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Abstract 

Because of their durability, simplicity, and effectiveness in solving difficult optimization problems, bio-

inspired optimization approaches have received a lot of attention in recent years. The Firefly Algorithm 

(FA) is an optimization method with these features. This algorithm is based on collective intelligence 

algorithms that is the flashing of fireflies' lights. Randomly generated solutions are treated as fireflies in 

the algorithm, and their brightness is allocated based on their performance on the objective function. 

The primary purpose of this work is to investigate the convergence in discovering global minima by 

using the same FA parameters but varying number of populations while when solving numerous test 

functions as well observe the movement of the fireflies. 
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1. Introduction 

In our daily lives, the basic meaning of optimization is to do better in a field, and in the field of 

computational intelligence, optimization can be characterized as discovering a parameter in a function 

that can create the solution better among all possible solutions, and the best value is identified as the 

optimum solution [7]. Metaheuristic algorithms are used in order to solve optimization problems 

nowadays. These methods are based on existing processes of a natural biological phenomena. Natural 

systems are among the most intriguing sources of inspiration for developing new strategies aimed at 

solving a variety of optimization challenges. Nature-inspired approaches include ant systems, particle 

swarm optimization, and bee algorithms. These algorithms employ swarm intelligence characteristics. 

As a result, they are based on living insects or basic interactions between isolated elements [3,5]. 

Metaheuristic algorithms make specific trade-offs between randomization and local search, since 

randomization provides a decent approach to move away from local search and toward global search, 

implying that metaheuristic algorithms are intended to be suited for global optimization. 

Dr. Xin-Shi Yang created the Firefly algorithm, which is a metaheuristic algorithm. This 

algorithm is inspired by the natural behaviour of fireflies, which is centred on the bioluminescence 

phenomenon. Natural fireflies may produce light due to specific photogenic organs located extremely 

near to the body surface behind a window of translucent cuticle. This light allows them to communicate 

with one another as well as attract prey and other fireflies. Their number is believed to be over 2,000 

firefly species. The majority of them emit brief, repetitive flashes. Their bioluminescent flashing light 

might be used as part of courting rituals or as a warning signal [3,5,6]. 

The rest of the paper is organized as follows. In Sec. 2 we briefly describe the application of 

FA, test functions and efficiency of FA. Section 3 presents structure of FA with pseudocode and briefly 

describe the movement of fireflies. Section 4 gives experimental results based on the firefly algorithm 

using test functions, which is used to solve selected optimization problems. Finally, Sec. 5 summarizes 

the conclusions.  

 This research aims to (1) observe the initial and final locations of the fireflies after n-th iteration 

and (2) find out the convergence in finding global minima for test functions.
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2. Literature Review 

 

2.1. Application of Fireflies Algorithm 

FA and its variants have been utilised to tackle a variety of optimization and classification problems, as 

well as a number of engineering challenges. FA has been used to the following kinds of optimization 

problems: continuous, multimodal, constrained, multi-objective, dynamic, and stochastic optimization. 

It's also been used in machine learning, data analysis, and neural networks to address categorization 

problems. Finally, the firefly algorithms are used in almost every technical field. In this review, we 

emphasised image recognition, industrial optimization, wireless sensor networks, transceivers, 

corporate optimization, automation, semantic web, chemistry, and civil engineering [1]. 

The FA is used to solve continuous optimization issues in the bulk of extant articles. In the 

majority of cases, well-known optimization function benchmarks were applied. In order to provide a 

complete picture of this area, FA has been used to solve mixed continuous/discrete systemic 

optimization problems taken from the literature regarding welded beam design, pressure vessel design, 

helical compression spring design, reinforced concrete beam designs, stepped cantilever beam design, 

and car side impact design. FA outperforms other metaheuristic algorithms including particle swarm 

optimization, genetic algorithms, simulated annealing, and differential evolution, according to the 

optimization findings. Despite FA's high efficiency, oscillating behaviour was observed as the search 

process approached the ideal design. The general behaviour of FA may be enhanced by significantly 

lowering the randomization parameter as the optimization progressed [2]. 

