
 
Vol. 10, 2022, page 120 - 130 

 

Modelling Of Doctor-Patient Interaction In Kidney Transplantation 
Consultations Using Game Theory 

 
Kwek Yu Chen, Zaitul Marlizawati Zainuddin* 

Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia 
*Corresponding author: zmarlizawati@utm.my 

 
 
Abstract 
The rise in the number of end-stage kidney disease (ESKD) patients in Malaysia and the scarcity of 
kidney resources have made the decision-making process involving the nephrologists and the ESKD 
patients increasingly essential during their pre-transplantation medical consultations. The purpose of 
this study is to develop a game theory model of doctor-patient interaction in kidney transplantation 
consultations to analyze the optimal decisions to be taken by the nephrologists and the patients in the 
form of sequential games. Backward induction method was adopted to determine the subgame perfect 
Nash equilibrium in the proposed sequential game theory model that consists of two different scenarios: 
one with the nephrologist being the first mover of the game and the other with the patient being the first 
mover instead. It was discovered that the scenario in which the patient plays first in the sequential game 
can lead to a more cooperative outcome between the nephrologist and the patient in their transplantation 
consultations process. The analysis of the equilibria solution showed that the proposed game theory 
model could be used as a decision-making tool for the players to identify the best strategy to be 
employed as well as to enhance cooperation between nephrologists and patients during their negotiation 
process in kidney transplantation consultations. 
 
Keywords: Game Theory; Doctor-Patient Interaction; Kidney Transplantation; Sequential Games; Nash 
Equilibrium; Backward Induction. 
 
 
1. Introduction 
End-stage kidney disease (ESKD), also called end-stage renal disease (ESRD) or kidney failure, is the 
last stage of chronic kidney disease, where kidney function has declined to the point that the kidneys 
can no longer work on their own to meet one’s body needs in fluid regulation [1]. Every year, the number 
of ESKD patients in our country is on the rise [2]. Based on the report of Malaysian Dialysis and 
Transplant Registry (MDTR) in 2018, there are a total of 45,937 ESKD patients in Malaysia and this 
figure is expected to go up to 106,000 by the year of 2040 [3]. The ever-increasing prevalence of the 
fatal kidney disease has made it a significant public health problem in Malaysia [2].  

Due to the lack of kidney resources, the selection of candidates for kidney transplantation will 
be a highly complex and hastened process, in which potential recipients will be assessed thoroughly 
based on several health conditions criteria, including the severity of disease and also the verification of 
post-transplantation prognosis [3]. Hence, in order to ensure the right decisions regarding the potential 
treatment for patients are made, the interaction between doctors and ESKD patients during their medical 
consultations are of paramount significance. When there is an interaction of common and conflicting 
interests between two players, that is, a doctor and a patient in this case, the situation can be described 
and modelled by using game theory [4], which appears as a suitable mathematical tool to improve the 
decision-making process of doctors and patients during pre-transplantation consultations. 

Game theory has been considerably used to help make better decisions in healthcare settings. 
Djulbegovic et al. [4] demonstrated a situation of clinical interaction involving a busy doctor and his 
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patient by means of the Prisoners’ Dilemma structure, in which the doctor can decide whether to perform 
a cursory or a thorough examination before giving the patient the prescription he seeks. The patient can 
in turn choose to just accept the prescription given or ask for a more detailed discussion of benefits and 
risks of the treatment. The researchers adopted both pure and mixed strategies of Nash Equilibrium to 
achieve the most strategic decisions for both the doctor and the patient. However, the study neglects 
the ethical obligations of the doctors to their patients’ well-being without taking into account the element 
of emotions which is inevitably important in any kind of human interaction, so is in a doctor-patient 
relationship. Therefore, adding emotions to the game, such as frustration, regret, guilt and trust, will 
account for the payoffs of the players, which was proven by Mendonca et al. [5] in his research on liver 
transplantation consultations who incorporated those emotion elements into his game theory model and 
showed that the emotion variables could have a significant amount of impact on the clinical outcomes. 
This research extends the model to observe how emotions can be associated with the payoffs of 
nephrologists and ESKD patients in analyzing the best strategy profile for the players. 

