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Abstract 

Monte Carlo simulation is a multiple probability simulation, and it is mathematical technique that applied 

to appraisal viable outcomes of an unsure event. When dealing with integration with low dimensional, 

Gauss quadrature is really a good mathematical approach to solve the problem numerically. However, 

this approach facing the high complexity when deal with very high dimension of integration hence it is 

required another mathematical approach to overcome this problem. Monte Carlo was a good tool to 

solve the high dimensional integration problem and Poisson’s equation problem since it can avert the 

complicated derivation of integral with mathematically. The objective of this study is to conduct a study 

on application of Monte Carlo simulation in solving integration problem and Poisson’s equation in one-

dimensional and two-dimensional. The purpose of this study also investigates the role of random 

number generator in Monte Carlo simulation and mainly focused on the one-dimensional integration, 

two-dimensional integration, one-dimensional Poisson’s equation, and two-dimensional Poisson’s 

equation. In conducting the Monte Carlo simulation, Python was used as a programming tool to observe 

the solution since it can be extended with compiled code and come out with a strong scientific program. 

The study introduces the alternative methods that can use to solve one-dimensional, two-dimensional 

integration as well as one-dimensional and two-dimensional Poisson’s equation. In the study, Monte 

Carlo as computational algorithm was used to solve the difficult problem that very hard solve by the 

other approaches. There are some theorems was applied in Monte Carlo integration such as central 

limit theorem. Apart from that, all the Monte Carlo method use in principle constructed with Random 

number because it is more easily implementable. From the result, it is clearly that Monte Carlo 

simulation is a very good approach when the simulation take place with higher number of nodes and 

random number generation point in Poisson’s equation. At the same time, Monte Carlo simulation 

solves the integration problem efficiency as the solution getting more approximately to exact solution 

as the number of tries increase. By applying Monte Carlo simulation, the study brings a more effectively 

and efficiency approach to solve the higher dimension integration problem and Poisson’s equation. 

Monte Carlo can be said that it can model the complex system that with coupled degree of freedom.  

 

Keywords: Monte Carlo simulation; one-dimensional and two-dimensional integration; one-

dimensional and two-dimensional Poisson’s equation; random walk. 

 

1. Introduction 

 

The study of Monte Carlo simulation has been deeply investigated due to it’s important in various fields. 

Monte Carlo methods has been recognized by the world and now become one of the top ten algorithms 

in applied mathematics. Monte Carlo also called as multiple probability simulation and it is mathematical 

technique that applied to appraisal viable outcomes of an unsure event. Monte Carlo method being use 

in solving the Poisson’s equation. Monte Carlo sampling was used in compute the Poisson probabilities 

and it can be apply to any mixed Poisson distribution [1]. Thus, it can say that Monte Carlo was a good 

tool to solve the Poisson’s equation because it can avert the complicated derivation of integral with 
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mathematically. Monte Carlo multigrid method was used to increase the efficiency of stochastic 

smoothers and the stochastic models are as known as the solution for the nonlinear partial differential 

equation [2]. In conducting the Monte Carlo simulation, Python is a very famous programming language 

that widely use by people. Python is a strong programming language that can extend the compiled code 

efficiency [3]. By this, it will be more efficiency if using Python as a programming tool to conduct the 

Monte Carlo simulation since it can be extended with compiled code and come out with a strong 

scientific program. 

Monte Carlo can be said that it can model the complex system that with coupled degree of 

freedom [4]. Monte Carlo also can model all type of probability distributions and this method is widely 

used. When solving the integration numerically with low dimension, the result of Gauss quadrature is 

much accuracy than the Monte Carlo [5]. However, the result from Monte Carlo simulation is more 

accurate if the dimensional of integration increase or degree of freedom of the integral increase. Other 

than that, finite difference method (FDM) was a very good approach to solve the systems of partial 

differential equations (PDEs) numerically. However, it is not suitable to solve the partial differential 

equations by using finite difference method (FDM) contain any sort of stochastic component. In the 

case, Monte Carlo Simulation is more recommended to vary the stochastic components for the partial 

differential equations. All this numerical method was a good tool to solve numerical problems but of 

course there exist weakness and problem when applying for each of the method above. To overcome 

it, Monte Carlo method is introduced. 

