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Abstract 

An analytical solution to advection-diffusion in half plane is obtained with considering Dirichlet problem. 

The purpose of this research is to solve analytically a two-dimensional advection-diffusion equation with 

the time-fractional derivative with different fractional parameter and velocity for Dirichlet problem. The 

solution is compared and interpreted into graph for fractional advection-diffusion equation (𝛼 ∈

(0,1), 𝑣 ≠ 0) with ordinary advection-diffusion equation (𝛼 = 1, 𝑣 ≠ 0), and for ordinary diffusion 

equation (𝛼 = 1, 𝑣 = 0) with fractional diffusion equation (𝛼 ∈ (0,1), 𝑣 = 0). Specifically, to study the 

dependence of fundamental solutions by spatial position, time and fractional parameter. The solution 

obtained by using Laplace transform, Sine-Fourier transform and exponential Fourier transform and 

also expressed by elementary and Bessel functions. The numerical calculation is carried out and the 

results obtain is illustrated using MATLAB. The presence of fractional parameter gives an adequate 

model for given problem. 
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1. Introduction 

The concept of diffusion has been widely used especially in biology, chemistry and physics. Diffusion 

can be described as the changes of molecules from high concentration to low concentration because 

of the driving force [1]. Advection is defined as a transmission of a matter from one place to another 

inside a moving fluid [2]. The combination of advection and diffusion describes the physical phenomena 

where the physical quantities are transmitted inside a physical system due to processes of diffusion and 

advection(convection). 

 Equation of advection-diffusion has attracted many authors since the equation frequently used 

in chemistry and engineering field such as transferring mass, heat, energy and vorticity [3]. Not only 

that, advection-diffusion model is used in water-pollution accident in middle and lower reach of Hanjiang 

river [4], to study the measure of concentration pollutant and dissolved oxygen concentrations in river 

water [5], fumigation [6], movement of substances in biological tissues and many more.  

 On the other hand, fractional order derivative is more accurate and realistic that make 

researchers focused to investigate the solutions of nonlinear differential equations to find the 

approximate solutions. Example of fractional order derivative is Riemann-Liouville, Caputo and Hilfer. 

However, these operators have some difficulties and limitations in modelling physical problems. 

Therefore, Caputo and Fabrizio has introduced alternative fractional differential operator that having a 

kernel with exponential decay. This fractional derivative is known as Caputo-Fabrizio operator which 

attracted researcher because of having a non-singular kernel [7]. 

 In this paper, the purpose of this study is (1) to solve analytically the fractional advection diffusion 

equation (ADE) with the time-fractional derivative without singular kernel in the half-plane (𝑥, 𝑦) ∈

(−∞, ∞) × [0, ∞) by considering Dirichlet cases with different fractional parameter, ∝. (2) To compare 

and interpret the solution into graph for fractional advection-diffusion equation (𝛼 ∈ (0,1), 𝑣 ≠ 0) with 

ordinary advection-diffusion equation (𝛼 = 1, 𝑣 ≠ 0) and (3) compare and interpret the solution   into 

graph for ordinary diffusion equation (𝛼 = 1, 𝑣 = 0) with fractional diffusion equation (𝛼 ∈ (0,1), 𝑣 = 0). 

The technique use for this study is Laplace transform with respect to temporal variable t and Fourier 

transform with respect to space coordinate x and y. From the analytical solution,   
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MATLAB will be used to make comparisons between the solution. 

 

2. Literature Review 

The application of advection-diffusion equation (ADE) has been used widely in real-world to solve 

transport process. For example, research about heterogeneity of hydro-geological media like river bed 

or aquifer [8]. In this paper, the authors extended the research from previous paper by considering 

velocity dependence on independent variable and dispersion parameter on the time-variable [9]. By 

using Green’s function method, the analytical solutions of one-dimensional ADE are obtained in an 

infinite domain subjected to the instantaneous and continuous injected sources. By this, it helps to get 

the solution of the ADE in general form for different particular cases. The solution for both research is 

matched through particular solutions and figures for the instantons and continuous sources. 

