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Abstract 
This purpose of this study was to examine the flow of viscoelastic nanofluid past over a sphere in mixed 
convection flow with the presence of viscous dissipation. A mathematical model based on Tiwari-Das 
nanofluid model is developed. Carboxymethyl cellulose solution (CMC) is chosen as a base fluid and 
Copper (Cu) as dispersing nanoparticles. The constant mixed convection boundary layer flow around 
an isothermal sphere with radius 𝑎, where 𝑎 is immersed in a viscoelastic nanofluid with convective 
boundary condition (CBC). The governing boundary layer partial differential equations are transformed 
into non-dimensional form then solved numerically by using BVP4C solver in MATLAB. The velocity 
and temperature profiles with different values of viscous dissipation parameter, viscoelastic parameter, 
Prandtl number, mixed convection parameter and nanoparticles volume fraction are graphically 
presented. 
 
Keywords: Mixed convection; boundary layer flow; nanofluid; sphere; viscous dissipation; viscoelastic; 
MATLAB BVP4C solver. 
 
 
1. Introduction 
             Nanotechnology has been widely used in the industry due to the fast progress in technology in 
all fields of life as it can save energy and reduce cost of production. One of the most likely applications 
of nanotechnology is to produce nanoparticles of high thermal conductivity and mixing with base fluids 
and transfer energy forming what are called nanofluids. Nanofluids have high transfer characteristics 
compared with based fluid as they are assembled by mixing the base fluid of low thermal conductivity 
with solid nanoparticles of high thermal. Much research has been conducted to analyse the nanofluid 
dynamic and thermal conductivity process related to mixed convection. 
            During past few years, many researchers’ studies about boundary layer flow. According to 
Gupta and Gupta [2], the stretching process is not linear in all genuine scenarios because of it has 
unique physical and chemical features, nanofluid is now widely used in industry. Hayat et al. [3] 
examined the boundary layer flow of viscoelastic nanofluid across a stretching cylinder with mixed 
convection. This interest of study is inspired by practical uses in large industrial such as biomedical, 
transportation, electronics, vehicles, fuel cells and hybrid-powered engines. In addition, based on Abbas 
and Madgy [27] the term of nanofluids can be defined as the addition of small quantity of nanometer-
sized particles nominally less than 100 nm into base fluids such as oil, water, biofluids, ethylene and 
lubricants as Choi [5] invented the term when he added micro nanoparticles to a base fluid to boost 
thermal conductivity. 
            In all studies stated, the viscous dissipation is neglected. According to Gebhart [4], the first 
researcher who studied about viscous dissipation in free convection flow, viscous dissipation is 
noticeable when the produced kinetic energy exceeds the quantity of heat transported. 
           The topic of nanofluids has grown in relevance in recent years due to its applications in different 
fields of science, engineering, and technology, particularly in material processing, chemical and nuclear 
industries, geophysics, and bioengineering. Nanofluids’ unique features make them potentially valuable 
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in this inquiry. As a result, it is worth mentioning that the phenomena observed in viscoelastic nanofluids 
are not only essential in wide range of technologies application, but also present various interesting 
challenges to researchers in applied mathematics and engineering. 
            The primary objective of this study is to better understand the behaviour of viscoelastic nanofluid 
flow past over a sphere by establishing a mathematical model and developing simulations by using 
BVP4C solver in MATLAB. Velocity and temperature profiles are developed in this study to determine 
the flow behaviour as influenced by the viscous dissipation parameter, viscoelastic parameter, Prandtl 
number, mixed convection parameter, and nanoparticle volume fraction. 
 
