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Abstract 

The aim of this study is to apply the log-linear Poisson autoregressive in modelling the number of 

vaccinations of COVID-19 for different states in Malaysia from 24 February 2021 until 21 January 2022. 

The log-linear Poisson autoregressive model is suitable to model such long-term dependent time series 

count data and is known to handle overdispersion well. In the analysis, the vaccination data is described 

based on the calculation of the 7 days moving average, accumulated number of vaccinated and 

accumulated number of vaccination rate. The index of dispersion is also calculated in order to 

distinguish the true variation between the states. The number of daily vaccinations of coronavirus 

disease (COVID-19) in each state are found to be overdispersed. The model is estimated using the 

data of the number of daily vaccinations by comparing the parameters between the states. The model 

is validated between the value of the Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC) and Quasilikelihood under the Independence model Criterion (QIC). The model’s performance is 

then evaluated using the sequence of cumulative Pearson residuals to check the adequacy of the model 

in each state in Malaysia. Results shows that the model is adequate in modelling the number of daily 

vaccinations in all states in Malaysia except for Perlis, Pulau Pinang, Negeri Sembilan, Melaka, 

Kelantan, Pahang, Terengganu, W.P. Putrajaya, and W.P. Labuan. The model is then applied to predict 

the number of daily vaccinations in March 2022 for the states in Malaysia. The model is capable of 

determine the COVID-19 trend and forecasting the number of daily vaccinations. Aside from that, the 

model's accuracy may be hampered by the significant and unpredictable quantity of daily vaccinations. 
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1. Introduction 

The coronavirus disease (COVID-19) pandemic produced by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) has caused widespread devastation, particularly in Malaysia.  

The comparing of statistics across states in Malaysia is needed to assess the scope and rate of 

vaccination distribution. In Malaysia, the government is promoting vaccination. Nevertheless, different 

states may have different rates. In Malaysia, each state has a different phase based on their total daily 

vaccination. Vaccination distribution in Malaysia relies on the availability of vaccines in the country. For 

example, all schools and educational institutions in the state that has already accomplished phase three 

are permitted to operate face to face with a fifty percent rotation of class capacity, whereas all schools, 

educational institutions, and private educational institutions in the state that has already accomplished 

phase four are permitted to reopen with the gradual student admission in three stages. The GitHub 

MOH Malaysia vaccination dataset is a public collected global dataset on vaccinations provided. It 

includes the entire period beginning on February 24, 2021, the date the first vaccination data were 

announced and has been constantly updated since then. The number of vaccinations between the 

states appear to be vary.  

However, the variation between the trends in Malaysia tends to be overdispersed. One model that 

can handle the count data is Poisson regressive model but the equidispersed assumption must be 

achieved to apply this model. Therefore, a log-linear Poisson autoregressive model, which has the 

potential to determine the trend should be applied.
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2. Literature Review 

 

2.1. Time series analysis and hybrid models for COVID-19 

2.1.1. Autoregressive Integrated Moving Average (ARIMA) 

Autoregressive Integrated Moving Average (ARIMA) is an autoregressive statistical model that can 

predict future results based on past results. The ARIMA proposed model consists of three phases: 

model identification, parameter estimation, and model diagnostic checking [9]. Alternative mathematical 

and classical forecasting modelling techniques applied to COVID-19 data contradict the suggested 

hybrid approach [2]. 

 

2.1.2. Seasonal Autoregressive Integrated Moving Average (SARIMA) 

Another method for calculating COVID-19 is to use the seasonal ARIMA forecasting package (SARIMA) 

in conjunction with the R statistical model. SARIMA, also known as Seasonal ARIMA, is a modification 

of ARIMA that explicitly handles univariate time series data with a seasonal component. ARIMA models 

can predict simple ups and downs and are more accurate than regressive models without affecting the 

general trend [3]. This is because ARIMA can only reflect at the data from dependent variables such as 

registered and recovered cases. 

