subset of the composite order Cayley graph, 𝑆1, is identified based on Theorem 2.1, that is 

every elements of 𝑄2𝑛 is of composite order except 𝑒 and 𝑎2𝑛−2
. Since 𝑄8 = 𝑄23, 𝑛 = 3, so, it implies 

that 𝑒, 𝑎2 ∉ 𝑆1. Therefore, the subset 𝑆1 of elements of 𝑄8 with composite order is 

𝑆1 = {𝑎, 𝑎3, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏}. 

From Definition 2.8, the set of vertices of 𝐶𝑎𝑦𝑐(𝑄8, 𝑆1) is 

𝑉(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)) = 𝑄8 = {𝑒, 𝑎, 𝑎2, 𝑎3, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏}. 

Let 𝑠 = 𝑎,  𝑎 is adjacent to 𝑒 since 𝑥(𝑒−1) = 𝑎 ⟹ 𝑥 = 𝑎 ∈ 𝑆1 implies that there exist 𝑠 ∈ 𝑆1 such that 

𝑥𝑦−1 = 𝑠 or 𝑥 = 𝑠𝑦. Meanwhile, 𝑎3 is not adjacent to 𝑎 because 𝑎3(𝑎−1) ∉ 𝑆1 which implies that there is 

not exist 𝑠 ∈ 𝑆1. Therefore, to find the set of edges, the adjacency of pair of element must be examined 

first. Hence, the set of edges of 𝐶𝑎𝑦𝑐(𝑄8, 𝑆1) is: 

𝐸(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)) = { {𝑒, 𝑎3}, {𝑒, 𝑎2𝑏}, {𝑒, 𝑎3𝑏}, {𝑎, 𝑒}, {𝑎, 𝑎𝑏}, {𝑎, 𝑎2𝑏}, {𝑎2, 𝑎}, {𝑎2, 𝑏}, {𝑎2, 𝑎𝑏}, {𝑎3, 𝑏}, 

{𝑎3, 𝑎2}, {𝑎3, 𝑎3𝑏}, {𝑏, 𝑒}, {𝑏, 𝑎}, {𝑏, 𝑎3𝑏}, {𝑎𝑏, 𝑒}, {𝑎𝑏, 𝑎3}, {𝑎𝑏, 𝑏},  

{𝑎2𝑏, 𝑎2}, {𝑎2𝑏, 𝑎3}, {𝑎2𝑏, 𝑎𝑏}, {𝑎3𝑏, 𝑎}, {𝑎3𝑏, 𝑎2}, {𝑎3𝑏, 𝑎2𝑏} }. 

After that, the composite order Cayley graph of 𝑄8 can be constructed by using GeoGebra software by 

inserting the results for 𝑉(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)) and 𝐸(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)). 

 Next, based on the set of edges, the adjacency matrix of composite order Cayley graph of 

quaternion group of order eight is determined in order to compute the total energy of the graph. 

 

3.2. The Adjacency Matrix of Composite Order Cayley Graph of Quaternion Group of Order Eight 

The adjacency matrix of 𝐶𝑎𝑦𝑐(𝑄8, 𝑆1) is determined based on the structure of 𝐶𝑎𝑦𝑐(𝑄8, 𝑆1) observed 

from the set of edges of the graph. By Definition 2.2, the entry for the adjacency matrix is 1 when the 

pair of elements are adjacent by an edge and 0 if the elements are not adjacent by an edge. For an 

undirected graph, the value 𝑥𝑖𝑗 = 𝑥𝑗𝑖 for all 𝑖, 𝑗. 

 In other words, the entry 𝑥11 is equal to 0 due to set {𝑒, 𝑒} is not included in 𝐸(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)) which 

shows that 𝑒 is not adjacent to itself. Furthermore, the entry 𝑥12 = 𝑥21 is equal to 1 since {𝑒, 𝑎} = {𝑎, 𝑒} 

is included in 𝐸(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)). Therefore, the element 𝑒 is adjacent to 𝑎 and vice versa. So, the other 

entries are also determined in the same way. Therefore, the adjacency matrix of the composite order 

Cayley graph of  𝑄8 is 

𝐴(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)) =

[
 
 
 
 
 
 
 
0 1 0 1 1 1 1 1
1 0 1 0 1 1 1 1
0 1 0 1 1 1 1 1
1 0 1 0 1 1 1 1
1 1 1 1 0 1 0 1
1 1 1 1 1 0 1 0
1 1 1 1 0 1 0 1
1 1 1 1 1 0 1 0]

 
 
 
 
 
 
 

 

 The next subsection is on the computation of the energy of prime order Cayley graph of the 

quaternion group of order eight. 
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3.3. Computation of the Energy of Composite Order Cayley Graph of the Quaternion Group of Order 

Eight 

Based on 𝐴(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)), by using Definition 2.3, the characteristic polynomial, 𝑓(𝜆) is obtained by 

determining 𝑑𝑒𝑡 (𝜆𝐼 − 𝐴(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1))) and the eigenvalues of 𝐴(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)) is determined by 

𝑑𝑒𝑡 (𝜆𝐼 − 𝐴(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1))) = 0. 

 Maple software is used in order to assist the computation of the characteristic polynomial of 

𝐴(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)). Therefore, the characteristic polynomial of 𝐴 is 

𝑓(𝜆) = 𝜆8 − 24𝜆6 − 64𝜆5 − 48𝜆4. 

Next, to find the eigenvalues of the graph, the characteristic polynomial is set to be equal to zero, i.e., 

𝑓(𝜆) = 0. The characteristic equation is simplified and implies 𝜆4(𝜆 − 6)(𝜆 + 2)3 = 0. Thus, the 

eigenvalues of the characteristic polynomial of the composite order Cayley graph of 𝑄8 are 𝜆1 = 𝜆2 =

𝜆3 = 𝜆4 = 0, 𝜆5 = 6 and 𝜆6 = 𝜆7 = 𝜆8 = −2. 