A unique multi-objective FA was created for multi-objective optimization that enlarged FA for 

directly producing the Pareto optimal front [8]. Before being used to solve design optimization 

benchmarks in industrial engineering, this technique was tested on a subset of multi-objective functions 

from the research with convex, non-convex, and discontinuous Pareto fronts. The proposed algorithm 

was tested against other multi-objective optimization algorithms such as the vector evaluated genetic 

algorithm (VEGA), nondominated sorting genetic algorithm-II (NSGA-II), multi-objective differential 

evolution (MODE), differential evolution for multi-objective optimization (DEMO), multi-objective bees' 

algorithms (Bees), and strength Pareto evolutionary algorithm (SPEA), and the results showed that it is 

a satisfactory work optimizer. 

To recapitulate, since its beginning in 2008, Firefly Algorithm has substantially expanded its 

application fields. There is hardly no domain in which the Firefly Algorithm has not been employed. 

Moreover, the algorithm's development zones are highly dynamic, with new applications appearing on 

a daily basis. This approach has been shown to handle multi-modal problems effectively, has a fast 

convergence rate, may be used as a general, worldwide problem solver as well as a local search 

heuristic, and is relevant to any problem domain [1]. 

 

2.2. Many Local Minima Test Functions 

Test functions known as artificial landscapes, are useful for evaluating optimization  

algorithm properties such as convergence rate, precision, robustness and general performance. Some 

test functions for objective functions for single-objective optimization instances are offered here to give 

a sense of the many conditions that optimization algorithms must deal with when dealing with these 

types of problems. Some of the many local minima test functions: Ackley function and Drop-Wave 

Function [4] were used to solve optimization problem by using FA. 

 

2.1.1. Ackley Function 

The Ackley function is commonly used in optimization algorithm testing. It has a virtually flat outside 

region and a big hole in the centre in its two-dimensional form, as illustrated in the Figure 1. The function 

can trap optimization algorithms, particularly hill climbing algorithms, in one of its numerous local minima 

[9]. On a 2-dimensional domain it is defined by: 
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where variable values suggested are: 𝑎 = 20, 𝑏 = 0.2 and 𝑐 = 2𝜋. The hypercube is commonly used to 

assess the function 𝑥𝑖 ∈ [−32.768, 32.768], for all 𝑖 = 1, … , 𝑑, although it might be limited to a smaller 

domain and it has a global minimum at 𝑓(𝑥∗) = 0, where 𝑥∗ = (0, … . . , 0). 

 
Figure 1: Ackley Function 

 

2.1.2. Drop-Wave Function 

Drop-Wave function is quite complex, with growing ripples like an item thrown upon a liquid surface. 

The drop wave function has a global optimum and many local optimum areas as illustrated in the Figure 

2. As a result, there is a considerable risk of misleading search agents [9]. The function on a smaller 

region displays its 'wave' properties. On a 2-dimensional domain it is defined by: 

 

𝑓(𝑥) = −
1+cos(12√𝑥1

2+𝑥2
2)

0.5(𝑥1
2+𝑥2

2)+2
,                                                           (2) 

 

where the function is usually computed on the square 𝑥𝑖 ∈ (−5.12, 5.12), for all 𝑖 = 1, 2 and it has four 

global minima are located at 𝑓(𝑥∗) = −1, at 𝑥∗ = (0, 0). 

 

Figure 2: Drop-Wave Function 
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From these test functions, Ackley function is a multimodal function while Drop-Wave Function  

is an unimodal function. Since the multimodal function were non-convex, there may be one global 

optimum and one or more local or deceptive optima. Alternately, there may be multiple global optima, 

i.e. 