 

2.2. Compartmental models for COVID-19 

 

2.2.1. Susceptible Infected Recovered (SIR) and Susceptible Exposed Infected Recovered (SEIR) 

Susceptible Infected Recovered (SIR) is one of the basic models while Susceptible Exposed Infected 

Recovered (SEIR) is a derivative from the basic SIR model. Implying parameters of compartmental 

models such as susceptible-infectious-recovered (SIR) and susceptible-exposed infectious-recovered 

(SEIR), which are extensively employed in infectious disease predictions, is a basic problem when 

validating local models [8]. 

 

2.2.2. Stochastic Transmission Models 

The model explicitly simulated a Poisson observed procedure of newly symptomatic cases, reported 

onsets of new cases, reported confirmation of cases, and a binomial observation method for infection 

frequency on evacuation flights to account for uncertainty in case observed [7]. 

 

2.3. Model for COVID-19 Probability Distribution (Handle Overdispersion) 

2.3.1. Poisson Regression Model 

The Poisson regression model is used to describe count data that is influenced by several known 

predictor variables [5]. The occurrence of excess zero data and lengthy right tails, both related to the 

Poisson assumption, is a property of many count data. Overdispersion in the data could explain for both 

phenomena. The additional zeros can be caused by grouping. Overdispersion tends to increase the 

fraction of zeros, and when there are too many zeros related to the Poisson assumption, a modified 

Poisson regression is suitable for the data fit. An overdispersed model with extra zeros should be used 

as an alternative for a better match. 

Past researchers that using Poisson regression model stated that the main studies included vaccine 

effect estimates for total vaccine coverage and for each vaccine category [10]. One dose of each 

vaccination affected is examined to the hospital admissions related to laboratory-confirmed SARS-CoV-

2 infection or diagnostic testing of COVID-19. 

2.3.2. Zero-Inflated Negative Binomial (ZINB) model 

Zero-Inflated Negative Binomial (ZINB) model is for count data with overdispersion and extra zeros. A 

zero-inflated negative binomial multivariate regressions is utilised to design the affiliations of time [4]. 

The past researchers wanted to see if there was a link between having a vaccine clinic including both 

resident and employee COVID-19 cases and deaths. A zero-inflated negative binomial is used to mixed 

effect regressions to handle the heavily distorted, continuous count measures with a high proportion of 
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zeros. The negative binomial model handles overdispersion by inserting a dispersion parameter that 

modifies the Poisson model's premise of equal mean and variance.  

2.4. Poisson Autoregression model 

Next, Agosto and Giudici [1] offer a mathematical model that can predict when the maximum of infection 

will occur, allowing preventive actions to be implemented and relaxed. The statistical distribution of new 

cases is presumed at time (day) 𝑡, conditional on the information up to 𝑡 − 1 is Poisson, with a log-linear 

autoregressive intensity, as follows : 

 

𝑦𝑡|𝐹𝑡−1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡) 

log(𝜆𝑡) = 𝜔 + 𝛼 log(1 + 𝑦𝑡−1) + 𝛽 log(𝜆𝑡−1),                       (1) 

 

where, 

• 𝐹𝑡−1 denoted the α-field generated by {𝑦0,..., 𝑦𝑡}, 

• 𝜔 is the intercept term, 

• 𝛼 and 𝛽 express the dependence of the expected number of new infections, 

• 𝜆𝑡  on the past counts of new infections. 

 

The α component illustrates the short-term dependence on the prior time point. The β component 

represents a trend component, that is, the observed process's long-term dependence on all previous 

values [1]. The model is applicable to every country, location, or period. The application is demonstrated 

without sacrificing generality by utilizing data that is readily available. 