 
2. Literature Review 
 
            Nanofluids are obtained by dispersing nanoparticles and dispersant, when present, in a base 
fluid. In the past few decades, convective heat transfer in nanofluid has become huge interest in fluid 
flow study due to its wide use in industries. In 1995, the quantity of nanoparticles was first suggested 
by Choi [5] for augmenting thermal properties of pure fluid. Then, Tham et al. [17] study on the mixed 
convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing 
gyrotactic microorganisms as one of the characteristics of nanoparticles is high thermal at very low 
concentration. In 2014, Sathyamurthy et al. [15] study on nanofluid use to enhance the solar energy by 
replacing the conventional fluid with nanofluid and the research conducted by comparing numerous 
papers to achieve the aim that using nanofluid can enhance the solar energy. A study by Khrisna [14] 
shows that the nanofluid provides better surface roughness by reducing the coefficient of friction which 
leads to a lower cutting temperature.  
            A study on the mixed convection flow past over a sphere has attracted the attention of many 
researchers due to its important industrial applications such as liquid film for the condensation 
procedure, crystal growth, food production and paper, glass manufacturing and others. There were 
numerous numerical analysis studies on the mixed convection flow over the sphere with different 
methods. One of the methods is the transformed boundary layer equations were solved numerically 
using implicit finite difference schemes [17] [24]. Next, the study on the heat transfer of nanofluids has 
been widely conducted by researchers. One of the studies is for the flow of time dependent mixed 
convection fluid with heat transmission over an elongated permeable surface using flow condition and 
this study included numerical and analytical investigation [28].  
           The studies as mentioned, the viscous dissipation neglected. Based on Gebhart [4], the first 
researchers that studies on the viscous dissipation in free convection flow, that when the induced kinetic 
energy gets large in comparison to the amount of heat transferred, viscous dissipation becomes 
significant. Graphs and tabular representations are used to illustrate velocity, temperature, skin friction 
coefficient, and local Nusselt number profiles for various parameters considered on a study of the MHD 
stagnation-point flow and heat transfer characteristics of an electrically conducting nanofluid over a 
vertical permeable shrinking sheet in presence of viscous dissipation using Runge-Kutta-Felhberg 
method [26]. 
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3. Mathematical Model 
 
            The constant mixed convection boundary layer flow around an isothermal sphere with radius 𝑎, 
where 𝑎 is immersed in a viscoelastic nanofluid with convective boundary condition (CBC). Figure 3.1 
illustrate the coordinate system and flow model for this study. The velocity beyond the boundary is 
assumed to be 𝑢#!(𝑥̅), and the temperature of the ambient nanofluid is assumed to be 𝑇". 𝑇# is the 
constant temperature of the sphere’s surface. 𝑇# < 𝑇", on the other hand, corresponds to a cooled 
sphere. According to Merkin [27], the free stream velocity is $

%
𝑈". 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             Figure 1: Coordinate system and flow model 

 

            By using the nanofluid model from Tiwari and Das [7], the governing equations problem as 
follows: 
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subjected to boundary conditions 

𝑢# = 0,			𝑣̅ = 0,			𝑇 = 𝑇#	, at			𝑦# = 0,			𝑥̅ ≥ 0, 
 

												𝑢# = 𝑢#!(𝑥̅),			
𝜕𝑢#
𝜕𝑦# = 0,			𝑇 = 𝑇"			as			𝑦# → ∞, 𝑥̅ ≥ 0, 

 

where 𝑥̅ and 𝑦# are the Cartesian coordinates along the surface of the sphere. While 𝑦# is the coordinate 
measured normal to the surface of the sphere. Whereas 𝑢# and 𝑣̅ are the velocity components, 𝑢#!(𝑥̅) is 
the velocity outside the boundary layer, and 𝑟̅(𝑥̅) is the radial distance from symmetrical axis to the 
surface and the equation is given by 

𝑢#!(𝑥̅) =
3
2𝑈" sin 5

𝑥̅
𝑎6 			and				𝑟̅

(𝑥̅) = 𝑎 sin 5
𝑥̅
𝑎6 . 

Nanofluid terms defined by Tham et al. [16] as follows: 

         																𝛼!" =
#+,

(%&')+,
,   								𝛼" =

#,
(%&'),

	,											  𝜇$% =
&!