 Furthermore, research on the advection-diffusion equation in two-dimensional and its initial and 

boundary value problems with using Atangana-Baleanu derivative. This Atangana-Baleanu (AB) 

derivative is proposed in sense of Riemann-Liouville and Caputo definitions with non-singular Mittag-

Leffler function as a memory kernel. The AB derivative also has interpreted as a filter regulator. The 

Laplace transformation of AB derivative needs physically interpretable integer order initial conditions. 

From the results, it can be observed that the current results for concentration function is different from 

results of advection-diffusion model with Caputo fractional derivative with some parameter coefficients. 

Due to the Mittag-Leffler kernel, AB derivative has been more advantageous than Caputo fractional 

derivative for different types of diffusive transport [10] 

 Other research on one-dimensional advection-diffusion is about analytical solution of advection-

diffusion equation using finite difference schemes. The solution is obtained by using explicit centered 

difference scheme and Crank-Nicolson scheme. The qualitative behaviour of the ADE for different 

option of advection and diffusion coefficient is obtained and the schemes are applied in the pollutant 

distribution in a river for different time and space coordinates [11]. 

 Caputo-Fabrizio operator has been used to construct a dengue model [12]. The numerical results 

that using the fractal and fractional orders is found to be best fitting with the real statistical data. 

Application of the fractal-fractional operators in real world problem gives better outcome compared to 

ordinary order. 

 To redevelop the proposed Coronavirus transmission model with fractional order, the researchers 

applied the Caputo-Fabrizio derivative with non-singular exponential kernel. Using the Caputo-Fabrizio 

operator, it can help the researchers to earn more insights into the disease transmission dynamics. 

 Laplace transform is an integral transform method that solve linear ordinary differential equation. 

It has been used widely in physics, control and electrical engineering, optics, mathematics and signal 

processing. Laplace transform is very effective mathematical tool that can simplify the complex problem 

in the area of stability and control [13]. Laplace transform gives a powerful method of solving the 

differential and integral solutions. The benefit of using Laplace transform method is it solves the value 

problems straight without need to find the general solution first [14]. 

 The analytical solutions of advection-diffusion equation for a point source with a linear pulse time 

pattern involving constant-parameters condition which is constant velocity and diffusion coefficient used 

Laplace transform and inverse Laplace transform is used in solving the advection-diffusion equation. 

The results show that the superposition principle was employed to extend the derived solution for few 

point sources in arbitrary patterns. The method used for different problems and it gives results that 

highly accurate [15]. 

 Fourier series has been used widely in may field such as electronics, quantum mechanics and 

electrodynamics. Fourier series also can be used to analyse the square wave that occur in electric 

circuit and how to convert analog to digital systems [16]. The researcher discusses about the 

applications in electronics and digital multimedia visualization signal process communication system. 

  

2.1. Fractional Derivatives 
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The concept of differentiation operator 𝐷 =
𝑑

𝑑𝑥
 is already well known and for function 𝑓 with the 𝑛th 

derivative of function 𝑓 is described as 𝐷𝑛𝑓(𝑥) =
𝑑𝑛𝑓(𝑥)

𝑑𝑥𝑛 . The question arise in 1695 what would happen 

to 𝐷𝑛𝑓 if 𝑛 were a fraction and not a regular integer. Since that, the fractional calculus has attracted 

many famous mathematicians such as Euler, Laplace, Fourier, Abel, Liouville, Riemann and Laurent 

[14]. The following will provide the definition of some fractional derivatives. 

