
 
Vol. 9, 2022, page 22-32 

 

 
22 

 

The Elliptic Curve Cryptography Algorithm in Cryptocurrency Simulation for 
Bitcoin Transaction and Ownership 

 
Amirruliman Abdul Halim*, Nur Syarafina Mohamed 

Department of Mathematical Sciences, Faculty of Science 
Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia  

*Corresponding author: amirimanhalim@gmail.com 

 

Abstract 

Cryptocurrencies have grown in popularity in recent years, and their use is becoming wider in a variety 

of fields. The use of digital currencies for legal purposes is advancing in tandem with technological 

advancement, but criminal activities are also emerging to capitalise on this boom. Elliptic Curve 

Cryptography is a method of cryptography that employs elliptic curves over finite fields. When compared 

to other cryptographic schemes such as Rivest, Shamir, and Adleman (RSA) algorithm, this approach 

allows for smaller key sizes while maintaining the same level of security. The Elliptic Curve Digital 

Signature Algorithm (ECDSA) is the most widely used elliptic curve-based signature scheme, with 

applications in a wide range of fields. The Bitcoin protocol, which has seen a surge in popularity as an 

open source, digital currency, is one modern application of the ECDSA. The aim of this paper has been, 

first, to simulate the bitcoin transactions using cryptography algorithms by using ECDSA as a signature 

and SHA256 as an encryptor, all of which are contain in Algorithm Elliptic Curve Cryptography algorithm 

that secures the bitcoin transaction process and second, to prove the ownership of bitcoin used bitcoin’s 

ECDSA uses the secp256k1 elliptic curve. Based on the result occur by using ECDSA coding on python, 

we manage to get signature matches and signature verification, which means only the one who have 

the signature key are allow to do the transaction and by doing this the user can prevent fake transaction 

by the outsider (hackers) and also can prove the ownership of the bitcoins.  
Keywords: Cryptocurrencies; Elliptic Curve Cryptography; Bitcoin; cryptography algorithms; ECDSA; 

Secp256k1 

 

1. Introduction 

 Cryptocurrency works in a similar way to computer data like music and movies in that it may be 

hidden and destroyed. Even if a cryptographic protocol is believed or even proven to be secure, 

implementing it efficiently and securely in practice is usually difficult. Cryptographic operations can have 

a significant impact on an application's performance. The impact varies depending on the application's 

requirements, the number of operations that must be performed, the availability of special-purpose 

computer instructions or cryptographic accelerators, and the operating environment's constraints. Many 

cryptographic primitives, for example, are not well suited for implementation on constrained Internet of 

Things devices like radio-frequency identification tags. 

  People, businesses, and government agencies have been dealing with the problem of data 

tampering for decades. Some businesses and individuals have had a difficult time as a result of data 

theft and manipulation To address this concern, researchers are developing lightweight cryptography—

cryptographic primitives and protocols with a small computational footprint. . The blockchain technology 

has provided the world with a one-of-a-kind solution that protects data integrity. Data signatures can 

now be created, so ensuring data integrity and authenticity. 

 Each bitcoin transaction requires a high level of security to secure both user and transaction 

data. At this point, the suitable algorithm is used to secure the transaction while reducing the processing 

time. The Elliptic Curve Cryptography (ECC) algorithm is a high-security cryptography algorithm. It is 

frequently compared to the Rivest, Shamir, and Adleman (RSA) algorithm because it has a security 

level that is nearly identical, but there are some differences that make ECC superior to the RSA 



 
 
Halim & Mohamed (2022) Proc. Sci. Math. 9:22-32 
 
 

 23 

algorithm, allowing the ECC algorithm to optimise cryptocurrency security during the transaction 

process. Bitcoin is the first and most popular cryptocurrency, laying the way for a long-standing and 

unaltered payment system technology. Because of similar way to computer data, it easy to be 

manipulated and steal the data. The ECC method is used as the ECDH and ECDSA key exchange 

algorithms for signing and verifying in this study. How to implement ECC algorithm in simulation to prove 

Fake Bitcoin Transactions and Proved the ownership of Bitcoins. The goal of this research is to use 

cryptography methods to imitate bitcoin transaction. 

 

 

2. Literature Review  

 

2.1 Simulation 

Simulation is a way of putting the model to the test. The model's behaviour matches some 

features of the system's behaviour that stand out, allowing you to experiment with the model to infer the 

user's behaviour. This broad framework has been shown to be a valuable complement to learning, 

problem-solving, and design (White, Preston and Ingalls, Ricki, 2015).  