(()*)".$
	, 

𝜌&' = (1 − 𝜙)𝜌' + 𝜙𝜌-, 

(𝜌𝐶𝑝)&' = (1 − 𝜙)(𝜌𝐶𝑝)' + (𝜙)-	, 

(𝜌𝛽)&' = (1 − 𝜙)(𝜌𝛽)' + (𝜙)(𝜌𝛽)-, 

𝑘&' = 𝑘'
R𝑘- + 2𝑘'S − 2𝜙(𝑘' − 𝑘-)
R𝑘- + 2𝑘'S + 𝜙(𝑘' − 𝑘-)

,				 

 

where 𝜇 is the dynamic viscosity, 𝑔 is the gravity acceleration, T is temperature of selected fluid, 𝑘( > 0 
is the constant of the viscoelastic material which is Walter’s Liquid-B model), 𝜌&' and 𝜇&' are the density 
and dynamic viscosity of nanofluid, (𝛽)&' is the thermal expansion of nanofluid, 𝑘&' is the effective 
thermal conductivity of the nanofluid, and (𝜌𝐶𝑝)&' is the heat capacitance of nanofluid. Whereas 𝜙 is 
the nanoparticles volume fraction of nanofluid. 𝑘' and 𝑘- are the thermal conductivities of the fluid and 
of the solid fractions, respectively, 𝜇' is the viscosity of fluid fraction and 𝛼&' is the thermal diffusivity of 
nanofluid. 

The dimensionless variables based on Patil et al. [11] and Nazar et al. [12] are  

𝑥 =
𝑥̅
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, 

 
 
where 𝑅𝑒 = 	𝑈"

,
-
  is a Reynold number. Substitute Equation (7) into Equations (1), (2), and (3), the 

equations become the dimensionless equations as below: 
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Y(1 − 𝜙) + 𝜙
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1
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𝜕
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𝜕)𝑢
𝜕𝑦) +

𝜕𝑢
𝜕𝑦
𝜕%𝑣
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+Y(1 − 𝜙) + (𝜙)
(𝜌𝛽)-
(𝜌𝛽)'

Z 𝜆𝜃 sin 	(𝑥). 
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(𝜌𝐶𝑝)'

Z5𝑢
𝜕𝜃
𝜕𝑥 + 𝑣

𝜕𝜃
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1
𝑃𝑟

1
(𝜌𝐶𝑝)'

8
𝜕%𝜃
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%
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𝜕𝑥𝜕𝑦 + 𝑣

𝜕𝑢
𝜕𝑦
𝜕%𝑢
𝜕𝑦%9a, 

 

and the boundary conditions becomes, 

𝑢 = 10,								𝑣 = 10,								𝜃 = 1,							on		𝑦 = 0,								𝑥 ≥ 0, 

𝑢 = 𝑢!(𝑥) =
3
2 sin 𝑥,							

𝜕𝑢
𝜕𝑦 = 0,							𝜃 = 0,						as	𝑦 → ∞,						𝑥 ≥ 0, 

where 
 

𝑅𝑒 =
𝑈"𝑎
𝑣 ,																	𝐸𝑐 =

𝑈"%

(𝜌𝐶𝑝)'(𝑇# − 𝑇")
,												𝐾 =

𝑘(𝑈"
𝑎(𝜌𝐶𝑝)'𝑣

, 

𝑃𝑟 =
𝑣
𝑎 ,														𝜆 =

𝐺𝑟
𝑅𝑒% =

𝑔𝛽'(𝑇# − 𝑇")𝑎
𝑈"% ,											𝐺𝑟 =

𝑔𝛽'(𝑇# − 𝑇")𝑎)

𝑣'%
. 

 
Ec is the Eckert number, K is dimensionless viscoelastic parameter, Pr is the Prandtl number, and 𝜆 is 
the constant mixed convection parameter, Gr is known as Grashof number. It should be mentioned that 
the aiding flow (heated sphere) occurs when 𝜆 > 0, the opposing flow (cooling sphere) occurs when 
𝜆 > 0, and the forced convection flow occurs when 𝜆 = 0. It is important to note that in the case of 
viscous (Newtonian) fluids, K = 0. 
 
The following variables being assumed to solve Equation (8), Equation (9), and Equation (10) together 
with the boundary conditions (11): 
 

𝜓 = 𝑥𝑟(𝑥)𝑓(𝑥, 𝑦),											𝜃 = 𝜃(𝑥, 𝑦), 

where 𝜓	is the stream function defined as follows: 
 

𝑢 =
1
𝑟
𝜕𝜓
𝜕𝑦 ,								𝑣 = −

1
𝑟
𝜕𝜓
𝜕𝑥. 