This research paper will present literature review on the concept of game theory and Nash 
equilibrium in Section 2, followed by research methodology in Section 3 which includes model set-up 
and parameters boundary conditions construction on doctor-patient interaction in kidney transplantation 
consultations by using game theory as well as solution concept identification using backward induction. 
The results and discussion of analysis done on the established sequential game model will be presented 
in Section 4. This paper ends with a conclusion drawn from the game equilibria obtained in Section 5. 

 
2. Literature Review 
 
2.1. Game Theory Concept 
Game theory is a mathematical framework for analyzing strategic interactions between two or more 
decision makers called players, each with two or more ways of acting called strategies, and well-defined 
preferences among the possible outcomes, represented by numerical payoffs [6]. A game is defined as 
any set of circumstances with an outcome that depends on the actions or decisions of all players 
involved. Under the theory, it is assumed that players are rational and will strive to maximize their payoffs 
in the game. A player need not be an individual; it can be a nation, a corporate body such as a board or 
a committee, or a team consisting of many people with shared interests [7]. The decisions made by 
players are said to be interdependent, and this interdependence causes each player to consider other 
player’s possible decisions in formulating a strategy. 
 
2.2. Nash Equilibrium 
Nash Equilibrium is one of the fundamental concepts in game theory that determines the best outcome 
or the optimal solution in a non-cooperative game, in which each player will continue with their initial 
strategy without any incentive to deviate from it. Under the Nash equilibrium, each player is assumed to 
know the equilibrium strategies of other players and neither of them can benefit from a strategy that 
differs from their initially chosen action. A game may have multiple Nash equilibria or none of them [8]. 
 Nash equilibrium can be distinguished into two types, that is, pure strategy Nash equilibrium and 
mixed strategy Nash equilibrium. In pure strategy Nash equilibrium, all players in the game are playing 
pure strategies, whereas in mixed strategy Nash equilibrium, at least one player is playing a mixed 
strategy. Being an essential theorem within game theory, Nash equilibrium helps players to determine 
the best payoff in a situation based on both their decisions and also other players’. To find the Nash 
equilibrium in a game, one would have to model out each of the possible scenarios to obtain the results, 
then choose what the optimal strategy would be. In a two-person game, the possible strategies that both 
players can choose are taken into account. If neither player can do better by changing their strategy 
given the strategy of the other player, a Nash equilibrium is said to have occurred. 
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3. Methodology 
 
3.1. Model Set-Up 
A few imperative elements of the game theory model are defined, namely the players of the game, the 
strategies used by the players, and also the payoffs of players in the game. Two players are identified 
in the game, that is, the doctor, commonly a nephrologist, and the ESKD patient who is waiting for a 
kidney transplant. They are the two decision makers in the game. The strategies of the nephrologist are 
Keep Patient’s Name (on the waiting list) which is denoted by 1, Exclude Patient’s Name Temporarily 
denoted by 2, and Exclude Patient’s Name Permanently denoted by 3, whilst the ESKD patient has two 
strategies that are Follow Advice denoted by 1, and Not Follow Advice that is denoted by 2. By following 
advice, the patient refrains from taking addictive substances such as illicit drugs; for the latter, the patient 
do not abstain from active drug use which could jeopardize his or her kidney function even after 
transplantation is performed. The payoffs of the nephrologist and the patient are assigned with the letter 
N and letter P respectively, with the action adopted by the nephrologist taking the first subscript and the 
action by the patient taking the second subscript. The resulting payoffs are given as shown in Table 1.  

Table 1: Payoff representation for the nephrologist (N) and the patient (P) 

Payoff of 
Nephrologist 

Payoff of 
Patient 

Description 

𝑁!! 𝑃!! Nephrologist keeps patient’s name on the transplant waiting list and 
patient follows advice. 

𝑁!" 𝑃!" Nephrologist keeps patient’s name on the transplant waiting list and 
patient does not follow advice. 

𝑁"! 𝑃"! Nephrologist excludes patient’s name temporarily from the transplant 
waiting list and patient follows advice. 

𝑁"" 𝑃"" Nephrologist excludes patient’s name temporarily from the transplant 
waiting list and patient does not follow advice. 

𝑁#! 𝑃#! Nephrologist excludes patient’s name permanently from the 
transplant waiting list and patient follows advice. 

𝑁#" 𝑃#" Nephrologist excludes patient’s name permanently from the 
transplant waiting list and patient does not follow advice. 