 

2.1.1 Riemann-Liouville 

The definition of Riemann-Liouville time-fractional derivative of order 𝛼 ∈ [0,1) is 

𝐷𝑡
𝛼 =

1

𝛤(1−𝛼)

𝑑

𝑑𝑥
∫ (𝑡 − 𝜏)−𝛼𝑓(𝜏)𝑑𝜏

𝑡

0
𝑅𝐿

  (2.1) 

where: 

𝛼  =  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

Γ  =  𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

The Laplace transform to equation (2.1) is given by 

 

ℒ{ 𝐷𝑡
𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑡) − 𝐷𝑡

𝛼−1𝑓(𝑡)|𝑡=0 𝑅𝐿𝑅𝐿 . 

 

2.1.2 Caputo 

The definition of Caputo-time fractional derivative of order 𝛼 ∈ [0,1) is 

𝐷𝑡
𝛼 =

1

𝛤(1−𝛼)
∫ (𝑡 − 𝜏)−𝛼𝑓′(𝜏)𝑑𝜏

𝑡

0
𝐶 .  (2.2) 

 

Laplace transform to equation (2.2) is 

 

ℒ{ 𝐷𝑡
𝛼𝑓(𝑡)}𝐶 = 𝑠𝛼𝐹(𝑠) − 𝑠𝛼−1𝑓(0).    

 

2.1.3 Caputo-Fabrizio 

The definition of Caputo Fabrizio-time fractional derivative of order 𝛼 ∈ [0,1) is 

 

𝐷𝑡
𝛼 =

1

(1−𝛼)
∫ exp (

−𝛼(𝑡−𝜏)

1−𝛼
) 𝑓′(𝜏)𝑑𝜏

𝑡

0
𝐶𝐹   (2.3) 

 

Applying Laplace transform to equation (2.3) 

 

ℒ{ 𝐷𝑡
𝛼}

𝐶𝐹 =
𝑠𝐿[𝑓(𝑡)]−𝑓(0)

(1−𝛼)𝑠+𝛼
 .   

 

3. Methodology 

 

3.1. Mathematical Formulation 

The partial differential equation of advection-diffusion is given by 

 
𝜕𝐶

𝜕𝑡
+ ∇. (𝒖𝐶) = 𝐷∇2𝐶  (2.4)  

 

The advection-diffusion in equation (2.4) is in (x,y) plane into an incompressible fluid, (𝑑𝑖𝑣(𝑢) = 0), with 

velocity 𝒖 = (𝑣0, 𝑣0, 0) that is constant cross flow velocity. Then the partial differential equation of 

advection-diffusion become: 

 
𝜕𝐶(𝑥,𝑦,𝑡)

𝜕𝑡
= 𝐷 (

𝜕2𝐶(𝑥,𝑦,𝑡)

𝜕𝑥2 +
𝜕2𝐶(𝑥,𝑦,𝑡)

𝜕𝑦2 ) − 𝑣0
𝜕𝐶(𝑥,𝑦,𝑡)

𝜕𝑥
− 𝑣0

𝜕𝐶(𝑥,𝑦,𝑡)

𝜕𝑦
   (2.5)  

with the initial and boundary equations: 
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𝐶(𝑥, 𝑦, 0) = 0        (2.6)  

𝐶(𝑥, 0, 𝑡) = 𝐶0𝛿(𝑥)𝛿(𝑡)      (2.7)   

lim
𝑥→±∞

𝐶(𝑥, 𝑦, 𝑡) = 0        (2.8) 

lim
𝑦→∞

𝐶(𝑥, 𝑦, 𝑡) = 0       (2.9) 

 

3.2. Analytical solution 

3.2.1. Nondimensionalisation 

Consider the non-dimensional variables, 

𝐶∗ =
𝐶

𝐶1

, 𝑥∗ =
𝑥

𝐿
, 𝑦∗ =

𝑦

𝐿
,          𝑡∗ =

𝐷𝑡

𝐿2
, 𝑣∗ =

𝑣0𝐿

𝐷
,  

After substituting non-dimensional variable into equation (2.5), then the non-dimensional form of the 

two-dimensional advection-diffusion equation is 

 