 

3. Methodology 

 

3.1. Log-linear Poisson autoregressive model 

Count time series modelling has come a long way in the previous two decades. Let 𝑌 = (𝑌𝑡)𝑡∈𝑧 be an 

integer-valued time series, with 𝐹𝑡 = (𝑌𝑠 , 𝑠 ≤ 𝑡) indicating the σ-field produced by the entire past at time 

t as well as 𝐿(
𝑌𝑡

𝐹𝑡−1
) indicating the conditional distribution of 𝑌𝑡 based on the past. The type of marginal 

distribution 𝐿(
𝑌𝑡

𝐹𝑡−1
) and the dependence structure between 𝐿(

𝑌𝑡

𝐹𝑡−1
) and the previous define a model. 

Models with a variety of marginal distributions and dependent architectures have been investigated. 

Consider the Poisson autoregression, where 𝐿(
𝑌𝑡

𝐹𝑡−1
) is Poisson distributed with an intensity λ𝑡 that varies 

as a function of λ𝑡−1 and 𝑌𝑡−1. They demonstrated the coherence and approximate normality of the 

maximum likelihood estimator of the regression parameter under linear autoregression by employing a 

perturbation strategy that allowed researchers to use the conventional Markov ergodic setup. The 

technique was expanded to nonlinear Poisson autoregression using 𝑌𝑡 = 𝑓(λ𝑡−1) + 𝑏(𝑌𝑡−1) for nonlinear 

quantifiable functions f and b.  

Consider the following time series of counts 𝑌 = (𝑌𝑡)𝑡∈𝑧 fulfilling : 

 

𝑌𝑡

𝐹𝑡−1
~Poisson(λ𝑡) with λ𝑡 = 𝐹(λ𝑡−1, 𝑌𝑡−1), (λ𝑡−2, 𝑌𝑡−2) … )                     (2) 
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where 𝐹𝑡 = 𝜎(𝑌𝑠, 𝑠 ≤ 𝑡) and F is a quantifiable non-negative function. Next, we prove that the conditional 

mean λ𝑡 can be represented as a function of previous observations under certain Lipschitz-type 

conditions on F. This leads to the model being considered as : 

 

𝑌𝑡

𝐹𝑡−1
~Poisson(λ𝑡) with λ𝑡 = 𝑓(𝑌𝑡−1, 𝑌𝑡−2 … )                                  (3) 

 

where f is a quantifiable non-negative function. After that, we presume that f is known up to a parameter 

θ0, which belongs to a compact set Θ ⊂ ℝ𝑑 with 𝑑 ∈ ℕ − {0}. The equation is as follows : 

 

𝑌𝑡

𝐹𝑡−1
~Poisson(λ𝑡) with λ𝑡 = 𝑓θ0

(𝑌𝑡−1, 𝑌𝑡−2 … ) and θ0 ∈ Θ                   (4) 

 

 Poisson processes can be used to illustrate equation (3.1), equation (3.2) and equation (3.3). 

We let {𝑁𝑡(. ) ; 𝑡 = 1,2, … } be a sequence of independent Poisson processes of unit intensity. 𝑌𝑡 can be 

thought of as the number (say, 𝑁𝑡(λ𝑡)) of events of 𝑁𝑡(. ) occurrences in the period [0, λ𝑡]. Our equation 

now has a new representation as below : 

 

𝑌𝑡 = 𝑁𝑡(λ𝑡) with λ𝑡 = 𝑓θ0
(𝑌𝑡−1, 𝑌𝑡−2 … )                                      (5) 

 

The Poisson autoregressive models are known to represent the overdispersion phenomena in 

counts data, which means that if the process (𝑌𝑡)𝑡∈𝑧 is static, Var(𝑌𝑡) ≥ 𝐸(𝑌𝑡)  usually happens. The 

approach model will be included in R to generate the GitHub data parameters. Let {𝑌𝑡} be the time series 

of the number of daily vaccinations COVID-19, where 𝑡 ≥ 0 represents the time. The log-linear Poisson 

autoregressive model assumes the number of daily vaccinations follows the Poisson distribution with 

mean λ𝑡 . 