The main objective of the research is to study the roles of Monte Carlo and understand how it 

apply to solve the integration problem and partial differential equation. The study is focused on the one-

dimensional integration, two-dimensional integration, one-dimensional Poisson’s equation and two-

dimensional Poisson’s equation. In this study, Python Program is used to run the one-dimensional and 

two-dimensional integration. By applying Monte Carlo simulation, the study is hoped to bring a more 

effectively and efficiency approach to solve the higher dimension integration problem and Poisson’s 

equation.   

 

2. Literature Review 

 

2.1. Monte Carlo Simulation of Integration Calculation 

There are many of studies on Monte Carlo simulation being using in solving the integration problem. 

The uncertain data was being model by the Monte Carlo integration-based method to deal with the 

limitations for some unpredictability estimation empirically [6]. At most of the time, Monte Carlo 

simulation is used to solve the integration with a big scale of dimension and the large system size too. 

In solving the van der Waals density function vdW-DF, it needs to have a multi-dimension integration 

which Monte-Carlo technique is fulfilled this requirement [7]. Monte Carlo integration is said to be a very 

efficiency tool to handle with the various versions of van der Waals density function. In other words, 

Monte Carlo was likely to apply from low dimension problem till the complex structures. As the 

dimension of integration domain increase or infinite dimensionally, Monte-Carlo methods was 

recommended to solve the problem. Higher order Quasi-Monte Carlo integration was used to compute 

approximate Bayesian estimates for interest quantity [8]. Besides, multi-dimensional Monte Carlo 

integration also use on multiple Graphics Processing Units (GPUs). Multi-dimensional Monte Carlo 

integration was used on distributed multi–Graphics Processing Units devices [9]. 

 

2.2. Numerical Simulation of Poisson’s Equation  

There is various numerical simulation involve in solving Poisson equation. The different numerical 

simulation will undergoing different process and yield different value. One of the numerical simulations 

that can solve the Poisson equation is finite difference method (FDM). Besides, Poisson equation also 

can be solved by different type of finite difference method (FDM). Poisson equation on hierarchical 

Cartesian meshes was solved by using a cell centred FDM to reduce the truncation error coefficient 

which is in second order [10]. When there exists different boundary condition in solving the Poisson 

equation, different type of finite difference method will be use. Poisson equation with the Dirichlet 
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boundary condition was solved by Shortley-Weller method and finite difference method by Gibou et al. 

[11]. 

 Other than finite difference method, Monte Carlo simulation also one of the numerical 

simulations that used to solve the Poisson equation. In solving the nonlinear Poisson equation, Monte 

Carlo simulation was used as technique for numerical solution such as fixed random walk, monotone 

iterative methods, and adaptive mesh [12]. For the two-dimensional (2D) Poisson equation and three-

dimensional (3D) Poisson equation, quasi- Monte Carlo method was applied to avert the crisis of 

singularity and domain discretization [13]. When there exists different boundary condition such as 

Dirichlet boundary condition, Monte Carlo simulation was a very efficiency tool to solve the Poisson 

equation.  

 

2.3. Application of Monte Carlo Simulation in Real Life Simulations 

As one of the top mathematical algorithms in recent decade, Monte Carlo simulation is widely use 

around our real life. Monte Carlo simulation is a good methodology when simulate process that are 

consume time. Dynamic Monte Carlo (DMC) methodology was developed and utilized to achieve time 

dependent green’s functions for transient analysis of the source-driven system [14]. At the same time, 

the ephemeral analysis of source driven nuclear systems was examined by using Dynamic Monte Carlo 

(DMC) methodology. In the existence of high-dimensional input uncertainties, multi-level Monte Carlo 

methods was used as a tool to perform uncertainty quantification for problems that depend on time [15]. 