𝜕𝐶

𝜕𝑡
= (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2) − 𝑣 (
𝜕𝐶

𝜕𝑥
+

𝜕𝐶

𝜕𝑦
)      (2.10)  

 

3.2.1. The Fundamental Solutions to the Fractional Dirichlet Problem 

New unknown function 𝑢(𝑥, 𝑦, 𝑡) defined as, 

 

𝐶(𝑥, 𝑦, 𝑡) = exp (
𝑣

2
(𝑥 + 𝑦)) 𝑢(𝑥, 𝑦, 𝑡)     (2.11)  

and taking into consideration 𝑓(𝑥)𝛿(𝑥) = 𝑓(0)𝛿(𝑥), it is known that u(x,y,t) the solution to the problem: 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
−

𝑣2

2
 

with 

𝑢(𝑥, 𝑦, 0) = 0,        (2.12)   

𝑢(𝑥, 0, 𝑡) = 𝛿(𝑥)𝛿(𝑡),       (2.13) 

lim
𝑥→±∞

𝑢(𝑥, 𝑦, 𝑡) = 0,       (2.14) 

lim
𝑦→∞

𝑢(𝑥, 𝑦, 𝑡) = 0.       (2.15) 

 

In this research the advection-diffusion is described by the time fractional advection-diffusion equation 

with Caputo-Fabrizio time-fractional derivative, 

 

𝐷𝑡
𝛼𝐶𝐹 𝑢(𝑥, 𝑦, 𝑡) =

𝜕2𝑢(𝑥,𝑦,𝑡)

𝜕𝑥2 +
𝜕2𝑢(𝑥,𝑦,𝑡)

𝜕𝑦2 −
𝑣2

2
𝑢(𝑥, 𝑦, 𝑡)    (2.16)  

with 0 < 𝛼 < 1 

 

In order to solve equation (2.10) with initial and boundary equation in equation (2.12) to (2.15), 

Laplace transform is use with respect to time, �̅�(𝑥, 𝑦, 𝑥) = ∫ 𝑢(𝑥, 𝑦, 𝑡)𝑒−𝑠𝑡∞

0
𝑑𝑠, Sine-Fourier transform 

with respect to variable y, �̃̅�(𝑥, 𝜂, 𝑠) = √
2

𝜋
∫ �̅�(𝑥, 𝑦, 𝑠) sin(𝜂𝑦)𝑑𝑦

∞

0
 and exponential Fourier transform with 

respect to variable x,�̃̅�∗ = ∫ �̃̅�(𝑥, 𝜂, 𝑠)
∞

−∞
𝑒−𝑖𝜉𝑥𝑑𝑥. Then,  

 

�̃̅�∗(𝜉, 𝜂, 𝑠) = √
2

𝜋

𝜂

[
𝑠𝛾

(𝑠+𝛼𝛾)
+𝜉2+𝜂2+

𝑣2

2
]
       (2.17)  

where 𝛾 =
1

(1−𝛼)
  

 

Equation (2.17) can be written in equivalent form which is: 
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�̃̅�∗(𝜉, 𝜂, 𝑠) = �̃̅�1
∗(𝜉, 𝜂, 𝑠) + �̃̅�2

∗(𝜉, 𝜂, 𝑠)       

where 

�̃̅�1
∗(𝜉, 𝜂, 𝑠) = √

2

𝜋

𝜂

[𝜉2+𝜂2+𝛾+
𝑣2

2
]
  (2.18)  

 

and 

 

�̃̅�2
∗(𝜉, 𝜂, 𝑠) = √

2

𝜋

𝛼𝛾2𝜂

(𝜉2+𝜂2+𝜍2)2 .
1

𝑠+
𝛼𝛾(𝜉2+𝜂2+

𝑣2

2
)