Considering that  

𝑢!(𝑥) =
𝑢#!(𝑥̅)
𝑈"

=
3
2 sin 𝑥 ,									𝑟

(𝑥) = sin 𝑥, 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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where 𝑢!(𝑥) is the local free stream velocity outside the boundary layer and 𝑟(𝑥) is the radial distance 
from the symmetrical axis to the surface of the sphere. The stream function in Equation (13) is satisfy 
for continuity equation.  
  

𝜕%𝜓
𝜕𝑥𝜕𝑦 −

𝜕%𝜓
𝜕𝑥𝜕𝑦 = 0. 

Y(1 − 𝜙) + 𝜙
𝜌-
𝜌'
Z8𝑥

𝜕)𝑓
𝜕𝑥𝜕𝑦% + f−

cos 𝑥
sin 𝑥h8
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sin 𝑥
cos 𝑥 + 16 8
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Z
9
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1
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𝜕𝑦)9

+ 𝐾 8𝑥
𝜕%𝑓
𝜕𝑥𝜕𝑦

𝜕)𝑓
𝜕𝑦) + 2f1 + 𝑥
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sin 𝑥h

𝜕𝑓
𝜕𝑦
𝜕)𝑓
𝜕𝑦) + 𝑥
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𝜕𝑓
𝜕𝑦 − 𝑥
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𝜕𝑦0

𝜕𝑓
𝜕𝑦 − 𝑥

𝜕)𝑓
𝜕𝑥𝜕𝑦%

𝜕𝑓
𝜕𝑦%

− 2f𝑥
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sin 𝑥h

𝜕𝑓
𝜕𝑦
𝜕)𝑓
𝜕𝑦) − f1 + 𝑥
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sin 𝑥
𝑥 . 
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sin 𝑥h𝑓6

𝜕𝜃
𝜕𝑦Z

=
1
𝑃𝑟

1
(𝜌𝐶𝑝)'

𝜕%𝜃
𝜕𝑦% − 𝐸𝑐 8𝑥

% 𝜕
%𝑓
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𝜕%𝑓
𝜕𝑦%

+𝐾Y
𝜕𝑓
𝜕𝑦
𝜕%𝑓
𝜕𝑦% + 𝑥

𝜕𝑓
𝜕𝑦

𝜕)𝑓
𝜕𝑥𝜕𝑦% − 𝑥

𝜕𝑓
𝜕𝑥

𝜕)'

𝜕𝑦) −
𝜕)𝑓
𝜕𝑦) −

𝜕)𝑓
𝜕𝑦) 𝑓 − 8𝑥

cos 𝑥
sin 𝑥

𝜕)𝑓
𝜕𝑦) 𝑓9Z. 

 

and the boundary conditions become, 

𝑓 = 0,							
𝜕𝑓
𝜕𝑦 = 0,						𝜃1 = −1,						on	𝑦 = 0,							𝑥 ≥ 0, 

𝜕𝑓
𝜕𝑦 →

3
2
sin 𝑥
𝑥 ,								

𝜕%𝑓
𝜕𝑦% = 0,							𝜃 → 0,							as	𝑦 → ∞,							𝑥 ≥ 0. 

 
At lower stagnation point of the sphere, 𝑥	 ≈ 0, Equations (17) and (18) reduce to the ordinary differential 
equations as follows: 
 

Y(1 − 𝜙) + 𝜙
𝜌-
𝜌'
Z R2𝑓𝑓1 − 𝑓1!S +

9
4Y
(1 − 𝜙) + 𝜙

𝜌-
𝜌'
Z

+
1
𝜐𝜌𝑓 8

𝜇𝑓
(1 − 𝜙)%./ + 𝑘𝑓

R𝑘- + 2𝑘'S − 2𝜙R𝑘' − 𝑘-S
R𝑘- + 2𝑘'S + 𝜙R𝑘' − 𝑘-S

9 (𝑓111) + 2𝐾R𝑓1𝑓111 − 𝑓𝑓1111 − 𝑓11!S

+ 𝜆 f(1 − 𝜙)𝜌' + 𝜙𝜌-h Y(1 − 𝜙) + 𝜙
(𝜌𝛽)-
(𝜌𝛽)'

Z = 0. 