Besides, Monte Carlo also known as a very effective tool when run many experiments in a very 

short timeframe. There is various of studies that had been applied the Monte Carlo algorithms when 

solving the large-scale systems due its computational efficiency. The computation of magnetization 

temperature dependence in big-scale granular thin films was completed by assisting of Monte Carlo 

algorithm [16]. Other than that, Monte Carlo also widely used in analysis especially for the large complex 

network. A distributed linear algebra solver was developed based on Monte Carlo at where it applies 

the random walks over the system matrix [17]. 

 

2.4. Random Number Generator 

Monte Carlo simulation is based mainly on the random number generator as debugging aid by the 

intelligence to undergo the sane sequence of random number repeatedly by start from the same random 

seed. The application of randomness produces various of method to generate the random data or 

random walk. Thus, choosing an appropriate random number generator is important so that it can be 

optimally function in Mote Carlo simulation to solve the integration problem and Poisson’s equation. 

Generally, uniform distribution of pseudorandom number can be generated by the linear 

congruential generator. Suppose that m, a, and b is integer and the recurrence relation is shown as 

below: 

 

 𝑥𝑛+1 = (𝑎𝑥𝑛 + 𝑏)mod  𝑚 (1) 

where 𝑎 represents the multiplier, 𝑏 represents the increment and 𝑚 represents the modulus. 

 

3. MONTE CARLO SIMULATION IN POISSON’S EQUATION AND THE INTEGRATION 

 

3.1. Introduction 

In the study, Monte Carlo as computational algorithm was used to solve the difficult problem that very 

hard solve by the other approaches. Python Program is used to run the Monte Carlo simulation to obtain 

the result. In the integration problem, Monte Carlo contributes a solution that can solve problem with 

exponential increase in computation time. There are some theorems was applied in Monte Carlo 

integration such as central limit theorem. By this theorem, 
1

√𝑛
 convergence was displayed. Apart from 

that, Monte Carlo always has a close relation with random number. All the Monte Carlo method is said 

to be in principle constructed with Random number because it is more easily implementable. For the 

Monte Carlo method, the integral was computed by considering a function 𝑓 on the interval [a, b] and it 
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compute as 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for certain bounded function 𝑓. Thus, 𝑓 ≥ 0 can be assume if it is general 

problem. Otherwise, 𝑓 will be replaced by 𝑓 + 𝑐  at where 𝑐 is a constant. Other than that, 𝑓 ≤ 1 can be 

assume if not 𝑓 will be replaced by 𝑐𝑓 at where the constant 𝑐 is sufficiently small. Next, a can be 

assumed is 0 (a=0) and b can be assumed as 1 (b=1). Otherwise, variable y will be change to 𝑦 =
(𝑥−𝑎)

(𝑏−𝑎)
. 

 

3.2. One-dimensional Monte Carlo Integration  

To deal with the Monte Carlo simulation in solving integration problem, the one-dimensional Monte 

Carlo equation was derived. 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= (𝑏 − 𝑎)
1

𝑁
∑𝑓(𝑥𝑖)

𝑁

𝑖=1

 (2) 

where N is the simulation node. 

 

3.2.1. Framework of One-dimensional Monte Carlo Integration 

 
Figure 3.1 Framework of one-dimensional Monte Carlo integration 

 

3.3. Two-dimensional Monte Carlo Integration  

After deal with one-dimensional Monte Carlo integration, we investigate the role of Monte Carlo 

integration in solving higher dimensional integration problem. Therefore, the study proceeds with Monte 

Carlo simulation in solving two-dimensional integration problem. The two-dimensional Monte Carlo 

integration equation is derived as follows: 

 

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑏

𝑎

𝑑

𝑐

= (𝑏 − 𝑎)(𝑑 − 𝑐)
1

𝑁𝑖𝑁𝑗
∑∑𝑓(𝑥𝑖 , 𝑦𝑗)

𝑁𝑖

𝑖=1

𝑁𝑗

𝑗=1

 (3) 

where i = 1,2,3, …𝑁𝑖 ; j=1,2,3, …𝑁𝑗 

 