𝜉2+𝜂2+𝜍2

  (2.19)  

where 𝜍2 = 𝛾 +
𝑣2

2
 

 

Then, applying the inversion of integral transform to equation (2.18) and applying some properties of 

integrals, 

 

𝑢1(𝑥, 𝑦, 𝑡) =
4

𝜋
𝛿(𝑡) ∫ ∫

𝜂 𝑠𝑖𝑛(𝜂𝑦)𝑐𝑜𝑠 (𝜉𝑥)

[𝜉2+𝜂2+𝜍2]

∞

0
𝑑𝜂𝑑𝜉

∞

0
    

 

Next, introduced the polar coordinates coordinates in the plane (𝜉, 𝜂), that are 𝜉 = 𝜌𝑐𝑜𝑠𝜃, and 𝜂 =

𝜌𝑠𝑖𝑛𝜃, where 𝜌 ∈ [0, ∞), 𝜃 ∈ [0,
𝜋

2
]. 

 

𝑢1(𝑥, 𝑦, 𝑡) =
4

π
𝛿(𝑡) ∫ ∫

𝜌2

𝜌2+𝜍2 𝑠𝑖𝑛𝜃 sin(𝜌𝑠𝑖𝑛𝜃𝑦) cos (𝜌𝑐𝑜𝑠𝜃𝑥)
𝜋

2
0

𝑑𝜌𝑑𝜃.
∞

0
  

   

 

By changing the variable 𝑧 = 𝑐𝑜𝑠𝜃, 

𝐼1 = ∫ 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛(𝑦𝜌𝑠𝑖𝑛𝜃) cos(𝑥𝜌 𝑐𝑜𝑠 𝜃)

𝜋
2

0

𝑑𝜃 

     = ∫ sin(𝑦𝜌𝑠𝑖𝑛𝜃) cos(𝑥𝜌𝑧)
1

0
𝑑𝑧  

 

and by referring to [18] it is known that 

∫ 𝑐𝑜𝑠(𝑚𝑧) 𝑠𝑖𝑛 (𝑛√1 − 𝑧2)
1

0

𝑑𝑧 =
𝜋

2
(

𝑛

√𝑚2 + 𝑛2 
) 𝐽1 (√𝑚2 + 𝑛2). 

 

Then, equation (2.18) becomes, 

 

𝑢1(𝑥, 𝑦, 𝑡) =
4

𝜋
𝛿(𝑡) ∫

𝜋

2
(

𝑛

√𝑚2 + 𝑛2 
) 𝐽1 (√𝑚2 + 𝑛2) (

𝜌2

𝜌2 + 𝜍2
) 𝑑𝜌.

∞

0

 

 

by referring to [19] where 

 

∫
𝑧2

𝑧2+𝑐2 𝐽1(𝑏𝑧)𝑑𝑧 = 𝑐𝐾1(𝑏𝑐)
∞

0
. 

 

Substitute the integrals, 

 

𝑢1(𝑥, 𝑦, 𝑡) =
2𝑦𝛿(𝑡)

√𝑥2+𝑦2 
𝜍𝐾1(𝜍√𝑥2 + 𝑦2 ).    
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From the above relations, 𝐽𝑛(. ) is the Bessel function of first kind of order n and 𝐾𝑛(. ) Is the modified 

Bessel function of second kind of order n. 

Let assume that  

 

𝑓1(𝑥, 𝑦) =
2𝑦𝛿(𝑡)

√𝑥2 + 𝑦2 
𝜍𝐾1 (𝜍√𝑥2 + 𝑦2 ). 

 

Then it can be written as  

 

𝑓1(𝑥, 𝑦) =
2𝜍𝑦

√1 + 𝑧 
𝐾1 (𝜍|𝑥|√1 +

1

𝑧
 ) 

where 𝑧 = (
𝑥

𝑦
)

2

. 