 

With reference to [5], the payoffs of nephrologist and patient take the following order respectively: 

𝑁!! >	𝑁"" >	𝑁#" > 𝑁"! >	𝑁#! >	𝑁!" (1) 
 

𝑃!! >	𝑃!" >	𝑃"! > 𝑃"" >	𝑃#! >	𝑃#" (2) 

Under the consultations game model, both utilities and emotions are taken into consideration in 
the payoffs of players to better model the doctor-patient interaction. Utilities indicate players’ preferences 
for different outcomes they encounter in terms of real numbers. The letter U represents the 
nephrologist’s utilities, and the letter V refers to the patient’s utilities. 𝑈! and 𝑉! denote the utility earned 
by the nephrologist and the patient respectively if the patient’s name is kept on the transplant waiting 
list; 𝑈" and 𝑉" are the utilities concern the circumstance where the patient’s name is excluded temporarily 
from the list whereas 𝑈# and 𝑉# are the utilities obtained for the case when the patient’s name is excluded 
from the list permanently. In general, the first case is most preferred for both players since the 
nephrologists will always want to save people’s lives in the first place and the ESKD patients will never 
want to be deprived of the chance to get selected for the receipt of a healthy graft. Hence, 𝑈! >	𝑈" >
	𝑈# and 𝑉! >	𝑉" >	𝑉# .  

With respect to emotions, both the nephrologist and the patient may feel regret (R) or frustration 
(F). The nephrologist may also feel guilt (G) when keeping a non-compliant patient on the waiting list. 
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The emotions arise following the temporary and permanent decisions can be differentiated using the 
superscript t and m respectively. The patient has two parameters B and H representing the benefit he 
or she will obtain for following advice such as quitting substance use and the harm received due to 
taking drugs, respectively. In addition, parameter β representing the incentive for the nephrologist to 
exclude patient’s name permanently is added to the nephrologist’s payoffs, which refers to how much 
the nephrologist values allocating the kidney transplant to a patient with better adherence to advice or 
prognosis, whilst parameter γ representing the incentive for the patient to not follow advice, that is, the 
instant pleasure of drug use experienced by the patient, is added to the patient’s payoffs.  

Table 2 presents the payoff matrix with the notations used to represent each player’s strategy, 
whilst Table 3 summarizes the expressions of payoffs for the nephrologist and the patient with respect 
to utilities. 

 
Table 2: Representation of the game strategies and its payoff matrix 

 
 Nephrologist 

Keeps patient’s name 
on the waiting list (K) 

Excludes patient’s 
name temporarily 
(NK!) 

Excludes patient’s 
name permanently 
(NK") 

Patient Follow advice 
(F) 

𝑁##	, 𝑃## 𝑁$#	, 𝑃$# 𝑁%#	, 𝑃%# 

Not follow 
advice (NF) 

𝑁#$	, 𝑃#$ 𝑁$$	, 𝑃$$ 𝑁%$	, 𝑃%$ 

 
 

Table 3: Payoff expressions for both players with respect to utilities 
 

Payoff Expressions with respect to Utilities 
 
 

Nephrologist 

𝑁!! = 𝑈! 
𝑁!" = 𝑈! − 𝐺 
𝑁"! =	𝑈" − 𝑅$%  
𝑁"" =	𝑈" − 𝐹$%  

𝑁#! =	𝑈# − 𝑅$! + β 

𝑁#" =	𝑈# − 𝐹$!	+ β 
 
 

Patient 

𝑃!! = 𝑉!	+ B 
𝑃!" = 𝑉! − H + γ 

𝑃"! =	𝑉" − 𝐹&%	+ B 

𝑃"" =	𝑉" − 𝑅&% − H + γ 

𝑃#! =	𝑉# − 𝐹&'	+ B 

𝑃#" =	𝑉# − 𝑅&' − H + γ 

 
In general, there are some assumptions made for the utilities exist in the model. The feeling of 