 Then, the total energy of the graph can be calculated as 𝜀(Γ) = ∑ |𝜆𝑖|
𝑛
𝑖=1  as stated in Definition 

2.4. Hence,  

𝜀(𝐶𝑎𝑦𝑐(𝑄8, 𝑆1)) = 4|0| + 6 + 3|−2| = 12. 

 

 

4. The Energy of Composite Order Cayley Graph of the Quaternion Group of Order 16 

 

4.1. The Composite Order Cayley Graph of Quaternion Group of Order 16 

The group presentation of 𝑄16 is given by: 

𝑄16 = 〈𝑎, 𝑏 | 𝑎8 = 𝑒, 𝑏2 = 𝑎4, 𝑏−1𝑎𝑏 = 𝑎−1〉. 

Hence, based on the group presentation, sixteen elements of 𝑄16 is listed as follows: 

𝑄16 = {𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 𝑎5𝑏, 𝑎6𝑏, 𝑎7𝑏}. 

 The subset of the composite order Cayley graph, 𝑆2, is selected with reference on Theorem 2.1, 

that is every elements of 𝑄2𝑛 is of composite order except 𝑒 and 𝑎2𝑛−2
. So, since 𝑄16 = 𝑄24, 𝑛 = 4 and 

this implies that 𝑒, 𝑎24−2
∉ 𝑆2. Therefore,  

𝑆2 = 𝑄16 \ {𝑒, 𝑎
4} = {𝑎, 𝑎2, 𝑎3, 𝑎5, 𝑎6, 𝑎7, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 𝑎5𝑏, 𝑎6𝑏, 𝑎7𝑏}. 

Based on Definition 2.8, the set of vertices of 𝐶𝑎𝑦𝑐(𝑄16, 𝑆2) is 

𝑉(𝐶𝑎𝑦𝑐(𝑄16, 𝑆2)) = 𝑄16 = {𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 𝑎5𝑏, 𝑎6𝑏, 𝑎7𝑏}. 

 

Let 𝑠 = 𝑎2,  𝑒 is adjacent to 𝑎2 since 𝑥 ∙ (𝑎2)−1 = 𝑎2 ⟹ 𝑥 = 𝑒 ∈ 𝑆2 such that 𝑥𝑦−1 = 𝑠 or 𝑥 = 𝑠𝑦. 

Meanwhile, 𝑎2 is not adjacent to 𝑎6 because 𝑥 ∙ (𝑎6)−1 = 𝑎2 ⟹ 𝑥 = 𝑎8 ∉ 𝑆2 which implies that there is 

not exist 𝑠 ∈ 𝑆2. Therefore, to find the set of edges, the adjacency of pair of element must be examined 

first. Hence, the set of edges of 𝐶𝑎𝑦𝑐(𝑄16, 𝑆2) is: 

𝐸(𝐶𝑎𝑦𝑐(𝑄16, 𝑆2)) = {{𝑒, 𝑎}, {𝑒, 𝑎2}, {𝑒, 𝑎3}, {𝑒, 𝑎5}, {𝑒, 𝑎6}, {𝑒, 𝑎7}, {𝑒, 𝑏}, {𝑒, 𝑎𝑏}, {𝑒, 𝑎2𝑏}, {𝑒, 𝑎3𝑏}, 

{𝑒, 𝑎4𝑏}, {𝑒, 𝑎5𝑏}, {𝑒, 𝑎6𝑏}, {𝑒, 𝑎7𝑏}, {𝑎, 𝑏}, {𝑎, 𝑎𝑏}, {𝑎, 𝑎2}, {𝑎, 𝑎3}, {𝑎, 𝑎4}, 

{𝑎, 𝑎6}, {𝑎, 𝑎7}, {𝑎, 𝑎2𝑏}, {𝑎, 𝑎3𝑏}, {𝑎, 𝑎4𝑏}, {𝑎, 𝑎5𝑏}, {𝑎, 𝑎4𝑏}, {𝑎, 𝑎5𝑏}, 

{𝑎, 𝑎6𝑏}, {𝑎, 𝑎7𝑏}, {𝑎2, 𝑏}, {𝑎2, 𝑎𝑏}, {𝑎2, 𝑎3}, {𝑎2, 𝑎4}, {𝑎2, 𝑎5}, {𝑎2, 𝑎7}, 

{𝑎2, 𝑎2𝑏}, {𝑎2, 𝑎3𝑏}, {𝑎2, 𝑎4𝑏}, {𝑎2, 𝑎5𝑏}, {𝑎2, 𝑎6𝑏}, {𝑎2, 𝑎7𝑏}, {𝑎3, 𝑏}, {𝑎3, 𝑎𝑏}, 

{𝑎3, 𝑎4}, {𝑎3, 𝑎5}, {𝑎3, 𝑎6}, {𝑎3, 𝑎2𝑏}, {𝑎3, 𝑎3𝑏}, {𝑎3, 𝑎4𝑏}, {𝑎3, 𝑎5𝑏}, {𝑎3, 𝑎6𝑏}, 

{𝑎3, 𝑎7𝑏}, {𝑎4, 𝑎5}, {𝑎4, 𝑎6}, {𝑎4, 𝑎5}, {𝑎4, 𝑎6}, {𝑎4, 𝑎7}, {𝑎4, 𝑏}, {𝑎4, 𝑎𝑏}, 

{𝑎4, 𝑎2𝑏}, {𝑎4, 𝑎3𝑏}, {𝑎4, 𝑎4𝑏}, {𝑎4, 𝑎5𝑏}, {𝑎4, 𝑎6𝑏}, {𝑎4, 𝑎7𝑏}, {𝑎5, 𝑏}, {𝑎5, 𝑎𝑏}, 