 These test functions as mentioned above have possibility of becoming caught in one of their 

numerous local minima. Despite these test functions have numerous local minima, some of these 

functions has been used as a performance test issue for optimization techniques in mathematics and 

it's an excellent example of a non-linear multimodal function commonly employed for testing 

optimization methods. 

 

2.3. The Efficiency of Firefly Algorithm 

The FA may automatically split its population into subsets because local attraction is higher 

than long distance attraction. As a result, the firefly approach can deal naturally and efficiently with 

nonlinear system, multi-modal optimization issues. Aside from that, the firefly approach doesn't need to 

use historical individual best si* or a global best g*. This eliminates any early convergence drawbacks, 

such as those described in PSO. Furthermore, because the FA does not use velocities, there is no 

concern about velocity as there is with PSO [1]. 

Second, if the population size is far bigger than the number of phases, the fireflies can find all 

of the optima at once. The average distance between groups of fireflies that may be viewed by 

neighbourhood groups is governed by the formula 1/y. As a consequence, depending on a specified, 

average distance, a complete population may be classified into subgroups. If x = 0 in the worst-case 

scenario, the whole population will not disperse. It is particularly suited to nonlinear system, multimodal 

optimization issues due to its independence subdivision capacity [8]. 

 

3. Methodology 

 

3.1. Structure of Firefly Algorithm 

The FA is based on a scientific formula that states that light intensity I diminishes as the square of the 

distance 𝑟2 grows. Because the other firefly's flash is brighter than its own, the firefly is lured to it. The 

attractiveness of the light is proportional to its intensity. Light absorption causes the light to diminish as 

the distance from the source of light increases. The pseudocode for the general FA [5] was described 

in the following section. 

 

3.1.1. General Firefly Algorithm 

Define an initialize benchmark function 𝑓(𝑥), 𝑥 = (𝑥𝑖 , … . . , 𝑥𝑘) 

Generate initial population of fireflies 𝑥𝑖, (𝑖 = 1,2, … . . , 𝑛) 

Determine light intensity for 𝑥𝑖, by calculating 𝑓(𝑥𝑖) 

Define randomization parameter 𝛼, attraction parameter 𝛽 and light absorption coefficient 𝛾 

While 𝑡 < Maximum Generation 

Make a copy of the generated firefly population for move function 

For 𝑖 = 1: n all n fireflies 

For 𝑗 = 1: 𝑖 all n fireflies 

If (𝐼𝑗 > 𝐼𝑖), 

Move fireflies 𝑖 and 𝑗 according to attractiveness 
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Evaluating new solutions and updating light 

intensity for next iteration 

End if 

End for 𝑗 

End for 𝑖 

Sorting the fireflies to find the present best 

End while 

Begin post process on global minima obtained and visualization. 

 

The firefly algorithm starts by spawning a swarm of fireflies, and each firefly in the swarm is distinct. 

The differentiation is based on the brightness of the firefly. The interior movement of fireflies is governed 

by their luminosity. The brightness of one firefly is compared to the brightness of the others in the swarm 

during the iterative process and the difference in brightness leads the firefly to migrate. The beauty of 

the firefly determines the distance travelled. The best answer so far is constantly updated during the 

iterative process, which continues until particular stopping criteria are reached. Following the 

completion of the iterative process, the optimal evaluation solution is identified, and the post-process to 

acquire the findings is commenced. 

 

3.2. The attractiveness of the firefly 

Each firefly's attractiveness 𝛽 is defined as a monotonically decreasing function of the distance 𝑟 

between two fireflies of any size: 

 

𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟2
,                                                                 (3) 

 

where 𝛽
0
 denotes the firefly attractiveness at 𝑟 = 0 and 𝛾 denotes the media light absorption coefficient. 