guilt (G) has the highest value among the emotions since it is associated with a loss of society when the 
kidney graft is allocated to a patient who ignores medical advice and continues to abuse his or her body. 
On the other hand, the feeling of regret is assumed to be more intense or greater than that of frustration 
(R > F), and these emotion values are considered higher when the decision made is permanent 
compared to when it is just a temporary decision (𝑅' >	𝑅% and 𝐹' >	𝐹%). These yield 𝑅' >	𝑅% > 𝐹' >
	𝐹% . In addition, it is reasonable to assume that the difference between regret and frustration when it is 
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a permanent decision is higher than that when it is a temporary decision, thus, 𝑅' −	𝐹' > 𝑅% −	𝐹% [5]. 
Next, the harm value of active substance use is greater than the benefit value of quitting it in absolute 
value, that is, |H| > |B|, since the continuing habit of drug use will further exacerbate the health condition 
of ESKD patients whilst quitting it at this point is less likely to do much for the better or cure the kidney 
condition. 

 
3.2. Parameters Boundary Conditions Construction 
Recall the payoff orders stated in equation (1) and (2) that 𝑁!! >	𝑁"" >	𝑁#" > 𝑁"! >	𝑁#! >	𝑁!" and 
𝑃!! >	𝑃!" >	𝑃"! > 𝑃"" >	𝑃#! >	𝑃#" , but this is only true when the value of parameter β and of γ is small 
enough to have an influence on the ordering. As these parameter values go up, the payoff orders for 
both the players could become different. Hence, it is necessary to examine the different boundary 
conditions for the values of β and γ that alter the payoff orders. 
 
3.2.1 Boundary Conditions of γ 
With reference to the initial payoff order of patient in equation (2) where γ value is small enough, it can 
be easily seen that 𝑃!! >	𝑃!" , 𝑃"! > 𝑃"" and 𝑃#! >	𝑃#" , indicating that regardless of the strategy taken 
by the nephrologist, the patient will always prefer following advice than not following advice and thus, 
following advice (denoted as strategy 1) is a dominant strategy of patient. However, since a higher value 
of γ will contribute to a different result, one must find the boundary conditions of γ that will lead to the 
change in patient’s payoff orders by referring to payoff expressions given in Table 3. For example, the 
boundary condition of γ that will change 𝑃!! >	𝑃!" to 𝑃!" >	𝑃!! can be derived as demonstrated below: 
 

         𝑃!" >	𝑃!!		 
𝑉! − H + γ > 𝑉! + B 
               γ > B + H  

 
Letting B + H be 𝛾! , one will have γ > 𝛾! . This implies that for any value of γ > 𝛾! , the patient will prefer 
not following advice over following advice when the nephrologist chooses keeping patient’s name on 
the waiting list (as indicated by 𝑃!" >	𝑃!!). 

The rest of the boundary conditions are constructed in the same way. All the results of the derivation 
are summarized in Table 4. 

 
Table 4: Boundary conditions for parameter γ 

 
Boundary Conditions of γ  

𝑃!" >	𝑃!! 	⟺	 γ > 𝛾!  ; where 𝛾!= B + H 
                 𝑃"" >	𝑃"! 	⟺	 γ > 𝛾"		; where 𝛾"= B + H + 𝑅&% −	𝐹&% 

                   𝑃#" >	𝑃#! 	⟺	 γ > 𝛾#  ; where 𝛾#= B + H + 𝑅&' −	𝐹&' 

 
Based on Table 4, it is obvious that 𝛾! which consists of only two utilities (B and H) takes the 

smallest value compared to 𝛾" and 𝛾#. Recall that (𝑅&' −	𝐹&') > (𝑅&% −	𝐹&%), so γ# will have the highest 
value. Thus, it is justified that 𝛾! <  𝛾" < 𝛾# . 

 
3.2.2. Boundary Conditions of β 
With reference to the initial payoff order of nephrologist in equation (1) where β value is small enough, 
it can be observed that 𝑁!! >	𝑁"! > 𝑁#! and 𝑁"" > 𝑁#" > 𝑁!", indicating that regardless of the strategy 
chosen by the patient, strategy 3 of nephrologist, that is, permanent exclusion from the list, is always 
dominated by other strategies. Since a higher value of β will contribute to a different result, given that β 
is only associated with 𝑁#! and 𝑁#", one must find the boundary conditions of β that will change the 
nephrologist’s payoff orders to 𝑁#!	>	𝑁"! , 𝑁#!	>	𝑁!! and 𝑁#"	>	𝑁"" . Note than	𝑁!" is not examined since 
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it is not associated with β and it will always be the worst payoff of the nephrologist no matter how β 
changes.  