{𝑎5, 𝑎6}, {𝑎5, 𝑎7}, {𝑎5, 𝑎2𝑏}, {𝑎5, 𝑎3𝑏}, {𝑎5, 𝑎4𝑏}, {𝑎5, 𝑎5𝑏}, {𝑎5, 𝑎6𝑏}, 

{𝑎5, 𝑎7𝑏}, {𝑎6, 𝑎7}, {𝑎6, 𝑏}, {𝑎6, 𝑎𝑏}, {𝑎6, 𝑎2𝑏}, {𝑎6, 𝑎3𝑏}, {𝑎6, 𝑎4𝑏}, {𝑎6, 𝑎5𝑏}, 

{𝑎6, 𝑎6𝑏}, {𝑎6, 𝑎7𝑏}, {𝑎7, 𝑏}, {𝑎7, 𝑎𝑏}, {𝑎7, 𝑎2𝑏}, {𝑎7, 𝑎3𝑏}, {𝑎7, 𝑎4𝑏}, 
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{𝑎7, 𝑎5𝑏}, {𝑎7, 𝑎6𝑏}, {𝑎7, 𝑎7𝑏}{𝑏, 𝑎𝑏}, {𝑏, 𝑎2𝑏}, {𝑏, 𝑎3𝑏}, {𝑏, 𝑎5𝑏}, {𝑏, 𝑎6𝑏}, 

{𝑏, 𝑎7𝑏}, {𝑎𝑏, 𝑎2𝑏}, {𝑎𝑏, 𝑎3𝑏}, {𝑎𝑏, 𝑎4𝑏}, {𝑎𝑏, 𝑎6𝑏}, {𝑎𝑏, 𝑎7𝑏}, {𝑎2𝑏, 𝑎3𝑏}, 

{𝑎2𝑏, 𝑎4𝑏}, {𝑎2𝑏, 𝑎5𝑏}, {𝑎2𝑏, 𝑎7𝑏}, {𝑎3𝑏, 𝑎4𝑏}, {𝑎3𝑏, 𝑎5𝑏}, {𝑎3𝑏, 𝑎6𝑏}, 

{𝑎4𝑏, 𝑎5𝑏}, {𝑎4𝑏, 𝑎6𝑏}, {𝑎4𝑏, 𝑎7𝑏}, {𝑎5𝑏, 𝑎6𝑏}, {𝑎5𝑏, 𝑎7𝑏}, {𝑎6𝑏, 𝑎7𝑏}}. 

 

 Then, GeoGebra software is used to construct the composite order Cayley graph of 𝑄16 by 

inserting the results for 𝑉(𝐶𝑎𝑦𝑐(𝑄16, 𝑆2)) and 𝐸(𝐶𝑎𝑦𝑐(𝑄16, 𝑆2)). 

 In the following subsection, based on the set of edges, the adjacency matrix of the composite 

order Cayley graph of quaternion group of order 16 is determined in order to compute the total energy 

of the graph. 

 

4.2. The Adjacency Matrix of Composite Order Cayley Graph of Quaternion Group of Order 16 

The adjacency matrix of 𝐶𝑎𝑦𝑐(𝑄16, 𝑆2) is determined by using the group presentation of 𝑄16 and the 

definition of composite order Cayley graph. By Definition 2.2, the entry for the adjacency matrix is 1 

when the pair of elements are adjacent by an edge and 0 if the elements are not adjacent by an edge. 

For an undirected graph, the value 𝑥𝑖𝑗 = 𝑥𝑗𝑖 for all 𝑖, 𝑗. 

 Therefore, the adjacency matrix of the composite order Cayley graph of 𝑄16 is 

𝐴(𝐶𝑎𝑦𝑐(𝑄16, 𝑆2) ) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

4.3. Computation of the Energy of the Composite Order Cayley Graph of Quaternion group of the 

Order 16 

The eigenvalue of adjacency matrix of graph must be determined first in order to compute the energy 

of the graph. By using Maple software, the characteristic polynomial of 𝐴 is 

𝑓(𝜆) = 𝜆16 − 112𝜆14 − 896𝜆13 − 3360𝜆12 − 7168𝜆11 − 8960𝜆10 − 6144𝜆9 − 1792𝜆8, 

and the eigenvalues of the characteristic polynomial of the composite order Cayley graph of 𝑄16 are 

𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 𝜆5 = 𝜆6 = 𝜆7 = 𝜆8 = 0, 𝜆9 = 14 and 𝜆10 = 𝜆11 = 𝜆12 = 𝜆13 = 𝜆14 = 𝜆15 = 𝜆16 = −2. 

 

 Therefore, the energy of the composite order Cayley graph of 𝑄16 is shown below: 

𝜀(𝐶𝑎𝑦𝑐(𝑄16, 𝑆2)) = 8|0| + 14 + 7|−2| = 28. 

 

5. The Energy of Composite Order Cayley Graph of Quaternion Group of Order 32 

 

5.1. The Composite Order Cayley Graph of Quaternion Group of Order 32 

The group presentation of 𝑄32 is given by: 
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𝑄32 = 〈𝑎, 𝑏 | 𝑎16 = 𝑒, 𝑏2 = 𝑎8, 𝑏−1𝑎𝑏 = 𝑎−1〉. 