The steps for creating simulation models, designing simulation experiments, and analysing simulations 

are shown below (Ichsani, Yuditha and Audia, Resisca and Bahaweres, Rizal, 2019): 

1. Determine the objectives and scope 

2. Determine the conceptual model 

3. Obtain  and analyse data 

4. Building a simulation model program 

5. Verification of simulation models and validation 

6. Experiment design 

7. Running simulation 

 

2.2 Cryptography 

Cryptography is a branch of computer science and mathematics concerned with methods for 

secure communication between two parties while a third party is present. It is based on methods such 

as encryption, decryption, signing, creation of random numbers. 

 

2.3 Elliptic Curve Cryptography (ECC) 

 Elliptic Curve Cryptography is a type of public-key cryptography that is based on the area of an 

elliptic curve (Kapoor, Abraham & Singh, 2008), Elliptic Curve Cryptography is a cryptographic 

procedure in which each side has a private and public key pair. Only a few people have access to the 

private key, whereas everyone has access to the public key. Elliptic Curve Cryptography (ECC) is a 

cryptographic technique based on the algebraic structure of an elliptical curve on a finite surface. 

 

2.4 Elliptic Curve Diffie-Hellman (ECDH) 

 ECDH is a method of determining the private and public keys through key exchange. Both the 

sender and the receiver perform the same action with a separate private key and the same public key, 

yet the outcomes are identical. The most well-known technique for addressing discrete issues is ECDH, 

which is based on a difficult mathematical formula (Sio-long Ao, Alan Hoi-shou Chan, Hideki Katagiri, 

Li Xu, 2011). 

 

 

 

 

 

 

 

 



 
 
Halim & Mohamed (2022) Proc. Sci. Math. 9:22-32 
 
 

 24 

Operation Group in ECDH is divided into two, namely: 

1. Addition 

𝐸 = {(𝑥, 𝑦 |𝑦2 = 𝑥3 + 𝑎𝑥 + 𝐵) ∪ {0} 𝑂} = point of infinity                         (1) 

Figure 2.1 Point Addition 

                                                                     s = (
(YP − YQ)

(xP − xQ)
)                                      (2) 

                                                                xR  =  s2  −  (xP  +  xQ)                             (3) 

                                                                YR  =  s(xP  −  xR)  − YP                            (4) 

2. Doubling Point 

Figure 2.2 Point Doubling 

 

                                        P + P = R = 2P                                 (5) 
 

                                                                       s = (
3xP

2  + a

(2YP )
)                                     (6) 

                                                                    xR  =  s2  −  2xP                                   (7) 

                                                                    YR  =  s(xP  −  xR) −  YP                       (8) 

 

 

2.5 Elliptic Curve Digital Signature Algorithm (ECDSA) 

        Scott Vanstone proposed the Elliptic Curve Digital Signature Algorithm in 1992, and it is the elliptic 

curve analogue of the Digital Signature Algorithm (DSA). The fundamental benefit of ECDSA is that it 

provides the same level of security as DSA while using smaller keys. Smaller keys allow for faster 

calculations and smaller public keys to be passed around. In 1998, 1999, 2000, and 2000, the ECDSA 

was accepted as ISO, ANSI, IEEE, and FIPS standards, accordingly. One-way hash function or one-

way hash function is used in the Digital Signature Algorithm (DSA). The signing and verification 

processes make up the digital signature process. Digital signatures are used to verify that information 

is signed by the person who claims to be who it claims to be and to see whether the information has 

been tampered with by bad actors. The process of creating signature lists and verifying signatures. The 

signing of a communication involves producing a signature with the private key and verifying it with the 

public key. Instead of signing the message directly, cryptographic hash functions are used to create a 

message digest in the original message for efficiency reasons (Wang, 2014). 

 

2.6 Bitcoin’s Koblitz Curve 



 
 
Halim & Mohamed (2022) Proc. Sci. Math. 9:22-32 
 
 

 25 

1. Bitcoin used the elliptic curve Secp256k1, which is defined by the sextuple 

𝑇=(𝑝,𝑎,𝑏,𝐺,𝑛,ℎ).  