By using the same approach, the boundary conditions of β that will lead to a change in the 
nephrologist’s payoff are derived and summarized in Table 5. 

 
Table 5: Boundary conditions for parameter β 

 
Boundary Conditions of β 

           𝑁#"	>	𝑁"" ⟺	β > 𝛽! ; where 𝛽! =	(𝑈" −𝑈#) + 𝐹$! − 𝐹$%  
           𝑁#!	>	𝑁"! ⟺ β > 𝛽" ; where 𝛽" =	(𝑈" −𝑈#) + 𝑅$! − 𝑅$%  

  𝑁#!	>	𝑁!! ⟺	β > 𝛽#	; where 𝛽# =	(𝑈! −𝑈#) + 𝑅$! 
 
Based on Table 5, since R > F as previously mentioned and (𝑅$! − 𝑅$% ) is greater than (𝐹$! −

𝐹$% )	,	it is said that 𝛽" > 𝛽!	. Next, since (𝑈! −𝑈#) > (𝑈" −𝑈#) and 𝛽# does not have the additional 
subtraction term as in 𝛽! and 𝛽" , 𝛽# will take the highest value and hence, it is justified that 𝛽! < 𝛽" < 
𝛽#. 

 
3.3. Solution Concept Identification using Backward Induction 
A solution concept is a rule in game theory for predicting how a game will be played [8]. These 
predictions, also called the solutions, describe which strategies will be taken by players and thus the 
outcome of the game is determined. In this study, the solution concept applied is subgame perfect Nash 
equilibrium, a refined Nash equilibrium used in sequential games. A strategy profile is a subgame perfect 
Nash equilibrium if it is a Nash equilibrium of every subgame in the original game where each strategy 
chosen by the players is the best response to all other strategies played. A common method used to 
determine the subgame perfect Nash equilibrium in a finite sequential game is backward induction. 
Under this method, one will start from the bottom of the game by determining the actions that the final 
mover or the last player should take in each possible circumstance to maximize his or her own payoff. 
By eliminating the choices that this player will not choose, one can narrow down the game tree and the 
best action of the next-to-last mover is identified in the same manner by moving up the tree. This process 
continues backward until one reaches the top of the tree where the optimal action for every stage is 
determined. 
 
4. Results and discussion 
 
4.1. Sequential Game Equilibria 
In the established sequential game model, the nephrologist and the patient take turns to make their 
decisions, and so there will be two scenarios to be considered in the study in which the first scenario 
will have the nephrologist playing first and the patient playing next, whereas the second scenario will 
have the patient playing first and the nephrologist playing next. 
 
4.1.1. Scenario I : Nephrologist plays first 
The sequential game tree representing the scenario is illustrated in Figure 1, with the nephrologist being 
the first player and the patient being the second player. 
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Figure 1: Tree representation of the sequential game of doctor-patient interaction in kidney 
transplantation consultations, with the nephrologist playing first followed by the patient. 

 
Referring to the game tree established in Figure 1, notice that if the nephrologist decides to 

exclude the patient’s name permanently from the transplant waiting list, then there will be no game 
afterwards. The nephrologist will end up getting 𝑁#)= β as payoff gained and the patient will get 𝑃#) = 0. 
This situation can be explained as the case when the patient’s health condition is already too critical to 
be considered for receiving a kidney transplant. As a result, the nephrologist has to save the graft for 
another patient with better prognosis, thus being rewarded with incentive β.  

As previously mentioned, by applying backward induction, the subgame perfect Nash equilibria 
of the sequential game for each different value of parameter γ and β can be determined considering all 
the possible interval combinations of γ and β across 𝛾! <  𝛾" < 𝛾# and 𝛽! < 𝛽" < 𝛽# . 