1
𝑃𝑟

1
(𝜌𝐶𝑝)'

𝜃11 + 2𝑓𝜃1 Y(1 − 𝜙) + 𝜙
(𝜌𝐶𝑝)-
(𝜌𝐶𝑝)'

Z = 0, 

 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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and the boundary conditions as follows: 

𝑓(0) = 0,							𝑓1(0) = 0,								𝜃(0) = 1,				on	𝑦 = 0,						𝑥 ≥ 0, 

						𝑓1(𝑦) →
3
2,							𝑓

11(𝑦) = 0,							𝜃 → 0,							as	𝑦	 → ∞,						𝑥 ≥ 0.						 
 
            In the next chapter, we will discuss the methodology and Equation (3.20) and Equation (3.21), 
along with boundary conditions (3.22) will be applied into MATLAB algorithm to determine the behaviour 
of the nanofluid by investigating the velocity and temperature profiles. 
 

4. Research Methodology 
 
            The numerical computations are being solved by using BVP4C solver in MATLAB. The tree-
stage Lobatto Illa formula by Shampine et al. [29] implemented in BVP4C, a finite difference algorithm. 
Equations (20),(21) and (22) must be transformed into first-order system before using the BVP4C solver 
to solve ordinary differential equations and 𝑠𝑜𝑙 = 𝑏𝑣𝑝4𝑐	(𝑜𝑑𝑒𝑓𝑢𝑛, 𝑏𝑐𝑓𝑢𝑛, 𝑠𝑜𝑙𝑖𝑛𝑖𝑡, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠) used as basic 
syntax in BVP4C solver which combines an 𝑜𝑑𝑒𝑓𝑢𝑛 system of differential equations 𝑦1 = 𝑓(𝑥, 𝑦) with 
𝑏𝑐𝑓𝑢𝑛, the boundary conditions, and 𝑠𝑜𝑙𝑖𝑛𝑖𝑡, the initial solution guess. The BVP4C solver’s basic syntax 
includes an additional integration setting, which is an argument created with the 𝑏𝑣𝑝𝑠𝑒𝑡 function. The 
equations become as follows:  

 
𝑦$ = 𝑓,							𝑦% = 𝑓1,							𝑦) = 𝑓11,							𝑦0 = 𝑓111,							𝑦10 = 𝑓1111, 

𝑦/ = 𝜃,							𝑦2 = 𝜃1,							𝑦12 = 𝜃11. 

 

The momentum equation is being rearranged to equation below: 

𝑦10 =
$
3"
`(𝑦%𝑦0 − 𝑦)%) +

$
%4
Y8(1 − 𝜙) + 𝜙 5#

5$
9 f2𝑦$𝑦) − 𝑦%% +

6
0
h + $

($89)!.&
𝑦0 + 8(1 − 𝜙) +

𝜙 (5;)#
(5;)$

9𝜆𝑦/Za.                                                                            

 
The energy equation being arranged as follows: 
 

𝑦12 = 𝑦< = Pr8−2(1 − 𝜙) + 𝜙
(𝜌𝐶𝑝)-
(𝜌𝐶𝑝)'

9𝑦$𝑦2 − 𝛾𝑦/ = 0. 

 
with boundary conditions, 

𝑦$(0) = 0,								𝑦%(0) = 0,									𝑦2(0) = −1, 

𝑦%(∞) →
3
2,							𝑦)

(∞) = 0,						𝑦/(∞) = 0. 

 

 

 

 

 

(22) 

(23) 

(25) 

(24) 

(26) 
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5. Results and Discussion 
 
 
 
 
 
 
 
             
 

 

 

              Figure 2 shows the comparison result for skin friction, 𝑓11(0) and wall temperature, 𝜃#(0) with 
the results from Keijing (2021) when viscous dissipation effect, 𝛾 = 0. The comparison shows that the 
numerical solutions found by the current study are well agreed to those obtained by Keijing (2021).  

 

 

 

 

 

 

 

  Figure 3 shows the existence of the effects for viscous dissipation, 𝛾 to the nanofluid velocity 
and temperature profiles. The results show when 𝛾 increases, the velocity profile is slightly increases 
and also in Figure 5.4, the temperature profile, 𝜃(𝑦) is increases when the values of 𝛾 increases. 
Generally, the increment of 𝛾 leds to the higher value of velocity and temperature profile.  