2. The prime, 𝑝 = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.  

3. The Curve 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑜𝑣𝑒𝑟 𝐹(𝑝) id defined by:  a = 0, b = 7 

4. The base point G in compressed form is: G = 02 79BE667E F9DCBBAC 55A06295 

CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798  

5. The order n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B 

BFD25E8C D0364141  

6. The cofactor h = 01  

 

Every Bitcoin address is a cryptographic hash of a public key, and the person who owns this 
specific Bitcoin is the person who has the associated private key, according to ECDSA. To send a 
Bitcoin to someone else, you must first provide them the private key that corresponds to the coin. 
Breaking the ECDSA is the same as solving the discrete logarithm issue for elliptic curves (ECDLP). 
This means that if someone solves the ECDLP or finds a backdoor in the Secp256k1 curve, they will 
have access to 4.5 billion dollar worth of Bitcoins. It's worth mentioning that Secp256k1 isn't currently 
on NIST's list of recommended curves. 
 

2.7 ECDSA Performance 

         The ECDSA's performance is mostly determined by how well we can implement point 

multiplication on the specified elliptic curve. These operations are more complicated than the modular 

inversion stages, and they cost variable amounts of field inversions, multiplications, and squaring 

depending on the elliptic curve chosen. In other words, the elliptic curve chosen will have an impact on 

the ECDSA implementation's performance. 

        Exploiting group endomorphisms is one way to speed up point multiplication. A map ∅∶𝐸 ↦𝐸 such 

that ∅(∞)= ∞ and ∅(𝑃) = (𝑔(𝑃),ℎ(𝑃)) for every 𝑃∈𝐸, where g and h are rational functions with coefficients 

in K, is an endomorphism of E over K. The endomorphism ring of E over K is formed by all 

endomorphisms of E over K. The fact that certain endomorphisms allow for very fast computation of 

operations that are costly on the regular curve is the key to improving point multiplication speed. 

Significant reductions in computing time can be realised if the mapping to the endomorphism is 

sufficiently inexpensive. 

        For ECDSA, Bitcoin uses a Koblitz curve, which is a good choice in terms of efficiency. The 

Frobenius map is an endomorphism that transfers the Koblitz curve to the condition τ(∞) =

 ∞, τ(x, y) = (x2, y2). . Furthermore, (𝜏2 + 2)𝑃 =  𝜇𝜏(𝑃) for all 𝑃 ∈ (𝐹2𝑚). Any integer k can be 

represented by an extension into powers of if we consider the Frobenius map to be a complex number. 

 

 

[m]P = [m0]P + [m1]τ(P) + [m2]τ2(P) + ⋯ + [mr]τ𝑅(P) with  

                                                                   mi  ∈ {0,1, −1}                                  (9) 

 

        Because squaring in the normal basis provides an essentially free left shift of the bits, combining 

this attribute with normal basis representation for elements of E(𝐹2𝑚) is extremely helpful. 

           For endomorphisms that are relatively easy to compute, point multiplication can be sped up by 

approximately 33%, with the Frobenius map over Koblitz curves outperforming even this estimate. This 

makes Koblitz curves such as the one used in Bitcoin especially attractive for ECDSA. 

 



 
 
Halim & Mohamed (2022) Proc. Sci. Math. 9:22-32 
 
 

 26 

3. Research Methodology 

 

3.1 Flow Generator Signature – Signature Verification 

Figure 3.1 Flow Generator Signature – Signature Verification 

        The two steps of the digital signature procedure are signing and verifying. Digital signatures are 
used to verify that the information is signed by the person who claimed to be signing it and to check for 
malicious modifications. The procedure for creating signature lists and checking signatures. When 
signing a message, the private key is used to create the signature, which is then confirmed using the 
public key. Figure 3.1 shows the overall process. In fact, instead of signing the message directly, 
cryptographic hash functions are applied in the original message to produce a message digest for 
performance reasons. 

         One of the cryptographic primitives that has seen a surge in use recently is hash functions. The 
fact that such functions do not encrypt or decrypt communications should be noted. Apart from other 
fascinating applications, they are a necessary instrument for ensuring data integrity. The protocol was 
more efficient because the calculations were simpler and less bandwidth was required when sending 
the signed data because the hash was a much shorter element. 

 
3.2 Secp256k1’s Parameter 

       Secp256k1 refers to the parameters of the elliptic curve used in Bitcoin's public-key cryptography. 

The name represents the specific parameters of curve: 

• sec: stands for Standards for Efficient Cryptography.  

• 256: length in bits of the field size.  

• k: Kolbitz curve, as opposed to random. The non-random construction allows for efficient 
construction.  

