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Abstract 
Rainfall is an important component in many developing countries especially to those agriculture 
producing country this is because water is vital for the maintenance of physiological and chemical 
processes that takes place within plant structures. As result, forecasting the amount of rainfall critical 
for the government as well as the rescue team. This study aims to model monthly amount of rainfall in 
Peninsular Malaysia using Autoregressive Integrated Moving Average (ARIMA) and Holt-Winter 
models. The models’ performance is measured using Mean Absolute Percentage Error (MAPE) and 
Root Mean Square Error (RMSE). In this study, we are using the amount of rainfall data from January 
2010 until September 2019 from six different stations which is Senai, Pulau Langkawi, Kuala 
Terengganu, Gong Kedak, Cameron Highlands and Alor Setar. The data from January 2010 until 
December 2018 were used as the training set data to fir the forecasting model, while the 9 months data 
from January 2019 until September 2019 used to assess the forecasting accuracy of the models that 
have been implemented. The forecasting model with the lowest prediction error is chosen. This studies 
shows that ARIMA in overall performance is better than Holt-Winter method. Hence, ARIMA is 
considered the best model to forecast the amount of rainfall. 
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1. Introduction 

 
Time series analysis is the most widely used field of data science and machine learning, it decomposes 
the past historical data to depict the trend, seasonality, and noise to derive the future trends from it. It’s 
a type of predictive analysis that forecasts the value of a variable in future occurrences based on history. 
The predicted values can be influenced by certain external factors which are known as independent 
variables like in the case of sale of a product is influenced by the discount percentage on its prices or 
the temperature on a particular day is influenced by the humidity or wind speed etc. 

Much like other statistical analysis, by using time series people can also perform analysis and 
this type of analysis is so called the time series analysis. Time series analysis covers methods for 
evaluating time series data in order to derive relevant statistics and other properties of the data. The 
main objective of time series analysis is to comprehend or model the behaviour of observed series and 
the changing pattern over time. Knowing well about the underlying naturalistic process helps in 
evaluating the consequences of either planned or unplanned intervention. Furthermore, time series 
analysis may assist in forecasting the future values of the series, and managing the quality of the 
process in statistical quality control.

2. Literature Review 

 

This chapter will discuss pros and cons of rainfall brings to human beings and a brief explanation on 
rainfall. Moreover, this chapter will also discuss the forecasting model that was mentioned in Chapter 1 
which is Holt-Winter method and ARIMA model. Furthermore, we will also review some article which 
related to the application of Holt-Winter method and ARIMA model. 
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2.1. Rainfall 

Rainfall is the most recognized triggering factor of disaster such as flood, landslide, cause damage to 
buildings and infrastructure and loss crops and livestock, especially in tropical regions with hot and 
humid climatic conditions. Based on the Climate Prediction Center Merged Analysis of Precipitation 
(CMAP) data [18], the June–September rainfall in the Asian-Pacific summer monsoon (APSM) region 
accounts for approximately 30% of the total tropical rainfall, albeit this region occupies only 10% of the 
tropics between 30S and 30N. The rainfall in this region plays a critical role in maintaining the global 
energy/water cycle and driving the monsoon climate variability and has farreaching impacts on global 
circulation [18] 

 

2.2. ARIMA Model 

Autoregressive integrated moving average (ARIMA) is one of the most important and widely used in 
time series model [19]. The popularity of the ARIMA model is due to its statistical properties as well as 
the well-known Box–Jenkins methodology in the model building process. In addition, various 
exponential smoothing models can be implemented by ARIMA models. In ARIMA model, it is assumed 
that the future value and the past observation values of the time series satisfy the linear relationship. In 
fact, most of the time series data contain nonlinear relationship, which limits the scope of the application 
of ARIMA model. 

 

2.3. Holt-Winter Model 

The main intention of the time series analysis of the rainfall data is to find out trend, and seasonality in 
the data and use this information for forecasting the region-wise rainfall for the future [4]. Holt-Winter 
method is one of the traditional methods used to forecasting a leveled time series data. While the past 
observations moving averages are weighted equally, Exponential Smoothing allocates rapidly reducing 
weights as the observations become huge. Holt-Winter’s method can be classified into Additive and 
Multiplicative effect assumption. Manideep et al. (2018) made a prediction using different methods of 
Holt-Winters algorithm with big data approach and it is found out that multiplicative method works better 
than additive method in most of the cases. 