Based on the group presentation, the set of the elements of 𝑄32 is listed as follows: 

𝑄32 = {𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9, 𝑎10, 𝑎11, 𝑎12, 𝑎13, 𝑎14, 𝑎15, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏,

𝑎5𝑏, 𝑎6𝑏, 𝑎7𝑏, 𝑎8𝑏, 𝑎9𝑏, 𝑎10𝑏, 𝑎11𝑏, 𝑎12𝑏, 𝑎13𝑏, 𝑎14𝑏, 𝑎15𝑏}. 

 

 Next, for quaternion group of order 32, the subset of composite order Cayley graph is chosen to 

satisfy the condition of subset 𝑆3, that is  

𝑆3  = 𝑄32 \ {𝑒, 𝑎
8} 

= {𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎9, 𝑎10, 𝑎11, 𝑎12, 𝑎13, 𝑎14, 𝑎15, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 𝑎5𝑏, 𝑎6𝑏,

𝑎7𝑏, 𝑎8𝑏, 𝑎9𝑏, 𝑎10𝑏, 𝑎11𝑏, 𝑎12𝑏, 𝑎13𝑏, 𝑎14𝑏, 𝑎15𝑏}. 

 

The set of vertices and edges of 𝐶𝑎𝑦𝑐(𝑄32, 𝑆3) are listed as follows: 

 𝑉(𝐶𝑎𝑦𝑐(𝑄32, 𝑆3)) = 𝑄32 

= {𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9, 𝑎10, 𝑎11, 𝑎12, 𝑎13, 𝑎14, 𝑎15, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 

𝑎5𝑏, 𝑎6𝑏, 𝑎7𝑏, 𝑎8𝑏, 𝑎9𝑏, 𝑎10𝑏, 𝑎11𝑏, 𝑎12𝑏, 𝑎13𝑏, 𝑎14𝑏, 𝑎15𝑏}. 

  

 To determine the set of edges, the adjacency of pair of element must be checked first. Therefore, 

the set of edges of 𝐶𝑎𝑦𝑐(𝑄32, 𝑆3) is 

 

𝐸(𝐶𝑎𝑦𝑐(𝑄32, 𝑆3)) = { {𝑒, 𝑎}, {𝑒, 𝑎2}, {𝑒, 𝑎3}, {𝑒, 𝑎4}, {𝑒, 𝑎5}, {𝑒, 𝑎6}, {𝑒, 𝑎7}, {𝑒, 𝑎9}, {𝑒, 𝑎10}, {𝑒, 𝑎11}, {𝑒, 𝑎12}, 

{𝑒, 𝑎13}, {𝑒, 𝑎14}, {𝑒, 𝑎15}, {𝑒, 𝑏}, {𝑒, 𝑎𝑏}, {𝑒, 𝑎2𝑏}, {𝑒, 𝑎3𝑏}, {𝑒, 𝑎4𝑏}, { 𝑒, 𝑎5𝑏}, {𝑒, 𝑎6𝑏}, 

{𝑒, 𝑎7𝑏}, {𝑒, 𝑎8𝑏}, {𝑒, 𝑎9𝑏}, {𝑒, 𝑎10𝑏}, {𝑒, 𝑎11𝑏}, {𝑒, 𝑎12𝑏}, {𝑒, 𝑎13𝑏}, {𝑒, 𝑎14𝑏}, 

{𝑒, 𝑎15𝑏}, {𝑎, 𝑎2}, {𝑎, 𝑎3}, {𝑎, 𝑎4}, {𝑎, 𝑎5}, {𝑎, 𝑎6}, {𝑎, 𝑎7}, {𝑎, 𝑎8}, {𝑎, 𝑎10}, 

{𝑎, 𝑎11}, {𝑎, 𝑎12}, {𝑎, 𝑎13}, {𝑎, 𝑎14}, {𝑎, 𝑎15}, {𝑎, 𝑏}, {𝑎, 𝑎𝑏}, {𝑎, 𝑎2𝑏}, {𝑎, 𝑎3𝑏}, {𝑎, 𝑎4𝑏}, 

{ 𝑎, 𝑎5𝑏}, {𝑎, 𝑎6𝑏}, {𝑎, 𝑎7𝑏}, {𝑎, 𝑎8𝑏}, {𝑎, 𝑎9𝑏}, {𝑎, 𝑎10𝑏}, {𝑎, 𝑎11𝑏}, {𝑎, 𝑎12𝑏}, 

{𝑎, 𝑎13𝑏}, {𝑎, 𝑎14𝑏}, {𝑎, 𝑎15𝑏}, {𝑎2, 𝑎3}, {𝑎2, 𝑎4}, {𝑎2, 𝑎5}, {𝑎2, 𝑎6}, {𝑎2, 𝑎7}, {𝑎2, 𝑎8}, 

{𝑎2, 𝑎9}, {𝑎2, 𝑎11}, {𝑎2, 𝑎12}, {𝑎2, 𝑎13}, {𝑎2, 𝑎14}, {𝑎2, 𝑎15}, {𝑎2, 𝑏}, {𝑎2, 𝑎𝑏}, {𝑎2, 𝑎2𝑏}, 

{𝑎2, 𝑎3𝑏}, {𝑎2, 𝑎4𝑏}, { 𝑎2, 𝑎5𝑏}, {𝑎2, 𝑎6𝑏}, {𝑎2, 𝑎7𝑏}, {𝑎2, 𝑎8𝑏}, {𝑎2, 𝑎9𝑏}, {𝑎2, 𝑎10𝑏}, 

{𝑎2, 𝑎11𝑏}, {𝑎2, 𝑎12𝑏}, {𝑎2, 𝑎13𝑏}, {𝑎2, 𝑎14𝑏}, {𝑎2, 𝑎15𝑏}, {𝑎3, 𝑎4}, {𝑎3, 𝑎5}, {𝑎3, 𝑎6}, 