• 1: sequence number  

The general equation of the secp256k1 curve is 𝑦2=𝑥3+7 . Let's represent this curve using the 

classes we have already defined. 

Below are the public specs for Bitcoins’s curve – Secp256k1: 
• Pcurve = 2256−232−29−28−27−26−24−1  

• 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141  

• Acurve = 0, Bcurve =7, This is define the curve: 𝑦2=𝑥3+𝐴𝑐𝑢𝑟𝑣𝑒∗𝑥+𝐵𝑐𝑢𝑟𝑣𝑒  



 
 
Halim & Mohamed (2022) Proc. Sci. Math. 9:22-32 
 
 

 27 

• 𝐺𝑥= 

55066263022277343669578718895168534326250603453777594175500187360389116729

240  

• 𝐺𝑦= 

32670510020758816978083085130507043184471273380659243275938904335757337482

424  

• 𝐺𝑃𝑜𝑖𝑛𝑡=(𝐺𝑥,𝐺𝑦)  

 

3.3 Operation in ECDSA 

I. Point Addition  

       To add two points P and Q on an elliptic curve, find the third point R where line joining P and Q is 

equal to – (P + Q). Reflecting the point along the X-axis will give us P + Q. Example in fig. 1 Point 

Addition ECDSA. 

II. Point Doubling  

       Point doubling or “adding a point to itself’ follows a very simple equation and of course it requires 

the slope and the domain parameter (refers to fig. 2 Point doubling). 

                                                     𝐹𝑜𝑟 𝑋 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒: 𝑅𝑥 = 𝑆2 − 2 ∗ 𝑃𝑥                     (10) 

                                              𝐹𝑜𝑟 𝑌 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒: 𝑅𝑦 = − (𝑃𝑦 + 𝑆(𝑅𝑥 − 𝑃𝑥))              (11) 

                                                       𝑅𝑥 = 𝑆2 − 2 ∗ 𝑃𝑥𝑅𝑌 = −1 ∗ (𝑃𝑦 + 𝑆 ∗ (𝑅𝑥 − 𝑃𝑥))             (12) 

And against the same catch, R becomes the negatives reflection of R, so it looks something like: 

Figure 3.2 Point Doubling 

III. Point Multiplication  

       The straightforward way of computing a point multiplication is through repeated addition. However, 

there are more efficient approaches to computing the multiplication. 

 

i. Double and add  

The simplest method is the double-and-add method, similar to square-and-multiply in modular 

exponentiation. The algorithm works as follows:  

To compute sP, start with the binary representation for s: 

s = s0 + 2s1 + 22s2 + ⋯ + 2msm, where s0. . sm ∈ {0,1},  

                                                      m = log2 𝑆                                (10) 

ii. Window Method  



 
 
Halim & Mohamed (2022) Proc. Sci. Math. 9:22-32 
 
 

 28 

In the window method version of this algorithm, one selects a window size w and computes all 2𝑤 

values of 𝑑𝑃 for 𝑑 = 0,1,2, ⋯ , 2𝑤 − 1. The algorithm now uses the representation 𝑑 = 𝑠0 + 2𝑤𝑑1 +

2(2𝑤)𝑑2 + ⋯ + 2𝑚𝑤𝑑𝑚. 

 

3.4 Proved the Ownership of Bitcoins 

 
I. Setup  

1. The elliptic curve group E(a, b, p) with parameters a, b, p order either prime n or divisible by 

prime n.  

2. The primitive element P ∈ E, Which is of order n  

3. The private key which random integer d ∈ [2, 2n]  

4. The public key which is a point on the curve Q = [d]P  

 

II. Signing  

1. Generate a random integer r ∈[2,2𝑛]  

2. Compute [r]P = (𝑥1,𝑦1)  

3. Compute the integer 𝑠1=𝑥1(𝑚𝑜𝑑 𝑛)  

4. If 𝑠1=0, stop and go to Step 1  

5. Compute 𝑟−1(𝑚𝑜𝑑 𝑛)  

6. Compute 𝑠2=𝑟−1(𝐻(𝑚)+𝑑∗𝑠1)(𝑚𝑜𝑑 𝑛)  

7. If 𝑠2=0, stop and go to Step 1  

8. The signature on the message m is the pair of integers (𝑠1,𝑠2)  

 