 

3. Methodology 

 

3.1. Introduction 

In this study, we will apply either the Multiplicative Holt Winters (MHW) or Additive Holt Winter (AHW) 
methods to predict the rainfall for a given dataset. The decision in choosing between additive method 
and multiplicative method depends on the time series characteristics as well because different methods 
will be suitable for different data and each method has its drawback as well. When the seasonal 
component is directly proportional to trend level the additive method should be preferable, whereas if 
size of the seasonal component is directly proportional to trend level multiplicative method should be 
preferable. 

 

3.2. ARIMA Model 

The ARIMA approach, has been one of the most widely applied linear frameworks in time-series 
forecasting over the past three decades [19]. The popularity of the ARIMA model is due to its statistical 
properties and it is well-known as Box–Jenkins methodology [6]. The popularity of ARIMA arose from 
its analytical ability, which is valuable in the process of model building, and the quality of its forecasts 
[2]. In addition, various exponential smoothing models can be implemented by ARIMA models [11]. 
Because the ARIMA model implies a linear correlation structure between the time series values, no 
nonlinear features can be captured. 
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AR: 𝑝 = order of the autoregressive part, I: 𝑑 = degree of differencing involved and  

MA: 𝑝 = order of the moving average part. 

The autoregressive model can be represented as follows: 

 

𝑦! = 𝑐 + ∅"𝑦!#" + ∅$𝑦!#$ +⋯+ ∅%𝑦!#% + 𝜀! 

 

where 𝜀! is the white noise, 𝑐 is the arbitrary constant, ∅% represent the regression coefficient and 𝑦! is 
the actual value at time 𝑡. 

A moving average model of order 𝑞 can be written as: 

 

𝑦! = 𝜇 + 𝜀! − 𝜃"𝜀!#" + 𝜃$𝜀!#$ +⋯+ 𝜃&𝜀!#& 

 

where 𝜀! is the white noise, 𝜇 is the mean of the model, and 𝜃& is the coefficient of the moving average 
to the estimated. 

 

The combination of differencing with autoregression and moving average model will form the non-
seasonal ARIMA model as below: 

 

𝑦′! = 𝑐 + ∅"𝑦′!#" +⋯+ ∅%𝑦′!#% +⋯+ ∅&𝑦!#& + 𝜀! 

 

where 𝑦′! is the differenced series. 

The differencing process builds ARIMA (𝑝, 𝑑, 𝑞) with 𝑝 as the order of the autoregressive part, 
𝑑 as degree of first differencing involved and 𝑞 as order of the moving average part. The general 
equation of the ARIMA model can be written in backshift notation, 𝐵 as 

 

∅%(𝐵)(1 − 𝐵)'𝑦! = 𝜃&(𝐵)𝜀! 

 

with 

∅%(𝐵) = 1 − ∅"𝐵 − ∅$𝐵$ −⋯− ∅%𝐵% 

 

𝜃&(𝐵) = 1 − 𝜃"𝐵 − 𝜃$𝐵$ −⋯− 𝜃&𝐵& 

 

where 𝐵 is the backshift and defined as 𝐵𝑦! = 𝑦!#". 

 

3.3. Holt-Winter 
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Holt-Winter's method is advanced the double exponential smoothing to model time series with 
seasonality. The method is also known as the Triple exponential smoothing in respects of the term of 
the discoverers. Holts-Winter’s method is developed by the Holt’s Linear method with adding a third 
parameter to deal with seasonality. Therefore, this method consents for leveled time series while the 
level, trend, and seasonality are different. There are two main differences in the Holt-Winter model: 
trend and seasonality and they mostly depend on the type of seasonality. To grip seasonality, a third 
parameter is added in this model. 