{𝑎3, 𝑎7}, {𝑎3, 𝑎8}, {𝑎3, 𝑎9}, {𝑎3, 𝑎10}, {𝑎3, 𝑎12}, {𝑎3, 𝑎13}, {𝑎3, 𝑎14}, {𝑎3, 𝑎15}, {𝑎3, 𝑏}, 

{𝑎3, 𝑎𝑏}, {𝑎3, 𝑎2𝑏}, {𝑎3, 𝑎3𝑏}, {𝑎3, 𝑎4𝑏}, {𝑎3, 𝑎5𝑏}, {𝑎3, 𝑎6𝑏}, {𝑎3, 𝑎7𝑏}, {𝑎3, 𝑎8𝑏}, 

{𝑎3, 𝑎9𝑏}, {𝑎3, 𝑎10𝑏}, {𝑎3, 𝑎11𝑏}, {𝑎3, 𝑎12𝑏}, {𝑎3, 𝑎13𝑏}, {𝑎3, 𝑎14𝑏}, {𝑎3, 𝑎15𝑏}, 

{𝑎4, 𝑎5}, {𝑎4, 𝑎6}, {𝑎4, 𝑎7}, {𝑎4, 𝑎8}, {𝑎4, 𝑎9}, {𝑎4, 𝑎10}, {𝑎4, 𝑎11}, {𝑎4, 𝑎13}, {𝑎4, 𝑎14}, 

{𝑎4, 𝑎15}, {𝑎4, 𝑏}, {𝑎4, 𝑎𝑏}, {𝑎4, 𝑎2𝑏}, {𝑎4, 𝑎3𝑏}, {𝑎4, 𝑎4𝑏}, {𝑎4, 𝑎5𝑏}, {𝑎4, 𝑎6𝑏}, 

{𝑎4, 𝑎7𝑏}, {𝑎4, 𝑎8𝑏}, {𝑎4, 𝑎9𝑏}, {𝑎4, 𝑎10𝑏}, {𝑎4, 𝑎11𝑏}, {𝑎4, 𝑎12𝑏}, {𝑎4, 𝑎13𝑏}, 

{𝑎4, 𝑎14𝑏}, {𝑎4, 𝑎15𝑏}, {𝑎5, 𝑎6}, {𝑎5, 𝑎7}, {𝑎5, 𝑎8}, {𝑎5, 𝑎9}, {𝑎5, 𝑎10}, {𝑎5, 𝑎11}, 

{𝑎5, 𝑎12}, {𝑎5, 𝑎14}, {𝑎5, 𝑎15}, {𝑎5, 𝑏}{𝑎5, 𝑎𝑏}, {𝑎5, 𝑎2𝑏}, {𝑎5, 𝑎3𝑏}, {𝑎5, 𝑎4𝑏}, 

{𝑎5, 𝑎5𝑏}, {𝑎5, 𝑎6𝑏}, {𝑎5, 𝑎7𝑏}, {𝑎5, 𝑎8𝑏}, {𝑎5, 𝑎9𝑏}, {𝑎5, 𝑎10𝑏}, {𝑎5, 𝑎11𝑏}, {𝑎5, 𝑎12𝑏}, 

{𝑎5, 𝑎13𝑏}, {𝑎5, 𝑎14𝑏}, {𝑎5, 𝑎15𝑏}, {𝑎6, 𝑎7}, {𝑎6, 𝑎8}, {𝑎6, 𝑎9}, {𝑎6, 𝑎10}, {𝑎6, 𝑎11}, 

{𝑎6, 𝑎12}, {𝑎6, 𝑎13}, {𝑎6, 𝑎15}, {𝑎6, 𝑏}{𝑎6, 𝑎𝑏}, {𝑎6, 𝑎2𝑏}, {𝑎6, 𝑎3𝑏}, {𝑎6, 𝑎4𝑏}, 

{𝑎6, 𝑎5𝑏}, {𝑎6, 𝑎6𝑏}, {𝑎6, 𝑎7𝑏}, {𝑎6, 𝑎8𝑏}, {𝑎6, 𝑎9𝑏}, {𝑎6, 𝑎10𝑏}, {𝑎6, 𝑎11𝑏}, {𝑎6, 𝑎12𝑏}, 

{𝑎6, 𝑎13𝑏}, {𝑎6, 𝑎14𝑏}, {𝑎6, 𝑎15𝑏}, {𝑎7, 𝑎8}, {𝑎7, 𝑎9}, {𝑎7, 𝑎10}, {𝑎7, 𝑎11}, {𝑎7, 𝑎12}, 

{𝑎7, 𝑎13}, {𝑎7, 𝑎14}, {𝑎7, 𝑏}{𝑎7, 𝑎𝑏}, {𝑎7, 𝑎2𝑏}, {𝑎7, 𝑎3𝑏}, {𝑎7, 𝑎4𝑏}, {𝑎7, 𝑎5𝑏}, 

{𝑎7, 𝑎6𝑏}, {𝑎7, 𝑎7𝑏}, {𝑎7, 𝑎8𝑏}, {𝑎7, 𝑎9𝑏}, {𝑎7, 𝑎10𝑏}, {𝑎7, 𝑎11𝑏}, {𝑎7, 𝑎12𝑏}, {𝑎7, 𝑎13𝑏}, 

{𝑎7, 𝑎14𝑏}, {𝑎7, 𝑎15𝑏}, {𝑎8, 𝑎9}, {𝑎8, 𝑎10}, {𝑎8, 𝑎11}, {𝑎8, 𝑎12}, {𝑎8, 𝑎13}, {𝑎8, 𝑎14}, 