 

As a conclusion, the function 𝑢1(𝑥, 𝑦, 𝑡) is undefined at the point (𝑥, 𝑦, 𝑡) = (0,0,0) and 𝑢1(𝑥, 𝑦, 𝑡) =

0 for |𝑥| > 0, 𝑦 > 0, 𝑡 > 0. 

Next, similarly for 𝑢2(𝜉, 𝜂, 𝑠) given by equation (2.19), then, 

 

𝑢2(𝑥, 𝑦, 𝑡) = 𝛼𝛾2𝑦𝜌𝑒−𝛼𝛾𝑡 ∫
𝜌2

(𝜌2 + 𝜍2)2
e

𝛼𝛾2𝑡
𝜌2+𝜍2 [𝐽0 (𝜌√𝑥2 + 𝑦2 ) + 𝐽2 (𝜌√𝑥2 + 𝑦2 )]

∞

0

𝑑𝜌 

 

Then, the solution of equation (2.11) with the initial and boundary condition in equation (2.12) to (2.15) 

given by [20] is,  

 

𝑢(𝑥, 𝑦, 𝑡) = 𝛼𝛾2𝑦𝑒−𝛼𝛾𝑡 ∫
𝜌3

(𝜌2+𝜍2)2 e
𝛼𝛾2𝑡

𝜌2+𝜍2[𝐽0(𝜌√𝑥2 + 𝑦2 ) + 𝐽2(𝜌√𝑥2 + 𝑦2 )]
∞

0
𝑑𝜌  (2.20) 

 

Replacing equation (2.20) into equation (2.11), then the fundamental solution of the fractional Dirichlet 

problem for half-plane is  

 

𝐶(𝑥, 𝑦, 𝑡) = 𝛼𝛾2𝑦 exp (
𝑣

2
(𝑥 + 𝑦) − 𝛼𝛾𝑡) ∫

𝜌3

(𝜌2+𝜍2)2 exp (
𝛼𝛾2𝑡

𝜌2+𝜍2)[𝐽0(𝜌√𝑥2 + 𝑦2 ) + 𝐽2(𝜌√𝑥2 + 𝑦2 )]
∞

0
𝑑𝜌. 

            (2.21) 

 

Case 1 : The Fundamental Solution to Dirichlet Problem for the Ordinary Advection-Diffusion 

Equation (𝛼 → 1) 

 

𝐶(𝑥, 𝑦, 𝑡) =
𝑦

2𝑡2 exp (
𝑣

2
(𝑥 + 𝑦) −

𝑣2

2
𝑡 −

𝑥2+𝑦2

4𝑡
)      (2.22) 

 

Case 2 : The Fundamental Solution to Dirichlet Problem for the time-fractional diffusion equation 

𝑣 = 0 and 0 < 𝛼 < 1 

 

𝐶(𝑥, 𝑦, 𝑡) = 𝛼𝛾2𝑦 exp(−𝛼𝛾𝑡) ∫
𝜌3

(𝜌2+𝛾)2 exp (
𝛼𝛾2𝑡

𝜌2+𝛾
) [𝐽0(𝜌√𝑥2 + 𝑦2 ) + 𝐽2(𝜌√𝑥2 + 𝑦2 )]

∞

0
𝑑𝜌. (2.23) 

 

Case 3 : The Fundamental Solution to Dirichlet Problem for the normal diffusion equation 𝑣 = 0  and 

𝛼 → 1 

 

𝐶(𝑥, 𝑦, 𝑡) =
𝑦

2𝑡2 exp (−
𝑥2+𝑦2

4𝑡
).        (2.24) 
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4. Results and discussion 

4.1. Graphical Results 

In order to determine the influence of fractional parameter 𝛼 on the advection-diffusion process, the 

numerical calculations has been carried out. The results then are illustrated graphically by using 

MATLAB. Comparison were made between fractional advection-diffusion equation (𝛼 ∈ (0,1), 𝑣 ≠ 0) 

and ordinary advection-diffusion equation (𝛼 = 1, 𝑣 ≠ 0). Other than that, comparison between 

fractional advection-diffusion equation (𝛼 ∈ (0,1), 𝑣 = 0) and ordinary advection-diffusion equation (𝛼 =

1, 𝑣 = 0) are made. 