 Holt-Winter’s model can continue to provide forecast with the same accuracy over time. The Holt-
Winter’s method has an additive and a multiplicative form. The difference between those forms is in the 
nature of the seasonal component 

 

3.3.1 Additive Holt-Winter 

The additive model is preferred when the variation of seasonal component is almost stable through the 
series while the multiplicative is used when seasonal variations changes proportionally to the level of 
the series. Holt winter’s method have three parts which is Lt is the level at time t, Tt  is the trend at time 
t, St is the seasonal component at time t. The additive model is represented by the model as in : 

 

Level : 𝐿! = 𝛼(𝑌! − 𝑆!#() + (1 − 𝛼)(𝐿!#" + 𝑏!#") 

Trend : 𝑏! = 𝛽(𝐿! − 𝐿!#") + (1 − 𝛽)𝑏!#" 

Seasonal : 𝑆! = 𝛾(𝑌! − 𝐿!) + (1 − 𝛾)𝑆!#( 

Forecast : 𝐹!)* = 𝐿! + 𝑏!𝑚+ 𝑆!#()* 
 

3.3.2  Multiplicative Holt-Winter 

The multiplicative method is chosen when the variations in seasonal changed proportional to the level 
of the series while, the multiplicative model is represented as in 

 

Level : 𝐿! = 𝛼
𝑌!
𝑆!#(

+ (1 − 𝛼)(𝐿!#" + 𝑏!#") 

Trend : 𝑏! = 𝛽(𝐿! − 𝐿!#") + (1 − 𝛽)𝑏!#" 

Seasonal : 𝑆! = 𝛾
𝑌!
𝐿!
+ (1 − 𝛾)𝑆!#( 

Forecast : 𝐹!)* = (𝐿! + 𝑏!𝑚)𝑆!#()* 
 

From the equation, 𝐿! is the level; 𝑏! is the trend; 𝑆! is the seasonal; 𝑌! is the value from the given data, 
while t is the time period for the component of 𝐿!, 𝑏!, 𝑆!, and 𝑌!. Ft is the forecast value of a period 
ahead. Additionally α : level, β: trend and g: seasonal are smoothing coefficients. m is the forecast 
period and s is the seasonal duration. 

 

3.4 Accuracy Checking 

The error measurement component is important to measure the accuracy and the suitability of the 
forecasting method in order to demonstrate the effectiveness of the forecasting result. In this work, 
Mean Absolute Percentage Error (MAPE) and root mean square error (RMSE) will be used to measure 
the accuracy of the Holt- Winter’s method. The equations are shown below: 
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MAPE =
1
𝑛B C

𝑦! − 𝑦!D
𝑦!

C ∗ 100
+

!,"
 

 

RMSE = I
1
𝑛B(𝑦! − 𝑦!D )$

+

!,"

 

 

Given n is the value of total observations, 𝑦! is the actual value and 𝑦!D  is the forecast value of period t. 

 

4. Results and discussion 

 

4.1 Data Collection Analysis 

In this research, we collected 6 data set from Peninsular Malaysia which is Senai, Pulau Langkawi, 
Kuala Terengganu, Gong Kedak, Cameron Highlands and Alor Star and labeled as Station A, Station 
B, Station C, Station D, Station E and Station F respectively.  

 

 

 

Figure 1: Selected Stations 
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Table 1: Time Series Plot Across All Station 

 

Senai (Station A) 

 

Pulau Langkawi (Station B) 

 

Kuala Terengganu (Station C) 

 

Gong Kedak (Station D) 

 

Cameron Highland (Station E) 

 

Alor Setar (Starion F) 

 

4.2 Holt-Winter’s Method 

In this research, the measurement of the original monthly amount of rainfall taken from January 2010 
until September 2019 by using mathematical software R-Studio to conduct our analysis. 

 From the time series plot in Table 1, we observed that it has several fluctuations over time. There 
are several peaks of the amount of rainfall that occurred. The amount of rainfall has presented 
inconsistent trend which is changing over time. We decided to use Multiplicative Holt-Winter’s (MHW) 
method to solve the data. Since the data fluctuated and behave seasonality, Additive Holt-Winter (AHW) 
is not suitable to forecast the data. The data set are divided into 2 sets which is the training data, use 
to mdoel the in-sample data, while the testing data is to compare the original data with the out sample 
data which is forecasted from the training data. 

 

Table 2: Parameter estimation of AHW 

Stations A B C D E F 

Smoothing 
Parameters 

𝛼, Alpha 0.0238 0.0293 0.0573 0.1077 0.1270 0.0049 

𝛽, Beta 0.0748 0.0892 0.0807 0.0368 0.0446 0.4867 

𝛾, Gamma 0.4176 0.3251 0.5426 0.2368 0.3882 0.3555 
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Table 3: AHW plot with the Forecasted Value 

 

Senai (Station A) 

 

Pulau Langkawi (Station B) 

 

Kuala Terengganu (Station C) 

 

Gong Kedak (Station D) 

 

Cameron Highland (Station E) 

 

Alor Setar (Starion F) 

 

The black colour line was the original data and the blue is the forecasted value with the green 
line as the upper boundary and lower boundary. 