Case I : γ <	𝛾! <  𝛾" < 𝛾# 
Starting off both parameters with their lowest values where γ <	𝛾! <  𝛾" < 𝛾# and β < 𝛽!< 𝛽" < 

𝛽# , since 𝑃!! >	𝑃!" , 𝑃"! >	𝑃"" and 𝑃#! >	𝑃#" , the patient will always choose to follow advice. Referring 
to the branches of strategy ‘Follow advice’ in the game tree presented in Figure 1, the nephrologist will 
decide by comparing 	𝑁!! and 	𝑁"!. Since 	𝑁!! is the highest payoff of nephrologist as mentioned in 
Equation (1), the nephrologist will choose keeping name. Hence, the subgame perfect Nash equilibrium 
obtained is (K,F). Increasing β to a point where 𝛽! < β <  𝛽" < 𝛽# , the same result is obtained because 
of the same reason (𝑃!! >	𝑃!" , 𝑃"! >	𝑃"" , 𝑃#! >	𝑃#" and 	𝑁!! being the highest payoff of nephrologist), 
therefore, the subgame perfect Nash equilibrium is (K,F). For the interval 𝛽! <  𝛽" < β < 𝛽# , according 
to Table 5, 𝑁#!	>	𝑁"! and 𝑁!!	>	𝑁#! , which is equivalent to 𝑁!!> 𝑁#!	>	𝑁"!. However, 𝑁#! does not exist 
in the game tree, so one needs to examine 𝑁#) instead. Since 𝑁!!= 𝑈! (based on Table 3) and 𝑁#) = β 
, if β < 𝑈!, which also means 𝑁#) < 𝑁!!, the nephrologist will still choose keeping name and the resulting 
subgame perfect Nash equilibrium is again (K,F). If β > 𝑈!, this time 𝑁#) > 𝑁!!, the nephrologist will 
choose permanent exclusion and there will be no game. The subgame perfect Nash equilibrium is (NK*	, 
-). Next, increasing β further to the highest point where 𝛽! <  𝛽" < 𝛽# < β , the nephrologist will always 
choose permanent exclusion which yields the highest payoff for the nephrologist and there will be no 
game afterwards. The subgame perfect Nash equilibrium is (NK*	, -). 

Case II : 𝛾! < 𝛾	 <  𝛾" < 𝛾# 
Increasing 𝛾 to a point where 𝛾! < 𝛾	 <  𝛾" < 𝛾#	, one will see 𝑃!" >	𝑃!! which implies that the 

patient tends to not follow advice when the nephrologist chooses keeping name, and  𝑃"! >	𝑃"" which 
implies that the patient tends to follow advice when the nephrologist chooses temporary exclusion. 
However, the nephrologist will not want to choose keeping name when the patient chooses not following 
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advice since 𝑁!" is the worst payoff for the nephrologist. Instead, the nephrologist will choose between 
temporary and permanent exclusion. By examining only the branches of strategy ‘Exclude temporarily’ 
and ‘Exclude permanently’ in the game tree presented in Figure 1, if the nephrologist chooses to exclude 
temporarily, the patient will respond by following advice which yields a better payoff since 𝑃"! >	𝑃"". If 
the nephrologist chooses to exclude permanently, there will be no game and the nephrologist will end 
up getting 𝑁#)= β as payoff. Comparing	𝑁"! and 𝑁#)	, if 𝑁"! > 𝑁#), which also means 𝑁"! > β, the 
nephrologist will choose temporary exclusion that offers a better payoff and the resulting subgame 
perfect Nash equilibrium is again (NK+,F). If 𝑁"! < β, the nephrologist will choose permanent exclusion 
and there will be no game. The subgame perfect Nash equilibrium is (NK*	, -). 

Case III : 𝛾! <  𝛾" < 𝛾	 <	 𝛾# 
For a higher value of 𝛾 such that 𝛾! <  𝛾" < 𝛾	 < 𝛾#, one will have 𝑃!" >	𝑃!! , 𝑃"" >	𝑃"! and 

𝑃#! >	𝑃#" . Hence, the patient will choose to get either 𝑃!" , 𝑃"" or 𝑃#) in this case. Anticipating these 
three possible choices that may be adopted by the patient, the nephologist will decide by comparing 𝑁!" 
, 𝑁"" and 𝑁#) to see which strategy will give him or her the best payoff. Recall that 𝑁!" is the worst payoff 
of nephrologist, he or she will never choose keeping name for patients with such a high level of γ. Thus, 
the nephrologist must choose between temporary and permanent exclusion, that is, getting either 𝑁"" 
or 𝑁#) as payoff. By comparing these two payoffs, if 𝑁"" > 𝑁#), which also means 𝑁"" > β, the 
nephrologist will choose temporary exclusion that offers a better payoff and the patient will respond by 
choosing to not follow advice. Hence, the subgame perfect Nash equilibrium is (NK+,NF). If 𝑁"" < β, the 
nephrologist will choose permanent exclusion and there will be no game. The subgame perfect Nash 
equilibrium is (N𝐾'	, -). 