3.3.1 Framework Two-dimensional Monte Carlo Integration  

Start

Initialize 𝑓(𝑥), 𝑁, 𝑎, 𝑎 𝑑 𝑏

Generate  𝑎 𝑑

𝑥𝑖 = 𝑎 + (𝑏 − 𝑎)   𝑎 𝑑

  𝑚 𝑓 =  𝑓(𝑥𝑖)
  𝑚   𝑦 =   

 =  + 1

  𝑁
No

Solution =
     

       
 (𝑏 − 𝑎)

End

Yes



Lee & Yeak (2022) Proc. Sci. Math. 9:128-138 

 
 132 

 

Figure 3.2 Framework of two-dimensional Monte Carlo integration 
 
3.4. Monte Carlo in Solving One-dimensional Poisson’s Equation  

Beside integration problem, Monte Carlo method also play a role in solving partial differential equation. 

In this study, Monte Carlo method was used to solve the one-dimensional Poisson’s equation and the 

result was observed to investigate the accuracy of this method. Therefore, the Monte Carlo simulation 

was introduced and applied in Poisson’s equation as below: 

 

𝜙(𝑥) = −𝑓 ⋅ (ℎ2) +
𝜙(𝑥 − ℎ)

2
+
𝜙(𝑥 + ℎ)

2
 

 
(4) 

 

For applying the Monte Carlo simulation in solving Poisson’s equation, random walk (RW) is 

the concept that we should understand and use it. Assume that domain 𝛺 of 𝜑 is in a rectangular lattice 

where there is a distance h for each lattice point from the neighbours. Then, we start to move randomly 

from a point in the lattice where we denoted the point as A. The moving of the point is to another point 

that is closest neighbours of that point with the step with equal probability. This movement was repeated 

until reach the boundary point a of the domain. Then, that point is the point where the random walk w 

calculates. In this case, the term F is as follows: 

 

𝐹(𝑤) = ∑ 𝑓( )ℎ2

𝑖∈𝑖𝑛 𝑒 𝑖𝑜  𝑝𝑜𝑖𝑛   𝑖𝑛 
 𝑎𝑛𝑑𝑜  𝑤𝑎𝑙𝑘

 
(5) 

 

The random walk was repeated for a finite number of times (N). After the walk concluding at 

each boundary point a, the probability of the walk that starting at A to the boundary point a was 

calculated and denoted as 𝑃𝐴(𝑎). The equation to calculate the 𝑃𝐴(𝑎) is as follows: 

 

𝑃𝐴(𝑎) =
𝑁 𝑚𝑏𝑒  𝑜𝑓   𝑚𝑒𝑠  𝑎 𝑑𝑜𝑚 𝑤𝑎𝑙𝑘 𝑒 𝑑𝑠 𝑎  𝑎

𝑁
 

(6) 

 

Therefore, the quantity  (𝐴)  can be compute by using the boundary condition g at each 

boundary point a. The equation is as follows: 

 

 (𝐴) = ∑ 𝑔(𝑎)

𝑎∈𝑏𝑜 𝑛𝑑𝑎   𝑝𝑜𝑖𝑛  

𝑃𝐴(𝑎) − ∑ 𝐹(𝑤)

 𝑜  𝑎𝑙𝑙 𝑤

  (7) 

Lastly, u for all points that in the domain was calculated and this was the approximate solution 

to the differential equation. 