 

4.3 Box-Jenkins Method 

Data analysis of Box-Jenkins method can be classified into four main steps. They are model 
identification, parameter estimation process, diagnostic checking and forecasting process. This 
research are conducted by using R-Studio software for our analysis process.  

 

Table 4: ADF test for training data across all station 

Augmented Dickey-Fuller Test 

Station 𝑝-value 

A 0.4739 

B 0.2552 

C 0.3633 
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D 0.5439 

E 0.2182 

F 0.5355 
 

Table 4 shows the ADF test for the training data set across all station with lag = 12. 

 

Table 5: ACF and PACF plot of Station A 

Station ACF PACF 

A 

  
 

From the ACF and PACF plot of station A from Table 5, we could conclude that the data reveals a 
seasonality and the ACF and PACF shows some seasonality across the lags. This is becasue ACF 
graph show a significant spike at lag 12, 24 and 36. This indicates that the data consist of seasonality. 
Hence, the seasonal difference should performance at lag = 12, because our data behave monthly. 

 

 
Figure 2: ACF and PACF after seasonal differencing of Station A 

 

 

Figure 3: ACF and PACF after second seasonal differencing of Station A 
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  After the second seasonal differencing, we check again the diagnostic with ADF test. ADF 
shows that the p-value = 0.036 which is smaller than 0.05. This indicates that 𝐻- is rejected at 5% 
significant level and the data is stationary. 

Hence, we can form our SARIMA model with the information given in Figure 3 which is 
𝑆𝐴𝑅𝐼𝑀𝐴(0,0,0)(2,2,1)"$ , 𝑆𝐴𝑅𝐼𝑀𝐴(0,0,0)(2,2,0)"$ , 𝑆𝐴𝑅𝐼𝑀𝐴(0,0,0)(1,2,1)"$ , 𝑆𝐴𝑅𝐼𝑀𝐴(0,0,0)(1,2,0)"$ , 
𝑆𝐴𝑅𝐼𝑀𝐴(0,0,0)(0,2,1)"$, and 𝑆𝐴𝑅𝐼𝑀𝐴(0,0,0)(0,2,0)"$. 

Table 6: AIC of all the possible SARIMA model 

ARIMA AIC 

(0,0,0), (2,2,1) 1059.021 

(0,0,0), (2,2,0) 1073.733 

(0,0,0), (1,2,1) 1060.354 

(0,0,0), (1,2,0) 1089.355 

(0,0,0), (0,2,1) 1074.817 

(0,0,0), (0,2,0) 1130.679 
 

From Table 6, we can said that 𝑆𝐴𝑅𝐼𝑀𝐴(0,0,0)(2,2,1)"$ is the most suitable model to forecast 
since it has the smallest value of AIC. 

 

 
Figure 4: Fitted plot of Station A 

 

 

 

Figure 5: Residual plot for 𝑺𝑨𝑹𝑰𝑴𝑨(𝟎, 𝟎, 𝟎)(𝟐, 𝟐, 𝟏)𝟏𝟐 
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The residual plot in Figure 4.5 behaves stationary with a constant variance and the ACF plot 
does not have significant spike cut off the standard error limit. But the residual histogram consist of 2 
mode which might bring out the bi-modal distribution. We can conclude that the model is adequate as 
the residuals nearly the properties of white noise. 

 

4.4 Error Estimation 

 

Table 7: Error estimation of AHW and SARIMA model 

Station Model MAPE RMSE 

A 
𝑆𝐴𝑅𝐼𝑀𝐴(0,0,0)(2,2,1)"$ 98.2402 100.5456 

Additive Holt-Winter 73.1299 89.8384 
 

 

Conclusion 

 

 The performances of the forecasting for these deployed models were evaluated by using the 
error metrics namely Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). 
In this study, the best prediction model of SARIMA was displayed in Table 7.  

 In conclusion, the SARIMA model is more appropriate model to forecast the amount of rainfall in 
station senai than AHW model. 
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