 

𝑌𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ𝑡),               𝐼𝑛λ𝑡 = 𝜔 + 𝛼𝐼𝑛(1 + 𝑌𝑡−1) + 𝛽𝐼𝑛λ𝑡−1                    (6) 

 

 Each parameter has their own meaning such as 𝜔 denotes the intercept term, 𝛼 means the 

short-term dependence on yesterday’s daily vaccinations and 𝛽 expresses the long-term dependence 

on the daily vaccinations of the previous days. Studies shows that the trend prediction of each state 

can be evaluated by comparing the value of parameters between 𝛼 and 𝛽. If 𝛼 < 𝛽, it indicates an 

increasing trend, while 𝛼 > 𝛽 indicates a decreasing trend. 

3.2. Model Estimation and Validation 

The model estimation can be done based on the values of 𝜔, 𝛽, 𝛼, Akaike information criterion 

(AIC), Bayesian Information Criterion (BIC), Quasilikelihood under the Independence model Criterion 

(QIC) and the log-likelihood function. The log-linear Poisson autoregressive model is fitted to the data 

on each state from the period 24 February 2021 until 21 January 2022 is applied. The model equation 

is implemented using the tsglm package in R. The past observation and past mean used in this package 

is set to default. 

Pearson residuals is also be used to check the model’s adequacy. The cumulative periodogram 

of Pearson residuals shows the frequency of residuals in the relevant limits and it determines the 

model’s adequacy. The dashed lines in the plot represent the approximate 95% confidence intervals on 

a continuous spectral density, which is used as a graphical check for uncorrelated residuals. Residuals 



Hazni & Ahmad (2022) Proc. Sci. Math. 9:157-174 

 

161 

can be used to determine whether a model performs adequately. If there are correlations between 

residuals, then the residuals contain data should be employed in forecasting. This indicates that if the 

series of residuals is a sequence of white noise with constant variance, this model is adequate. 

 

4. Results and discussion 

 

4.1. About the vaccinated data 

The data is taken from the Ministry of Health Malaysia's official website on GitHub1. The data covered 

the period from February 24, 2021, to January 21, 2022, with a total of 331 daily observations for all 16 

states. In our study, 25,542,969 (78.2 %) adults aged 18 and above were vaccinated. The main 

analyses comprised vaccine effect estimates for overall total cumulative vaccination rate in states and 

for each vaccine type. The data is evaluated at how vaccine affected the shape of the graph in every 

states. Table 1 shows the variation between the states in Malaysia for various calculation with respect 

of vaccination starting from 24 February 2021 until 31 March 2022 before the period observed is cut 

into the present observed. This table contains (1) population size for all 16 states/ federal territories 

(PS). The population size considered the entire population of each state, including children under 18. 

(2) The calculated 7 days moving average until 31 March 2022 (CMA). (3) Accumulated number of 

people vaccinated (AV). (4) The accumulated number of vaccination rate (AVR) until 31 March 2022, 

this is calculated by taking the ratio AV against the population size. 

 

Next, moving average statistics is used to describe the characteristics of every states. As shown 

in Figure 1 since the earliest date observed beginning on February 24, 2021, there are not many people 

who have taken the vaccination because COVID-19 vaccination had just been released at the time. 

However, as the government conducted a mass vaccination later, the number of daily vaccinations 

given in each state significantly grows after a month. The process proceeded until it began to decrease 

and then gradually grow to a reasonable number in the middle of the observation period. The observed 

trend came to a halt on the black line on 21 January 2022, because the graph shows that the active 

duration of the daily vaccination given after that date continued to decline until March 31, 2022. It shows 

that the number of daily vaccinations taken was getting smaller. Therefore, the data used to develop 

the models was changed from ended until March 31, 2022, to ended until January 21, 2022, since there 

were no obvious changes.  