Start

Initialize 𝑓 𝑥, 𝑦 ,𝑁, 𝑎, 𝑏, 𝑐 and 𝑑

Generate  𝑎 𝑑1,  𝑎 𝑑2

𝑥𝑖 = 𝑎 + 𝑏 − 𝑎   𝑎 𝑑1
𝑦𝑖 = 𝑐 + 𝑑 − 𝑐   𝑎 𝑑2

 =  + 1

  𝑁 No

Solution=
     

       
 (𝑏 − 𝑎)  (𝑑 − 𝑐)

End

Yes

  𝑚 𝑓 =  𝑓(𝑥𝑖 ,  𝑖)
  𝑚   𝑦 =   
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𝜑(𝐴) ≈  (𝐴)  𝐴 ∈ 𝐿𝑎   𝑐𝑒 𝑝𝑜   𝑠    𝛺 (8) 

 

3.4.1. Framework of Monte Carlo in Solving One-dimensional Poisson’s Equation 

 

Figure 3.3 Framework of Monte Carlo in solving one-dimensional Poisson’s equation 
 

3.5. Monte Carlo in Solving Two-dimensional Poisson’s Equation 

In this study, higher dimensional Poisson’s equation was solved by using Monte Carlo method. The 

accuracy of Monte Carlo simulation in solving two-dimensional Poisson’s equation was investigated 

and specified Poisson equations was used in this study as shown as below: 

 

𝜙(𝑥, 𝑦) = −𝑓 ⋅
(2ℎ2𝑘2)

2(𝑘2 + ℎ2)
+
𝑘2(𝜙(𝑥 − ℎ, 𝑦) + 𝜙(𝑥 + ℎ, 𝑦)) + ℎ2(𝜙(𝑥, 𝑦 − 𝑘) + 𝜙(𝑥, 𝑦 + 𝑘))

2(𝑘2 + ℎ2)
 

 
 

 

(9) 

 

In solving two-dimensional Poisson’s equation, we start to move randomly from a point in the 

lattice where we denoted the point as (𝑥𝐴, 𝑦𝐴). The moving of the point is to another point that is closest 

neighbours of that point with the step with equal probability where it is similarly as in one-dimensional 

Poisson’ equation.This movement was repeated until reach the boundary point a of the domain. Then, 

that point is the point where the random walk w calculates. The random walk was repeated for a finite 

number of times (N). After the walk concluding at each boundary point a, the probability of the walk that 

starting at (𝑥𝐴, 𝑦𝐴) to the boundary point a was calculated and denoted as 𝑃𝑥𝐴,𝑦𝐴 
(𝑎). The equation to 

calculate the 𝑃𝑥𝐴,𝑦𝐴 
(𝑎) is as follows: 

 

𝑃𝑥𝐴, 𝐴 (𝑎) =
𝑁 𝑚𝑏𝑒  𝑜𝑓   𝑚𝑒𝑠  𝑎 𝑑𝑜𝑚 𝑤𝑎𝑙𝑘 𝑒 𝑑𝑠 𝑎  𝑎

𝑁
 

(10) 

 

Therefore, the quantity  (𝑥𝐴, 𝑦𝐴) can be compute by using the boundary condition g at each 

boundary point a. The equation is as follows: 

 

 (𝑥𝐴, 𝑦𝐴) = ∑ 𝑔(𝑎)

𝑎∈𝑏𝑜 𝑛𝑑𝑎   𝑝𝑜𝑖𝑛  

𝑃𝑥𝐴, 𝐴(𝑎) − ∑ 𝐹(𝑤)

 𝑜  𝑎𝑙𝑙 𝑤

  (11) 

Start

End

Initialize variables

Generate  𝑎 𝑑(0,1)

Reach the boundary condition
No

Yes

Start with node 𝑥𝐴 

Random walks in 2 direction

    𝑜 𝑎𝑙 𝑠 𝑚 𝑙𝑎  𝑜 
No

∑ ( )

Yes
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Lastly, u for all points that in the domain was calculated and this was the approximate solution 

to the differential equation. 