 

3.3. The movement towards attractive firefly 

The transition from a firefly 𝑖 in position 𝑥𝑖 to a brighter firefly 𝑗 in position 𝑥𝑗 [4]: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛽
0
𝑒−𝛾𝑟2

(𝑥𝑖 − 𝑥𝑗) + 𝛼𝜀𝑖,                                           (4) 

 

where 𝛽
0

𝑒−𝛾𝑟2
(𝑥𝑖 − 𝑥𝑗) is due to the attraction of the firefly 𝑥𝑗 and 𝛼𝜀𝑖 as a randomization parameter; 

thus, if 𝛽
0

= 0, then it reveals itself to be a simple random movement. 

4. Results and discussion 

 

4.1. Convergence of Test Functions 

Ackley function and Drop-Wave function were used to evaluate the FA. This chapter depicts the initial 

and final positions of fireflies for each test function. The minimum cost value was also computed by 

doing 25 separate runs over a given number of iterations with varied populations set at 5, 15 and 50. 

The minimum cost value was then observed to differentiate on the number of populations. 
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4.1.1. Ackley Function 

The Ackley function has a nearly flat outer region and a large hole at the centre as shown in Figure 1 

and it has one global minima 𝑓(𝑥∗) = 0 at 𝑥∗ = (0, 0). The simulation has been made on Ackley function 

with the different number of populations, 𝑛 = 5, 15, 50. 

 

Initial locations of 𝑛 fireflies                Locations of  𝑛 fireflies after 25 iterations

 

 

 

Figure 3: The locations of 𝑛 fireflies at 25 iterations for Ackley function 
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Figure 4: The relationship of objective function with each respective 𝑛 

 

As shown in Figure 3, the convergence in finding global minima has been successful since all fireflies 

converge to global minima 𝑓(𝑥∗) = 0 after 25 iterations. As the number of populations, 𝑛 increase, the 

minimum cost decrease to the known minimum as shown in Figure 4. 

 

4.1.2. Drop-Wave Function 

The Drop-Wave function is multimodal, highly complex and it has one global minima 𝑓(𝑥∗) = −1, at 

𝑥∗ = (0, 0) as shown in Figure 2. The simulation has been made on Drop-Wave function with the 

different number of populations, 𝑛 = 5, 15, 50. 
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Initial locations of 𝑛 fireflies                 Locations of  𝑛 fireflies after 25 iterations 

 

 

 

Figure 5: The locations of 𝑛 fireflies at 25 iterations for Drop-Wave Function 
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Figure 6: The relationship of objective function with each respective 𝑛 

 

As shown in Figure 5, the convergence in finding global minima has been failure since all fireflies 

doesn’t converge to global minima 𝑓(𝑥∗) = −1 after 25 iterations. As the number of populations, 𝑛 

increase, the minimum cost decrease further away from the known minimum as shown in Figure 6. 

 

Test 

function 

Global minima, 

𝑓(𝑥∗) 

Minimum cost 

𝑛 = 5 𝑛 = 15 𝑛 = 50 

Ackley function 0 0.0418 0.0140 0.0022 

Drop-Wave Function -1 -81.98 -95.6918 -95.6924 

Table 1: Results for the minimum cost 
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Conclusion 

The computed solutions are of high quality and the obtained minimum cost value obtained for the 

problems are very close to the known minimum for Ackley function but not for Drop-Wave function. As 

shown in Table 1 before, the minimum cost value for Ackley function decreases to the known minimum 

as the number of populations, 𝑛 increase. However, this is not implied to Drop-Wave function as the 

number of populations, 𝑛 increase, the minimum cost value drifted away from the know minimum. The 

Drop wave function is continuous, multimodal and highly complex function. FA seems to provide a very 

fast convergence in finding the global minima. However, it can get trapped in local minima when the 

function has a distant minima. Therefore, the hybrid of deterministic algorithm with metaheuristic 

algorithm; which is FA can be consider to construct the exact solution and this might can achieve the 

best solution or using other metaheuristics algorithm such as Bat Algorithm or Particle Swarm 

Optimization Algorithm. 
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