{𝑎8, 𝑎15}, {𝑎8, 𝑏}{𝑎8, 𝑎𝑏}, {𝑎8, 𝑎2𝑏}, {𝑎8, 𝑎3𝑏}, {𝑎8, 𝑎4𝑏}, {𝑎8, 𝑎5𝑏}, {𝑎8, 𝑎6𝑏}, 

{𝑎8, 𝑎7𝑏}, {𝑎8, 𝑎8𝑏}, {𝑎8, 𝑎9𝑏}, {𝑎8, 𝑎10𝑏}, {𝑎8, 𝑎11𝑏}, {𝑎8, 𝑎12𝑏}, {𝑎8, 𝑎13𝑏}, 
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{𝑎8, 𝑎14𝑏}, {𝑎8, 𝑎15𝑏}, {𝑎9, 𝑎10}, {𝑎9, 𝑎11}, {𝑎9, 𝑎12}, {𝑎9, 𝑎13}, {𝑎9, 𝑎14}, 

{𝑎9, 𝑎15}, {𝑎9, 𝑏}{𝑎9, 𝑎𝑏}, {𝑎9, 𝑎2𝑏}, {𝑎9, 𝑎3𝑏}, {𝑎9, 𝑎4𝑏}, {𝑎9, 𝑎5𝑏}, {𝑎9, 𝑎6𝑏}, 

{𝑎9, 𝑎7𝑏}, {𝑎9, 𝑎8𝑏}, {𝑎9, 𝑎9𝑏}, {𝑎9, 𝑎10𝑏}, {𝑎9, 𝑎11𝑏}, {𝑎9, 𝑎12𝑏}, {𝑎9, 𝑎13𝑏}, 

{𝑎9, 𝑎14𝑏}, {𝑎9, 𝑎15𝑏}, {𝑎10, 𝑎11}, {𝑎10, 𝑎12}, {𝑎10, 𝑎13}, {𝑎10, 𝑎14}, {𝑎10, 𝑎15}, 

{𝑎10, 𝑏}{𝑎10, 𝑎𝑏}, {𝑎10, 𝑎2𝑏}, {𝑎10, 𝑎3𝑏}, {𝑎10, 𝑎4𝑏}, {𝑎10, 𝑎5𝑏}, {𝑎10, 𝑎6𝑏}, {𝑎10, 𝑎7𝑏}, 

{𝑎10, 𝑎8𝑏}, {𝑎10, 𝑎9𝑏}, {𝑎10, 𝑎10𝑏}, {𝑎10, 𝑎11𝑏}, {𝑎10, 𝑎12𝑏}, {𝑎10, 𝑎13𝑏}, {𝑎10, 𝑎14𝑏}, 

{𝑎10, 𝑎15𝑏}, {𝑎11, 𝑎12}, {𝑎11, 𝑎13}, {𝑎11, 𝑎14}, {𝑎11, 𝑎15}, {𝑎11, 𝑏}{𝑎11, 𝑎𝑏}, {𝑎11, 𝑎2𝑏}, 

{𝑎11, 𝑎3𝑏}, {𝑎11, 𝑎4𝑏}, {𝑎11, 𝑎5𝑏}, {𝑎11, 𝑎6𝑏}, {𝑎11, 𝑎7𝑏}, {𝑎11, 𝑎8𝑏}, {𝑎11, 𝑎9𝑏}, 

{𝑎11, 𝑎10𝑏}, {𝑎11, 𝑎11𝑏}, {𝑎11, 𝑎12𝑏}, {𝑎11, 𝑎13𝑏}, {𝑎11, 𝑎14𝑏}, {𝑎11, 𝑎15𝑏}, {𝑎12, 𝑎13}, 

{𝑎12, 𝑎14}, {𝑎12, 𝑎15}, {𝑎12, 𝑏}, {𝑎12, 𝑎𝑏}, {𝑎12, 𝑎2𝑏}, {𝑎12, 𝑎3𝑏}, {𝑎12, 𝑎4𝑏}, {𝑎12, 𝑎5𝑏}, 

{𝑎12, 𝑎6𝑏}, {𝑎12, 𝑎7𝑏}, {𝑎12, 𝑎8𝑏}, {𝑎12, 𝑎9𝑏}, {𝑎12, 𝑎10𝑏}, {𝑎12, 𝑎11𝑏}, {𝑎12, 𝑎12𝑏}, 

{𝑎12, 𝑎13𝑏}, {𝑎12, 𝑎14𝑏}, {𝑎12, 𝑎15𝑏}, {𝑎13, 𝑎14}, {𝑎13, 𝑎15}, {𝑎13, 𝑏}, {𝑎13, 𝑎𝑏}, 

{𝑎13, 𝑎2𝑏}, {𝑎13, 𝑎3𝑏}, {𝑎13, 𝑎4𝑏}, {𝑎13, 𝑎5𝑏}, {𝑎13, 𝑎6𝑏}, {𝑎13, 𝑎7𝑏}, {𝑎13, 𝑎8𝑏}, 

{𝑎13, 𝑎9𝑏}, {𝑎13, 𝑎10𝑏}, {𝑎13, 𝑎11𝑏}, {𝑎13, 𝑎12𝑏}, {𝑎13, 𝑎13𝑏}, {𝑎13, 𝑎14𝑏}, {𝑎13, 𝑎15𝑏}, 

{𝑎14, 𝑎15}, {𝑎14, 𝑏}{𝑎14, 𝑎𝑏}, {𝑎14, 𝑎2𝑏}, {𝑎14, 𝑎3𝑏}, {𝑎14, 𝑎4𝑏}, {𝑎14, 𝑎5𝑏}, {𝑎14, 𝑎6𝑏}, 