 

𝜑(𝑥𝐴, 𝑦𝐴) ≈  (𝑥𝐴 , 𝑦𝐴)  𝐴 ∈ 𝐿𝑎   𝑐𝑒 𝑝𝑜   𝑠    𝛺 (12) 

 

 

3.5.1. Framework of Monte Carlo in Solving One-dimensional Poisson’s Equation 

 

Figure 3.4 Framework of Monte Carlo in solving one-dimensional Poisson’s equation 
 

4. Results and discussion 

 

4.1. Result of One-dimensional Monte Carlo Integration 

For one-dimensional Monte Carlo integration, the result yield from the Python Programming was likely 

approximate to the exact solution. When the number of tries increase, the result from the Monte Carlo 

integration is more likely approximate to the exact solution. In solving one-dimensional Monte Carlo 

integration for following equation: 

 

∫
(sin(√𝑥) + 1)(𝑒√𝑥)

√𝑥

𝜋

0

𝑑𝑥 
(13) 

 

To compare the results of Monte Carlo simulation in solving one-dimensional integration 

problem, different number of tries was set in the Python Programming for error observation. 

 
Table 4.1 Comparison of average absolute error for 10 simulations with different number of tries 

 
Through the comparison, it can clearly state that the average absolute error for 10000 tries is 

much smaller than the average absolute error for 1000 tries. Meanwhile, this indicate that the accuracy 
of Monte Carlo simulation in solving integration problems is higher when the number of tries increase. 

Start

End

Initialize variables

Generate  𝑎 𝑑(0,1)

Reach the boundary condition
No

Yes

Start with node 𝑥𝐴, 𝑦𝐴

Random walks in 4 direction

    𝑜 𝑎𝑙 𝑠 𝑚 𝑙𝑎  𝑜 
No

∑ ( )

Yes

Number of tries Average absolute error 

1000 0.129105 

10000 0.060328 
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4.2. Result of Two-dimensional Monte Carlo Integration 

As mentioned as previously, Monte Carlo simulation is a very good tool to solve the higher order 
integration problem. When the integration problem is in higher order or dimension, Monte Carlo 
simulation can provide a greater solution with smaller absolute error.  

In this session, the result will be display in visual or physical observation as it is easier for us to 
compare it with different number of tries. Before that, the exact solution for this two-dimensional Monte 
Carlo integration problem is as shown as below: 

 

∬
(sin(√𝑥𝑦) + 1)(𝑒√𝑥 )

√𝑥𝑦
𝑑𝑥 𝑑𝑦 = 16.978388

𝜋

0

 
(14) 

 

Figure 4.1 Value of two-dimensional Monte Carlo integration simulation with different tries 
 

From the result, it is significantly show that the value generated by two-dimensional Monte 

Carlo integration simulation for 10000 tries is likely approximate to the exact solution. From Figure 4.4, 

it shows that all the value of Monte Carlo simulation lies between 15 to 20 which is in the range of value 

that approach to the exact solution. From the result, the domain of histogram for Figure 4.4 was narrow 

down as the range lies between the range of 15 to 20. Therefore, it can be described that the graph 

result from normal distribution that standard deviation was reduce. Hence, Monte Carlo simulation can 

be said as a very good tool to solve the higher order integration efficiently with higher number of tries.  

 

4.3. Result of Monte Carlo in Solving One-dimensional Poisson’s Equation 

The comparison for the average of integration of error surface was computed to ensure the accuracy 
of the result in solving one-dimensional Poisson’s equation for following equation: 
 

𝜕2 

𝜕𝑥2
= f(𝑥) = 𝑥2 + 2𝑥 + 10 

(15) 

 

 The integration of error surface and average integration of error surface was computed for 10 

simulations, and it was computed with different number of nodes and random number generation points. 

 

Table 4.2 Comparison of average integration of error surface for i=10 with different n and 1000 
random number generation points in 1D Poisson’s equation 
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Random Number Generation Points Number of Nodes Average of Integration of Error Surface 

1000 10 0.360972 
1000 20 0.260005 

 

 

Table 4.3 Comparison of average integration of error surface for i=10 with different n and 10000 
random number generation points in 1D Poisson’s equation 

Random Number Generation Points Number of Nodes Average of Integration of Error Surface 

10000 10 0.264593  
10000 20 0.231988 

 
 

Table 4.4 Comparison of average of integration of error surface for i=10 with n=10 and different 
random number generation points in 1D Poisson’s equation 

Number of Nodes Random Number Generation Points Average of Integration of Error 
Surface 