III. Verification  

1. The verifier receives the message and the signatures: [𝑚,𝑠1,𝑠2]  

2. The verifier knows the system parameters and the public key Q   

3. The integers 𝑠1,𝑠2 are in the range [1, n1]  

4. Compute 𝑤=𝑠2 −1 (𝑚𝑜𝑑 𝑛)  

5. Compute 𝑢1=𝐻(𝑚)∗𝑤(𝑚𝑜𝑑 𝑛)  

6. Compute 𝑢2=𝑠1∗𝑤 (𝑚𝑜𝑑 𝑛)  

7. Compute 𝑢1𝑃 ⨁[𝑢2]𝑄=(𝑥2,𝑦2)  

8. Compute the integer 𝑣=𝑥2 (𝑚𝑜𝑑 𝑛)  

The signature is valid if 𝑣=𝑠1 

 

4. Result and Disccussion 

 

4.1 Secp256k1’s Parameter and Data 

 

1. Prove Ownership  



 
 
Halim & Mohamed (2022) Proc. Sci. Math. 9:22-32 
 
 

 29 

▪ P = 

115792089237316195423570985008687907853269984665640564039457584007908834

671663 

▪ N = 

115792089237316195423570985008687907852837564279074904382605163141518161

494337  

▪ 𝐺𝑥= 

55066263022277343669578718895168534326250603453777594175500187360

389116729240  

▪ 𝐺𝑦= 

32670510020758816978083085130507043184471273380659243275938904335

757337482424  

▪ 𝐺=(𝐺𝑥,𝐺𝑦) 

 
2. Fake Transaction  

▪ Pcurve = 2256−232−29−28−27−26−24−1  

▪ N = 

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD036

4141  

▪ Acurve = 0, Bcurve = 7  

▪ 𝐺𝑥= 

55066263022277343669578718895168534326250603453777594175500187360

389116729240  

▪ 𝐺𝑦= 

32670510020758816978083085130507043184471273380659243275938904335

757337482424  

▪ Point =(𝐺𝑥,𝐺𝑦)  

▪ privKey = 

752635187075981849879163780219396735860556147319575075929044388517875423

95619  

▪ randNum = 

286956185438058443321138297203732852104207394385708832038396965181764147

91234 

▪ HashOfThingToSign = 

860321123191016110461769718280936696377728562727734592973237971452863748

28050 

 

 

 

4.2 Result 

1) Result of python to prove the ownership of bitcoin.  

Figure 4.1 Result 
 



 
 
Halim & Mohamed (2022) Proc. Sci. Math. 9:22-32 
 
 

 30 

2) Result of python for Bitcoin’s Fake transaction  

•  Private key Result 

Figure 4.2 Private Key Result 

 

• Result 

 
Figure 4.3  Result 

 

 

4.3 Chapter Summary 

         Based on the result we got by using coding on Python, we know that only the holder of the 

private key can use or open the Bitcoin’s wallet and the result of the coding showing the private key 

we enter is true and prove the ownership of the Bitcoin. For the second coding we use private key 

and random number to do the transaction and the result is false, which mean the outsider try to do 

a transaction without the owner knowing about the transaction because the signature generation 

we got are not the same as the owner hold.



 
 
Halim & Mohamed (2022) Proc. Sci. Math. 9:22-32 
 
 

 31 

 

Acknowledgement 

The researcher would like to thank all people who have supported the research. They have contributed 

towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my 

thesis supervisor, Dr. Syarafina Mohamed, for encouragement, guidance, critics and friendship. I am 

also very thankful to my final year project’s member for their guidance, advices and motivations. 

 

References 

[1] Ajeena, R. K. (2014). Point multiplication using integer sub- decomposition for elliptic curve 

cryptography. Applied Mathematics & Information Sciences, 517-525. 

[2] Antony, S. N. F. M. A. and Kamarulhaili H. (2018). ISD method implementation over curves with 

j-invariant 0. AIP Conference Proceedings. 

[3] Asep S., Teguh P. N. (2020). Implementation of Elliptic Curve Diffie-Hellman (ECDH) for 

Encoding Messeges Becomes a Point on the GF(𝒑𝒑). International Journal of Advanced Science 

and Technology, 3264-3273. 

[4] Bahaweres, Y. I. (2019). The Cryptocurrency Simulation using Elliptic Curve Cryptography 

Algorithm in Mining Process from Normal, Failed, and Fake Bitcoin Transactions. 7th 

International Conference on Cyber and IT Service Management (CITSM), 1-8. 