The characteristics number of vaccinated in East Malaysia are analysed in the graph with the 

new period from 24 February 2021 until 21 January 2022. The charts below include two lines which is 

an orange line and a purple line. The orange line represents the actual number of total daily vaccinations 

observed during the period, whereas the purple line represents the moving average based on total daily 

vaccinations observed during the same period. The purple line on the charts, which represents one-

week moving average. 

During the period observed, Kementerian Kesihatan Malaysia (KKM) prescribed four types of 

vaccination in Malaysia. There are Pfizer, AstraZeneca, Sinovac and CanSino. For each vaccine, 

people are encouraged to take three times of vaccination. The third vaccination are generally known as 

booster to the public. Figure 8 and 9 shows the distribution of the number of people vaccinated based 

on four types of vaccination in Malaysia. 

 

 

 
1 GitHub - MoH-Malaysia/covid19-public: Official data on the COVID-19 epidemic in Malaysia. Powered 

by CPRC, CPRC Hospital System, MKAK, and MySejahtera. (2022, April 3). GitHub. Retrieved 

April 4, 2022, from https://github.com/MoH-Malaysia/covid19-public 

 



Hazni & Ahmad (2022) Proc. Sci. Math. 9:157-174 

 162 

 Table 1 : The descriptive statistics among states in Malaysia 

States Johor W.P. Labuan W.P. Kuala Lumpur Perak Perlis 

PS 6921600 176000 3328100 4770300 471200 

CMA 5100.429 145.0000 2131.143 3044.143 255.7143 

AV 7217350 195602 7331987 4387821 458785 

AVR 1.04 1.11 2.2 0.92 0.97 

 

States Kedah Kelantan Melaka Negeri Sembilan Pahang 

PS 3998200 3337000 1728600 2088200 3044700 

CMA 2473.429 1339.5714 1099.8571 1534.286 2041.286 

AV 3686777 2604184 1828654 2331665 2776150 

AVR 0.92 0.78 1.06 1.12 0.91 

 

States Pulau Pinang Sabah Sarawak Selangor W.P. Putrajaya Terengganu 

PS 3380000 6905800 5192000 11861700 83700 2182900 

CMA 2774.286 4932.286 2501.143 11573.857 313.4286 1190.7143 

AV 3741825 5123025 5711741 12168312 357053 2025207 

AVR 1.11 0.74 1.1 1.03 4.27 0.93 

 

 

 

Figure 1 Total moving average daily vaccination of 16 states in Malaysia 
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Figure 2 Daily vaccination and rolling moving average for 7 days in Sabah and 

Sarawak 

 

 

Figure 3 Daily vaccination and rolling moving average for 7 days in Kedah, Perlis 

and Pulau Pinang 

 

Figure 4 Daily vaccination and rolling moving average for 7 days in Johor and 

Negeri Sembilan 
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Figure 5 Daily vaccination and rolling moving average for 7 days in Melaka, Perak, 

and Selangor 

 

 

Figure 6 Daily vaccination and rolling moving average for 7 days in Kelantan, 

Pahang, and Terengganu 
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Figure 7 Daily vaccination and rolling moving average for 7 days in W.P. Putrajaya, 

W.P. Kuala Lumpur, and W.P. Labuan 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

    

Figure 8 Statistics on daily dose uptake of Pfizer and Sinovac 

 

    

Figure 9 Statistics on daily dose uptake of CanSino and AstraZeneca 
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4.2. Data Description 

Table 2 shows a descriptive statistic of the number of daily vaccinations in each state. The 

information in the table is sorted in descending order based on the biggest number of the mean, 

variance, and index of dispersion until the smallest number. If the index of dispersion, D = 1, then the 

data is equidispersed. Meanwhile, if  D > 1, the data is overdispersed and the data is underdispersed 

if  0 ≤ D < 1. In this case, all states have big number of mean and variance that results to get bigger 

value index of dispersion. It is observed that the index of dispersion for all states is greater than 1. 