{𝑎14, 𝑎7𝑏}, {𝑎14, 𝑎8𝑏}, {𝑎14, 𝑎9𝑏}, {𝑎14, 𝑎10𝑏}, {𝑎14, 𝑎11𝑏}, {𝑎14, 𝑎12𝑏}, {𝑎14, 𝑎13𝑏}, 

{𝑎14, 𝑎14𝑏}, {𝑎14, 𝑎15𝑏}, {𝑎15, 𝑏}{𝑎15, 𝑎𝑏}, {𝑎15, 𝑎2𝑏}, {𝑎15, 𝑎3𝑏}, {𝑎15, 𝑎4𝑏}, 

{𝑎15, 𝑎5𝑏}, {𝑎15, 𝑎6𝑏}, {𝑎15, 𝑎7𝑏}, {𝑎15, 𝑎8𝑏}, {𝑎15, 𝑎9𝑏}, {𝑎15, 𝑎10𝑏}, {𝑎15, 𝑎11𝑏}, 

{𝑎15, 𝑎12𝑏}, {𝑎15, 𝑎13𝑏}, {𝑎15, 𝑎14𝑏}, {𝑎15, 𝑎15𝑏}, {𝑏, 𝑎𝑏}, {𝑏, 𝑎2𝑏}, {𝑏, 𝑎3𝑏}, {𝑏, 𝑎4𝑏}, 

{𝑏, 𝑎5𝑏}, {𝑏, 𝑎6𝑏}, {𝑏, 𝑎7𝑏}, {𝑏, 𝑎9𝑏}, {𝑏, 𝑎10𝑏}, {𝑏, 𝑎11𝑏}, {𝑏, 𝑎12𝑏}, {𝑏, 𝑎13𝑏}, 

{𝑏, 𝑎14𝑏}, {𝑏, 𝑎15𝑏}, {𝑎𝑏, 𝑎2𝑏}, {𝑎𝑏, 𝑎3𝑏}, {𝑎𝑏, 𝑎4𝑏}, {𝑎𝑏, 𝑎5𝑏}, {𝑎𝑏, 𝑎6𝑏}, {𝑎𝑏, 𝑎7𝑏}, 

{𝑎𝑏, 𝑎8𝑏}, {𝑎𝑏, 𝑎10𝑏}, {𝑎𝑏, 𝑎11𝑏}, {𝑎𝑏, 𝑎12𝑏}, {𝑎𝑏, 𝑎13𝑏}, {𝑎𝑏, 𝑎14𝑏}, {𝑎𝑏, 𝑎15𝑏}, 

{𝑎2𝑏, 𝑎3𝑏}, {𝑎2𝑏, 𝑎4𝑏}, {𝑎2𝑏, 𝑎5𝑏}, {𝑎2𝑏, 𝑎6𝑏}, {𝑎2𝑏, 𝑎7𝑏}, {𝑎2𝑏, 𝑎8𝑏}, {𝑎2𝑏, 𝑎9𝑏}, 

{𝑎2𝑏, 𝑎11𝑏}, {𝑎2𝑏, 𝑎12𝑏}, {𝑎2𝑏, 𝑎13𝑏}, {𝑎2𝑏, 𝑎14𝑏}, {𝑎2𝑏, 𝑎15𝑏}, {𝑎3𝑏, 𝑎4𝑏}, 

{𝑎3𝑏, 𝑎5𝑏}, {𝑎3𝑏, 𝑎6𝑏}, {𝑎3𝑏, 𝑎7𝑏}, {𝑎3𝑏, 𝑎8𝑏}, {𝑎3𝑏, 𝑎9𝑏}, {𝑎3𝑏, 𝑎10𝑏}, {𝑎3𝑏, 𝑎12𝑏}, 

{𝑎3𝑏, 𝑎13𝑏}, {𝑎3𝑏, 𝑎14𝑏}, {𝑎3𝑏, 𝑎15𝑏}, {𝑎4𝑏, 𝑎5𝑏}, {𝑎4𝑏, 𝑎6𝑏}, {𝑎4𝑏, 𝑎7𝑏}, {𝑎4𝑏, 𝑎8𝑏}, 

{𝑎4𝑏, 𝑎9𝑏}, {𝑎4𝑏, 𝑎10𝑏}, {𝑎4𝑏, 𝑎11𝑏}, {𝑎4𝑏, 𝑎13𝑏}, {𝑎4𝑏, 𝑎14𝑏}, {𝑎4𝑏, 𝑎15𝑏}, 

{𝑎5𝑏, 𝑎6𝑏}, {𝑎5𝑏, 𝑎7𝑏}, {𝑎5𝑏, 𝑎8𝑏}, {𝑎5𝑏, 𝑎9𝑏}, {𝑎5𝑏, 𝑎10𝑏}, {𝑎5𝑏, 𝑎11𝑏}, {𝑎5𝑏, 𝑎12𝑏}, 

{𝑎5𝑏, 𝑎14𝑏}, {𝑎5𝑏, 𝑎15𝑏}, {𝑎6𝑏, 𝑎7𝑏}, {𝑎6𝑏, 𝑎8𝑏}, {𝑎6𝑏, 𝑎9𝑏}, {𝑎6𝑏, 𝑎10𝑏}, {𝑎6𝑏, 𝑎11𝑏}, 