[5] Berutu. (2013). Peramalan Penjualan Dengan Metode Fuzzy Time Series Ruey Chyn Tsaur. 

[6] Dawahdeh, Z. a. (2016). A new modification for Menezes-Vanstone elliptic curve cryptosystem. 

Journal of Theoretical and Applied Information Technology, 290-297. 

[7] Dua M. Ghadi and Adil Al-Rammahi. (2020). Improvement of Menezes-Vanstone Elliptic Curve 

Cryptosystem Based on Quadratic Bézier Curve Technique. in Journal of Computer Science, 

715-722. 

[8] Farris Ian Gillies, Chun-Teck Lye, Lee-Ying Tay. (2020). Determinants Of Behavioral Intention to 

Use Bitcoin in Malaysia. Journal Of Information System and Technology Management (JISTM), 

25-38. 

[9] Gallant R. P. (2001). Faster point multiplication on elliptic curve with efficient endomorphism. 

CRYPTO2001, 190-200. 
[10] Ichsani, Y. A. (2019). The Cryptocurrency Simulation using Elliptic Curve Cryptography 

Algorithm in Mining Process from Normal, Failed, and Fake Bitcoin Transactions. International 

Conference on Cyber and IT Service Management (CITSM), (pp. 1-8). 

[11] Johnson, D. M. (2014). The Elliptic Curve Digital Signature Algorithm (ECDSA). International 

Journal of Information Security. 

[12] K. G, P. P. (2020). IOT applications for high security WSN using Elliptic Curve Cryptography 

Algorithm. Journal of emerging technologies and innovative research. 

[13] Kapoor, Abraham & Singh. (2008). Elliptic curve cryptography. ACM Ubiquity, 1-8. 

[14] Kavyashree B., G. D. (2016). Outline Of Modified Menezes Vanstone Elliptic Curve. 

International Research Journal of Engineering and Technology (IRJET) , 1044-1048. 

[15] Koblitz, N. (1987). Elliptic curve cryptosystem. Mathematics of computation, 203-209. 

[16] Martínez, V. G.-Á. (2020). Analysis of the Cryptographic Tools for Blockchain and Bitcoin. 

Mathematics, 131.  

[17] Radek F., Jiri M., Petr M., Leonard J. (2016). Cryptograph key distribution with elliptic curve 

Diffie-Hellman algorithm in low-power devices for power grids. Revue Roumaine des Sciences 

Techniques - Serie Électrotechnique et Énergétique, 84-88. 

[18] Singh, S. R. (2007). A Simple Method of Forecasting Based on Fuzzy Time Series. Applied 

mathematics and computation, 330-339.. 

[19] Sio-long Ao, A. H.-s. (2011). Elliptic Curve Cryptography Sensor Networks with Optimum 

Controlling. IAENG Transactions on Engineering Technologies, 374-388. 



 
 
Halim & Mohamed (2022) Proc. Sci. Math. 9:22-32 
 
 

 32 

[20] Song, W. W. (2017). privacy-preserved full-text retrieval algorithm over encrypted data for cloud 

storage applications. J. Parallel Distrib. Comput., 17-27.  

[21] Stepen A. B., J. B. (2020). Elliptic Curve Diffie-Hellman (ECDH) Analogy for Secured Wireless 

Sensor Networks. International Journal of Computer Applications, 1-8. 

[22] Subramanian, E.K., Tamilselvan, L. (2020). Elliptic curve Diffie–Hellman cryptosystem in big 

data cloud security. Cluster Comput 23, 3057-3067. 

[23] V.S., M. (1986). Use of Elliptic Curves in Cryptography. Advances in Cryptology — CRYPTO 

’85 Proceedings, 417-416. 

[24] Wang, D. (2014). Secure Implementation of ECDSA Signatures in Bitcoin. Computer Science. 

[25] White, Preston and Ingalls, Ricki. (2015). Introduction to simulation. 2015 Winter Simulation 

Conference (WSC), (pp. 1741-1755). 

[26] Yang, C. H. (2018). File changes with security proof stored in cloud service systems. Pers. 

Ubiquit. Comput, 45-83. 

[27] Yoshida, H. a. (2005). Analysis of a SHA-256 Variant. 12th International Workshop, (pp. 245-

260). Canada. 

[28] Zhou, Z., Hu, Z., Xu, M. and Song, W. (2010). Information Processing Letter, 1003-1006. 