Case IV : 𝛾! <  𝛾" <	 𝛾# < 𝛾 
Increasing 𝛾 to its highest value such that 𝛾! <  𝛾" < 𝛾# < 𝛾 , the patient will never choose to 

follow advice since 𝑃!" >	𝑃!! , 𝑃"" >	𝑃"! and 𝑃#" >	𝑃#! as indicated by the boundary conditions derived. 
The result is the same as the previous case. Table 6 summarizes the overall results obtained for the 4 
cases. 

 
Table 6: Sequential game equilibria obtained with their corresponding payoffs gained for each interval 

of γ and β in which the nephrologist plays first. 
 

 
4.1.2. Scenario II : Patient plays first 
The sequential game tree representing the scenario is illustrated in Figure 2, with the patient being the 
first player and the nephrologist being the second player. 

Equilibria of The Sequential Game where Nephrologist Plays First 
γ β Subgame Perfect Nash 

Equilibrium 
Payoffs gained 

γ <	𝛾# <  𝛾$ < 𝛾% β < 𝛽#< 𝛽$ < 𝛽% 

𝛽#< β < 𝛽$ < 𝛽% 

𝛽# < 𝛽$ < β < 𝑈# < 𝛽% 

𝛽# < 𝛽$ < 𝑈# < β < 𝛽% 

𝛽# < 𝛽$ < 𝛽%< β 

(K , F) 

(K , F) 

(K , F) 

(NK"	, -) 

(NK"	, -) 

(𝑁##, 𝑃##) 

(𝑁##, 𝑃##) 

(𝑁##, 𝑃##) 

(β , 0) 

(β , 0) 

	𝛾# <  γ < 𝛾$ < 𝛾% β <	𝑁$# 

β >	𝑁$# 

(NK!	, F) 

(NK"	, -) 

(𝑁$#, 𝑃$#) 

(β , 0) 

𝛾# < 𝛾$ < 	𝛾 < 𝛾% β <	𝑁$$ 

β >	𝑁$$ 

(NK!	, NF) 

(NK"	, -) 

(𝑁$$, 𝑃$$) 

(β , 0) 

𝛾# < 𝛾$ < 𝛾% < 𝛾 β <	𝑁$$ 

β >	𝑁$$ 

(NK!	, NF) 

(NK"	, -) 

(𝑁$$, 𝑃$$) 

(β , 0) 
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Figure 2: Tree representation of the sequential game of doctor-patient interaction in kidney 
transplantation consultations, with the patient playing first followed by the nephrologist. 

Case I : γ  < 𝛾! <  𝛾" < 𝛾# 
When γ <	𝛾!	, one will have 𝑃!! >	𝑃!" , 𝑃"! >	𝑃"" and 𝑃#! >	𝑃#", indicating that the patient will 

always choose to follow advice. Referring to the branches of strategy ‘Follow advice’ in the game tree 
presented in Figure 2, the 3 possible choices of the nephrologist are compared in terms of their 
corresponding payoffs (𝑁!! , 	𝑁"! and 	𝑁#!). Based on the boundary conditions of β, for any β < 𝛽# , 	𝑁!! 
is always the highest payoff of nephrologist. Hence, the nephrologist will choose ‘Keep Name’ and the 
subgame perfect Nash equilibrium obtained is (F,K). When β > 𝛽# , one will now see 𝑁#!	>	𝑁!! as derived 
in Table 5. Under this circumstance, the nephrologist will choose ‘Exclude permanently’ instead which 
yields a better payoff than ‘Keep Name’. Therefore, the subgame perfect Nash equilibrium is (F, NK*). 