Clearly from the table, the number of vaccination data for all states are overdispersed. Therefore, a 

fitted model that does not rely on the assumption of equidispersion need to be used. So, one of the 

models that is suitable for this kind of data is log-linear Poisson autoregressive model to estimate the 

trend of the vaccination rate in each state.  

Table 2 : Summary of descriptive statistics by state 

States 

Maximum 

daily 

vaccination Mean Variance 

Index of 

Dispersion 

Selangor 176320 36706.17 1481603042 40363.87 

W.P. Kuala 

Lumpur 
96120 22109.63 490682400 22193.15 

Johor 77513 21739.00 446609740 20544.17 

Sarawak 88457 17225.35 350754376 20362.68 

Sabah 61924 15458.42 273532603 17694.73 

Perak 43535 13236.67 136651226 10323.69 

Pulau Pinang 38340 11280.40 100235512 8885.81 

Kedah 42388 11117.13 118242481 10636.06 

Pahang 30210 8380.23 66117706 7889.72 

Kelantan 38335 7846.68 83997479 10704.85 

Negeri 

Sembilan 
29106 7035.32 48075902 6833.51 

Terengganu 28818 6105.12 40391175 6615.95 

Melaka 20158 5514.70 28215787 5116.47 

Perlis 5384 1383.20 1569974 1135.03 

W.P. 

Putrajaya 
5805 1075.84 1290635 1199.66 

W.P. Labuan 3110 590.95 503510 852.04 
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4.3. Model Estimation 

In this section, log-linear Poisson autoregressive model is fitted to the data from the period 24 February 

2021 until 21 January 2022 for each state is applied. Figure 10 shows the time series graph representing 

the number of daily vaccinations at the observed period. It is observed that there is state variation with 

respect to the number of daily vaccinations. Meanwhile, Table 3 shows the summary result for the 

estimated parameters in each state. The past observation and past mean used in this package is set 

to default. All the estimated parameters ranged between -1 until 800000. All the parameters between 

the states have different value and there exists a variation between these states.  

 

Figure 10 The observed daily number of vaccinations for all states in Malaysia 
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Table 3 : The summary estimated parameters of each state in Malaysia 

States  𝝎  𝜷  𝜶 AIC BIC QIC 

Log-

likelihood 

function 

Johor 0.806 0.492 0.431 821390.400 821401.800 821388.300 -410692.200 

Kedah 1.530 0.871 -0.029 615122.600 615134.100 615123.800 -307558.300 

Kelantan 3.966 0.675 -0.099 1461513.000 1461525.000 1461513.000 -730753.600 

Melaka 0.766 0.119 0.799 699090.400 699101.800 699085.100 -349542.200 

Negeri 

Sembilan 0.669 0.127 0.803 715105.500 715117.000 715097.800 -357549.800 

Pahang 0.725 0.215 0.710 790189.700 790201.100 790182.800 -395091.800 

Perak 0.998 0.386 0.514 797213.400 797224.800 797211.400 -398603.700 

Pulau 

Pinang 0.816 0.217 0.700 712684.700 712696.100 712677.500 -356339.300 

Sabah 0.553 0.928 0.016 389791.100 389802.600 389799.000 -194892.600 

Sarawak 0.955 0.937 -0.031 750396.800 750408.200 750402.000 -375195.400 

Selangor 1.092 0.762 0.138 1766062.000 1766074.000 1766064.000 -883028.200 

W.P. 

Labuan 0.900 0.156 0.720 134803.000 134814.400 134801.500 -67398.500 

W.P. 