10 1000 0.360972 
10 10000 0.264593  

 

Table 4.5 Comparison of average of integration of error surface for i=10 with n=20 and different 
random number generation points in 1D Poisson’s equation 

Number of Nodes Random Number Generation Points Average of Integration of Error 
Surface 

20 1000 0.260005 
20 10000 0.231988 

 

From the comparison, the average of integration of error surface is smaller when the random 

number generation points are higher for fixed number of nodes, 20 nodes where the situation is similar 

with the fixed number of nodes at 10 nodes. Therefore, the result show that when number of nodes is 

same, the random number generation points will affect the average of integration of error surface. At 

the same time, the higher the random number generation points the smaller the average of integration 

of error surface. 

 

4.4. Result of Monte Carlo in Solving Two-dimensional Poisson’s Equation 

For two-dimensional Poisson’s equation, the following equation was used to compete the result for 

comparison: 

 

𝜕2 

𝜕𝑥2
+
𝜕2 

𝜕𝑦2
= 𝑓(𝑥, 𝑦) = 𝑒−2𝑥 + 𝑒− + 10 

(16) 

 

  The computational of result was varying with the number of nodes and random number 

generation points to perform a better view of comparison. 

 

Table 4.6 Comparison of average integration of error surface for i=10 with different n and 1000 
random number generation points in 2D Poisson’s equation 

Random Number Generation Points Number of Nodes Average of Integration of Error 
Surface 

1000 10 0.026764  
1000 20 0.025577 
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Table 4.7 Comparison of average integration of error surface for i=10 with different n and 10000 
random number generation points in 2D Poisson’s equation 

Random Number Generation Points Number of Nodes Average of Integration of Error 
Surface 

10000 10 0.026164 
10000 20 0.025437 

 

Table 4.8 Comparison of average of integration of error surface for i=10 with n=10 and different 
random number generation points in 2D Poisson’s equation 

Number of Nodes Random Number Generation Points Average of Integration of Error 
Surface 

10 1000 0.026764 

10 10000 0.026164 
 

Table 4.9 Comparison of average of integration of error surface for i=10 with n=20 and different 
random number generation points in 2D Poisson’s equation 

Number of Nodes Random Number Generation Points Average of Integration of Error 
Surface 

20 1000 0.025577 

20 10000 0.025437 

 

From all the result above, we noticed that when the number of tries increase, the result 

generated from the Monte Carlo simulation is more approximately to the exact solution for the 

integration problem. Similarly, the average of integration of surface error is smaller in solving Poisson’s 

equation when the number of nodes is big and the random number generation points is more. 

 

Conclusion 

The study conducts successfully with the comparison of average absolute error and Monte Carlo 

integration value for Monte Carlo simulation in 1D and 2D integration problem. The study also 

investigates the role on Monte Carlo simulation in solving Poisson’s equation in 1D and 2D by observing 

the average integration of error surface. From the study, Monte Carlo simulation provide a good solution 

for the integration problem especially when the dimensional of integration or degree of freedom is high. 

Monte Carlo also a mathematical approach that depends on random number generator. Therefore, the 

study also investigated the role of number of tries in solving integration problem and random number 

generation point in Poisson’s equation. From the result, the absolute error is small when the number of 

tries is high in both 1D and 2D integration. Similarly, the integration of error surface in Poisson’s 

equation is small when the random number generation point is high. The integration of error surface in 

both 1D and 2D Poisson’s equation is small when the number of nodes increase. Thus, Monte Carlo 

simulation is a mathematical approach that very suitable to solve the problem that is complex and high 

degree of freedom by increase the number of tries and random number generation point. Monte Carlo 

can be said is a mathematical algorithm that suitable to solve the integration problem when the degree 

of integration for the problem is high and the complexity of problem is hard to solve by other 

mathematical approach. Monte Carlo simulation should highly recommend to widely use in solving the 

Poisson’s equation as it solves the Poisson’s equation efficiently and the result is approaching to the 

exact solution especially when the Poisson’s equation is in high dimensional. 
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