{𝑎6𝑏, 𝑎12𝑏}, {𝑎6𝑏, 𝑎13𝑏}, {𝑎6𝑏, 𝑎15𝑏}, {𝑎7𝑏, 𝑎8𝑏}, {𝑎7𝑏, 𝑎9𝑏}, {𝑎7𝑏, 𝑎10𝑏}, 

{𝑎7𝑏, 𝑎11𝑏}, {𝑎7𝑏, 𝑎12𝑏}, {𝑎7𝑏, 𝑎13𝑏}, {𝑎7𝑏, 𝑎14𝑏}, {𝑎8𝑏, 𝑎9𝑏}, {𝑎8𝑏, 𝑎10𝑏}, 

{𝑎8𝑏, 𝑎11𝑏}, {𝑎8𝑏, 𝑎12𝑏}, {𝑎8𝑏, 𝑎13𝑏}, {𝑎8𝑏, 𝑎14𝑏}, {𝑎8𝑏, 𝑎15𝑏}, {𝑎9𝑏, 𝑎10𝑏}, 

{𝑎9𝑏, 𝑎11𝑏}, {𝑎9𝑏, 𝑎12𝑏}, {𝑎9𝑏, 𝑎13𝑏}, {𝑎9𝑏, 𝑎14𝑏}, {𝑎9𝑏, 𝑎15𝑏}, {𝑎10𝑏, 𝑎11𝑏}, 

{𝑎10𝑏, 𝑎12𝑏}, {𝑎10𝑏, 𝑎13𝑏}, {𝑎10𝑏, 𝑎14𝑏}, {𝑎10𝑏, 𝑎15𝑏}, {𝑎11𝑏, 𝑎12𝑏}, {𝑎11𝑏, 𝑎13𝑏}, 

{𝑎11𝑏, 𝑎14𝑏}, {𝑎11𝑏, 𝑎15𝑏}, {𝑎12𝑏, 𝑎13𝑏}, {𝑎12𝑏, 𝑎14𝑏}, {𝑎12𝑏, 𝑎15𝑏}, {𝑎13𝑏, 𝑎14𝑏}, 

{𝑎13𝑏, 𝑎15𝑏}, {𝑎14𝑏, 𝑎15𝑏} }. 

 

 Then, the composite order Cayley graph of 𝑄32 can be constructed by using GeoGebra software. 

Next, based on the set of edges, the adjacency matrix of composite order Cayley graph of quaternion 

group of order 32 is determined in order to compute the total energy of the graph. 

 

5.2. The Adjacency Matrix of Composite Order Cayley Graph of Quaternion Group of Order 32 

The adjacency matrix of 𝐶𝑎𝑦𝑐(𝑄16, 𝑆2) is determined by using the group presentation of 𝑄16 and the 

definition of composite order Cayley graph. Definition 2.2 says that the entry for the adjacency matrix 

is 1 when the pair of elements are adjacent by an edge. Meanwhile, the entry will be 0 if the elements 

are not adjacent by an edge. For an undirected graph, the value 𝑥𝑖𝑗 = 𝑥𝑗𝑖 for all 𝑖, 𝑗. 
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 Therefore, the adjacency matrix of the composite order Cayley graph of 𝑄32 is 

𝐴(𝐶𝑎𝑦𝑐(𝑄32, 𝑆3) )

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

5.3. Computation of the Energy of the Composite Order Cayley Graph of the Quaternion Group of 

Order 32 

Based on 𝐴(𝐶𝑎𝑦𝑐(𝑄32, 𝑆3)), by using Definition 2.3, the characteristic polynomial, 𝑓(𝜆) is obtained. By 

using Maple software, the characteristic polynomial of 𝐴 is 

𝑓(𝜆) = 𝜆32 − 480𝜆30 − 8960𝜆29 − 87360𝜆28 − 559104𝜆27 − 2562560𝜆26 − 8785920𝜆25 

−23063040𝜆24 − 46858240𝜆23 − 73801728𝜆22 − 89456640𝜆21 − 82001920𝜆20 

−55050240𝜆19 − 25559040𝜆18 − 7340032𝜆17 − 983040𝜆16. 

 

Next, the eigenvalues of the characteristic polynomial of the composite order Cayley graph of 𝑄32 are 

𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 𝜆5 = 𝜆6 = 𝜆7 = 𝜆8 = 𝜆9 = 𝜆10 = 𝜆11 = 𝜆12 = 𝜆13 = 𝜆14 = 𝜆15 = 𝜆16 = 0, 𝜆17 = 30 

and 𝜆18 = 𝜆19 = 𝜆20 = 𝜆21 = 𝜆22 = 𝜆23 = 𝜆24 = 𝜆25 = 𝜆26 = 𝜆27 = 𝜆28 = 𝜆29 = 𝜆30 = 𝜆31 = 𝜆32 = −2.  

  

 Then, the total energy of the composite order Cayley graph of 𝑄32 is shown as below: 

𝜀(𝐶𝑎𝑦𝑐(𝑄32, 𝑆3)) = 16|0| + 30 + 15|−2| = 60. 

 

Conclusion 

As the conclusion, the energy of the composite order Cayley graphs of quaternion groups of order at 

most 32 are presented as in Table 1 below. 
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Table 1: The generalized quaternion groups and the composite order Cayley graphs of quaternion 

groups of order 8, 16, 32 with their energy of the graph 

Group Order 𝒏 𝑪𝒂𝒚𝒄(𝑸𝟐𝒏 , 𝑺𝒊) 𝜺(𝑪𝒂𝒚𝒄(𝑸𝟐𝒏 , 𝑺𝒊)) 

𝑄8 = 〈𝑎, 𝑏 | 𝑎4 = 𝑒, 𝑏2 = 𝑎2, 𝑏−1𝑎𝑏 = 𝑎−1〉 8 3 

 

12 

𝑄16 = 〈𝑎, 𝑏 | 𝑎8 = 𝑒, 𝑏2 = 𝑎4, 𝑏−1𝑎𝑏 = 𝑎−1〉 16 4 

 

28 

𝑄32 = 〈𝑎, 𝑏 | 𝑎16 = 𝑒, 𝑏2 = 𝑎8, 𝑏−1𝑎𝑏 = 𝑎−1〉 32 5 

 

60 
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