Case II : 𝛾! < 𝛾	 <  𝛾" < 𝛾# 
 When γ value is higher such that	𝛾! < γ < 𝛾" < 𝛾#, the patient tends to not follow advice. 
However, if the patient as the first mover chooses to not follow advice, the nephrologist will respond by 
choosing either temporary or permanent exclusion since the nephrologist will not want to consider 
strategy ‘Keep Name’ which is going to give him or her the lowest payoff, 	𝑁!"	.	Hence, the patient will 
get either 𝑃"" or 𝑃#" as payoff. On the other hand, for any value of β < 𝛽#	, 𝑁!! is always the best payoff 
of nephrologist. As a result, if the patient as the first mover chooses to follow advice, the nephrologist 
must respond by choosing ‘Keep Name’ to gain the highest benefit and the patient will get 𝑃!! as payoff. 
Hence, this leaves the patient with a total of 3 possible choices which are getting either 𝑃"" , 𝑃#" or 𝑃!! 
as payoff after anticipating the decisions likely to be made by the nephrologist. Since 𝑃!! >	𝑃"" and 
𝑃!! >	𝑃#" , the patient will choose to follow advice and the nephrologist will choose keeping name. The 
subgame perfect Nash equilibrium is (F, K). Conversely, if β > 𝛽#	, one will have 𝑁#!	>	𝑁!!, the 
nephrologist will choose permanent exclusion. This time, the patient will need to compare 𝑃#! , 𝑃"" and 
𝑃#" . If the patient chooses ‘Not follow advice’, the nephrologist will respond by choosing ‘Exclude 
permanently’ since 𝑁#"	>	𝑁"" and this will then bring a lower payoff of 𝑃#" to the patient. Therefore, the 
patient will rather choose “Follow advice’ since 𝑃#! >	𝑃#" . The subgame perfect Nash equilibrium is (F, 
NK*). 
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Case III : 𝛾! <  𝛾" < 𝛾	 <	 𝛾# 
 Increasing γ further to a point where 𝛾! < 𝛾" < 	𝛾 < 𝛾# , the exact same results as the previous 
case are obtained with the same reasoning. 

Case IV : 𝛾! <  𝛾" <	 𝛾# < 𝛾 
Increasing 𝛾 to its highest value such that 𝛾! <  𝛾" < 𝛾# < 𝛾 , when β < 𝛽# , the same reasoning 

as the previous case is applied and the resulting subgame perfect Nash equilibrium is again (F, K). The 
difference in results is observed when β > 𝛽# , the nephrologist will always choose permanent exclusion 
as indicated by the boundary conditions derived in Table 5. Therefore, the patient must decide by 
comparing 𝑃#! and 𝑃#" . Since 𝑃#" >	𝑃#!	when γ > 𝛾# , the patient will choose ‘Not follow advice’ and the 
subgame perfect Nash equilibrium obtained is (NF, NK*). The overall results obtained for the 4 cases 
are summarized in Table 7. 
 
Table 7: Sequential game equilibria obtained with their corresponding payoffs gained for each interval 

of γ and β in which the patient plays first. 
 

 
5. Conclusion 
It was shown that a change in the first mover of the game can bring about a significant difference in the 
results obtained in terms of the game equilibrium. The game scenario where the nephrologist plays first 
can only give rise to a win-win situation (Keeping Name, Follow Advice) when the γ value is very low (γ 
< 𝛾!). Conversely, when the patient becomes the first mover of the game instead, the game equilibria 
are always (F,K) for all values of γ (except when the β value is very high such that β > 𝛽#). This concludes 
that having the patient as the first mover of the sequential game will yield more cooperation between 
the nephrologist and the patient in their transplantation consultations process. This could serve as a 
basis for any medical encounter involving transplant doctors and patients by letting the patients to take 
the lead so the patients will know that they are responsible for their own survival resulting from their own 
decisions whether to cooperate with their doctors since the doctors will act according to the patients’ 
behaviours, and not the other way around. Patient’s adherence to medical advice is also proven to be 
more likely to happen when the γ value is low. Hence, it is vital to help lower this parameter of patient 
to encourage more cooperative equilibria. This could be done by establishing treatment or addiction 
recovery programs for drug or active substance users in order to embrace a higher chance to be placed 
on the kidney transplant waiting list. 
 As a recommendation for future work, this study can be leveraged and extended for modelling 
other types of diseases other than ESKD by using game theory in extensive forms such as diabetes, 
obesity, cancers, and psychological disorders which also involves doctor-patient interaction in medical 
consultations but with different set of strategies that could be possibly employed by the players. 
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