 Figure 1 illustrates the results of fundamental solution (Equation (2.21)) and solution to Case 1 

(Equation (2.22)) which is fractional advection-diffusion equation and ordinary advection-diffusion 

equation for Dirichlet problem respectively. The graph is plotted for x-variables versus concentration 

𝐶(𝑥, 𝑦, 𝑡) by using 𝑦 = 0.4, 𝑣 = 1.5 for different values of parameter 𝛼. 

 

 

Figure 1 Fractional ADE and ordinary ADE (𝛼 = 1)  when time t=0.75 for different fractional 

parameter 𝛼 

 

 Figure 1 shows the curves of fractional advection-diffusion equation when time t=0.75 for small 

values of 𝛼 = 0.1,0.2,0.4 on the left hand side and on the right hand side, large value of 𝛼 =

0.5,0.6,0.8 and ordinary advection-diffusion equation when 𝛼 = 1. When value 𝛼 = 0.1,0.2,0.4, the 

concentration for ordinary advection-diffusion equation is larger than concentration of fractional 

advection-diffusion equation but when value of 𝛼 = 0.5,0.6,0.8, then there is an area which concentration 

for fractional advection-diffusion equation is larger than concentration of ordinary advection-diffusion 

equation. Besides, when fractional parameter 𝛼 is decreasing, the concentration is also decreasing. 
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Figure 2 Fractional ADE and ordinary ADE (𝛼 = 1)  when time t=0.75 for different fractional 

parameter 𝛼   

 

 Figure 2 shows the curves of fractional advection-diffusion equation when time t=3 for small 

values of 𝛼 = 0.1,0.2,0.4, on the left and large value of 𝛼 = 0.5,0.6,0.8 on the right and ordinary 

advection-diffusion equation when 𝛼 = 1. When value 𝛼 = 0.1,0.2,0.4, the concentration for fractional 

advection-diffusion equation is larger than concentration of ordinary advection-diffusion equation. This 

also similar when values of 𝛼 = 0.5,0.6,0.8. It can be concluded that, for larger value of time t, the 

concentration of ordinary advection-diffusion equation is lesser compared to smaller value of time 

 

 

 

Figure 3 Fractional diffusion equation and ordinary diffusion equation (𝛼 = 1) when time t=1.5 

and v=0 for different fractional parameter 𝛼 

 

 Figure 3 shows the curves of Equation (2.23) (Case 2) which is the fractional diffusion equation 

modeled by Caputo-Fabrizio time-fractional derivative and Equation (2.24) (Case 3) which is normal 

diffusion equation such that transport velocity, v=0. The curves is plotted versus x-variable with time 

t=1.5 for small value α = 0.1,0.2,0.4, large value of α = 0.5,0.7,0.9 and ordinary advection-diffusion 

equation when α = 1. It can be seen that, there is values of fractional parameter α which the 
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concentration corresponding to fractional advection-diffusion equation is smaller (or larger) than 

concentration corresponding to ordinary advection-diffusion equation.  

 

Conclusion 

The objectives of this study is to solve analytically the time-fractional derivative with different fractional 

parameter and velocity for Dirichlet problem and to compare and interpret the solution into graph for 

fractional advection-diffusion equation (α∈ (0,1), v≠0) with ordinary advection-diffusion equation (α=1, 

v≠0) and for ordinary diffusion equation (α=1, v=0) with fractional diffusion equation (α∈ (0,1), v=0). 

After getting the final analytical solution for Dirichlet conditions, the behavior of the graph is observed 

for various fractional parameter,α with different value of velocity by using MATLAB.  
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