Putrajaya 0.795 0.101 0.795 207944.300 207955.700 207940.300 -103969.200 

W.P. Kuala 

Lumpur 1.153 0.553 0.337 1310264.000 1310276.000 1310264.000 -655129.200 

Perlis 0.851 0.085 0.805 256344.000 256355.400 256340.000 -128169.000 

Terengganu 0.752 0.110 0.810 814428.600 814440.000 814422.500 -407211.300 

 

4.3. Model Validation 

The fitted model applied to each state is validated using the Pearson residuals. Figure 11-Figure 13 

shows the cumulative periodogram in Perlis, Pulau Pinang, Negeri Sembilan, Melaka, Kelantan, 

Pahang, Terengganu, W.P. Putrajaya, and W.P. Labuan. The rest of the cumulative periodograms is 

shown in Figure 14-Figure 21. Based on Figure 11-Figure 13, part of the cumulative periodogram do 

lies outside the 95% confidence interval. It indicates that the model is not adequate in these states. 

While the rest of the cumulative periodograms in Figure 14-Figure 21 do lies inside the 95% confidence 

interval indicates that the model is adequate in the states observed. 
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4.4. Model Prediction 

The model proceeds to predict the trend of daily vaccination for COVID-19 in February 2022. The trend 

prediction for all states except Perlis, Pulau Pinang, Negeri Sembilan, Melaka, Kelantan, Pahang, 

Terengganu, W.P. Putrajaya, and W.P. Labuan are illustrated in Figure 14–Figure 21. The actual 

number of daily vaccination (blue lines) from February 2021 until January 2022 are included to observe 

the trend. The parameters for respective states are presented in Table 4. 

 

Figure 11 : Cumulative periodograms in Perlis, Pulau Pinang and Negeri Sembilan 

 

Figure 12 : Cumulative periodograms in Melaka, Kelantan, Pahang 

 

Figure 13 : Cumulative periodograms in Terengganu, W.P. Putrajaya, and W.P. Labuan 
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Generally, the prediction of the model is close to the actual number of daily vaccinations. The 

trend prediction in all states observed which are Sabah, Sarawak, Selangor and W.P. Kuala Lumpur 

almost accurate and close to the actual number of daily vaccinations. On the other hand, Kedah and 

Johor seems to have a stable trend despite having fluctuation in the earlier timeline. Specifically, the 

model prediction in Perak does not give the accurate trend as it is assumed to have a decreasing trend. 

It seems to have unstable line. Hence, the model prediction might not be accurate by comparing the 

values of parameters for COVID-19 in Malaysia. 

Table 4 : Parameters of the model and trend prediction for the respective state 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sabah Sarawak Johor Kedah

0.553 0.955 0.806 1.53

0.016 -0.031 0.431 -0.029

0.928 0.937 0.492 0.871

Trend Increase Increase Increase Increase

Perak Selangor W.P. Kuala Lumpur

0.998 1.092 1.153

0.514 0.138 0.337

0.386 0.762 0.553

Trend Decrease Increase Increase
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Conclusion 

This study has satisfied the objectives outlined in Chapter 1. To summarize, the daily vaccination data 

observed in all states in Malaysia are overdispersed. Then, the suitable model used for the data is by 

using log-linear Poisson autoregressive model.  

The difference between the greatest and lowest values could be attributed to environmental 

factors such as the requirement for working in the city. For example, W.P. Putrajaya has the highest 

rate of vaccination, possibly because the state is in a governmental region and many people who work 

there are obliged to get vaccinated to go to work. 

Results find that the model is suitable for modelling the daily vaccination of COVID-19 in all 

states in Malaysia except for Perlis, Pulau Pinang, Negeri Sembilan, Melaka, Kelantan, Pahang, 

Terengganu, W.P. Putrajaya, and W.P. Labuan for the period from 24 February 2021 until 21 January 

2022. Therefore, the model is used in predicting the number of daily vaccinations in all states in 

February 2022 except Perlis, Pulau Pinang, Negeri Sembilan, Melaka, Kelantan, Pahang, Terengganu, 

W.P. Putrajaya, and W.P. Labuan as the model is not suitable to use on these states. 

Lastly, the log-linear Poisson autoregressive model used fit the COVID-19 data as it can 

interpret the data into produce the output that consists of the parameters. From the model’s parameter, 

there exists a variation and trend between the states. 
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