 

 

 

 

 

 

                Figure 4 illustrates the velocity and temperature profiles for different values of Prandtl number, 
Pr when viscoelastic, K = 1 and viscous dissipation effect, 𝛾 = 0.1. It shows when the value of Pr 
increases, both the velocity and temperature profile decrease. It is found that the increment of Pr value 
influenced its thermal diffusivity, which reduces the energy ability and thermal boundary layer thickness. 

      

 

 

    
Figure 2: Skin friction,	𝑓!!(0) and Wall temperature, 𝜃"(0) for different 𝜆 when K=0, Pr=0.7 and 𝛾=0. 

       
Figure 3: Velocity profile,	𝑓!(𝑦) and Temperature, 𝜃(𝑦) when Pr=1, K=1, 𝜆=1, and 𝜙=0.1 

    
Figure 4: Velocity profile,	𝑓!(𝑦) and Temperature, 𝜃(𝑦) when 𝛾=0.1, K=1, 𝜆=1, and 𝜙=0.1 
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    The results for Figure 5 show the velocity profile respectively for different values of mixed convection 
parameter, 𝜆 in presence of viscous dissipation effect, 𝛾 = 0.1. The velocity profile increases when the 
value of 𝜆 increases while the temperature profile decreases when the value of 𝜆 increases. Based on 
graph, thermal boundary layer thickness decreases when 𝜆 increases because the thermal diffusivity 
decreases which reduces the energy ability and the thickness of the thermal boundary layer. 

 

 

 

 

 

 

 

            Figure 6 illustrates the effect of nanoparticles volume fraction, 𝜙 on velocity and temperature 
surface of a sphere in presence of viscous dissipation effect, 𝛾. The results show when the value of 𝜙 
increases, velocity profiles of the sphere increases but the temperature profile decreases. Therefore, 
when the value of 𝜙 increases, the thermal conductivity increases but reduce the thermal boundary 
layer thickness. 

 

 

 

 

 

 

                         

                Figure 7 shows the existence of the effects for viscoelastic parameter, K to velocity and 
temperature profiles in presence of viscous dissipation effect, 𝛾. The velocity profile decreases by 
increasing the value of K whereas the temperature profile increases when the values of K increase. It 
can be stated that the values of these profiles are lower for viscoelastic fluid compared to Newtonian 
fluid (K=0). As a result, the velocity boundary layer thickness for a viscoelastic fluid is greater than 
Newtonian fluid.  

 

     
Figure 5: Velocity profile,	𝑓!(𝑦) and Temperature, 𝜃(𝑦) when 𝛾=0.1, K=1, 𝑃𝑟=0.7, and 𝜙=0.1 

    
Figure 6: Velocity profile,	𝑓!(𝑦) and Temperature profile, 𝜃(𝑦) when 𝛾=0.1, K=1, 𝑃𝑟=0.7, and 𝜆=1 

   
Figure 7: Velocity profile,	𝑓!(𝑦) and Temperature profile, 𝜃(𝑦) when 𝛾=0.1, K=1, 𝑃𝑟=0.7, and 𝜆=1 
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6. Conclusion  
             The problem of mixed convection boundary layer flow of viscoelastic nanofluid in presence of 
viscous dissipation effect solved by using MATLAB BV4PC solver. It was shown how the viscoelastic 
parameter, K, Prandtl number, Pr, viscous dissipation, 𝛾, mixed convection parameter, 𝜆 and 
nanoparticles volume fraction, 𝜙 influenced the nanofluid flow characteristics in terms of velocity of the 
flow and the temperature on the surface of the sphere. The results of this study are listed as below: 

• As an increase of viscous dissipation effect, 𝛾, led to an increase of velocity of the nanofluid 
and the temperature distribution.  

• Therefore, it can be concluded that when viscous dissipation effect increases, the velocity and 
thermal boundary layer thickness increases. 

• The velocity of the nanofluid flow and temperature on the surface of the sphere are decreasing 
when Prandtl number, Pr, increasing.  

• The velocity of nanofluid increases when mixed convection parameter, 𝜆 increases, the velocity 
of nanofluid increases but temperature distribution decreases. 

• The velocity distribution shows an increment with the increase of nanoparticles volume fraction, 
𝜙. However, the temperature distribution shows a decrement. 

• As the viscoelastic parameter, K increases, the velocity distribution decreases while the 
temperature distribution decreases.  
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