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Abstract 

The purposes of this research are to analyze and formulate a mathematical model for 

aquaponics system in the presence of nitrite. The systems can be solved by using the 

system of ordinary differential equation (ODE) based on the assumptions that related to the 

system. In this case of study, the eigenvalue method used in order to solve the aquaponics 

problems. In addition, there are three cases obtained which are (i) only plant survive, (ii) only 

nitrate survives and (iii) coexistences where all are survive. The eigenvalues, eigenvector 

and general solution for each equilibrium point can be obtained by using the eigenvalue 

method. Hence, mathematical model for aquaponics system in the presence of nitrite are 

solved by using eigenvalue method. The relation between population of fish, concentration of 

ammonia, concentration of nitrite, concentration of nitrate, and population of plant can be 

analysed and identified based on the model assumption for system of ordinary differential 

equation and eigenvalues number. The general solution for each cases that involving the 

relation between population of fish, concentration of ammonia, concentration of nitrite, 

concentration of nitrate, and population of plant are determined. Lastly, the stability of the 

equilibrium point for each relation can be determined and checked based on the general 

solution and phase portrait of the system. 

Keywords: aquaponics; system ordinary differential equation; eigenvalues; eigenvector; 

phase portrait; stability; general solution. 

 

1. Introduction 

Problems frequently arise when it comes to aquaponics system that known as an integration 

between a growing fish and plant in the same recirculating aquaculture system. The 

aquaponics system is developed to help and solve problems that related to aquaculture and 

hydroponics because this system will contribute to their own knowledge and benefits. 

As we known, aquaponics system does involve with a nitrogen cycle process. The 

nitrogen cycle well-explain the relationship between the population of fish and the population 

of plants. Fish survive with the help of plants and plants also survive with the help of fish. 

They fill their needs among each other in order to grow in most suitable condition and 

environment. Therefore, mathematical approach like system of ordinary differential equation 

has been used in order to analyze and calculate the variables involved in aquaponics 

system. 

 

2. Literature Review 

2.1 Aquaponics System 

Aquaponics is a food production system that uses nutrient-rich water to fertilize the plants. 

Aquaponics system is a combination of two system which are aquaculture and hydroponic 

system that grow fish and plant together in one integrated system [1,2,3,4,5,6,7,8]. Both are 
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about a growing plant with or without soil and a growing fish in recirculating aquaculture 

system. 

 

 
Figure 1  A simplified aquaponics system illustration [9]. 

 

2.2 Nitrogen Cycle 

The most important part in aquaponics system is the living organisms such as the presence 

of nitrifying bacteria. Nutrifying bacteria work together with nitrogen cycle to turn fish waste 

into plant food [10]. The nitrogen cycle started when fish produce waste in the form of 

ammonia. Aquaponics system depends on the bacteria called Nitromonas bacteria that 

convert ammonia into nitrite [10]. This step is needed in order to keep the fish healthy by 

removing the excess ammonia from the water. The big amount of nitrite can interrupt the 

oxygen uptake by the fish which can slower the fish growth [10]. Next step in the cycle 

involve bacteria called Nitrospora [10]. These bacteria will take the nitrite and turn it into 

nitrate [10]. Then the fish waste turns into a highly nutrious food for the hydroponics plants. 

The plants absorb the nitrate and grow healthy and leave the water clean for the growth of 

fish [10]. We can say that without bacteria, both fish and plant will suffer to growth healthy. 

 

3. Methodology 

3.1. Linearizing Non-Linear System of Ordinary Differential Equation 

In order to solve nonlinear function, we need to linearize the function by using the Jacobian 

matrix.  

 

The non-linear system of two ordinary differential equations system is 

 

                            
𝑑𝑥

𝑑𝑡
= 𝑓1(𝑥, 𝑦) = 𝑎11𝑔1(𝑥, 𝑦) + 𝑎12𝑔2(𝑥, 𝑦)             (1) 

 

                             
𝑑𝑦

𝑑𝑡
= 𝑓2(𝑥, 𝑦) = 𝑎21𝑔3(𝑥, 𝑦) + 𝑎22𝑔4(𝑥, 𝑦)                                 (2) 

 

where 𝑎𝑖𝑗 is related to partial derivatives of 𝑓1 and  𝑓2 , make up the coefficient of the 2 × 2 

Jacobian matrix, J( 𝑥
0,
𝑦

0
). Since equation (1) and (2) are nonlinear equation, we can solve 

them by using Jacobian matrix as below 

 

 

J( 𝑥
0,
𝑦

0
) = (𝑎11

𝑎21
  𝑎12

𝑎22
) = (

𝑑𝑓1
𝑑𝑥
𝑑𝑓2
𝑑𝑥

   
𝑑𝑓1
𝑑𝑦
𝑑𝑓2
𝑑𝑦

). 
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3.2 Eigenvalue Method 

Eigenvalue method is used to define the stability of the system through the value of 

eigenvalues.Consider a homogeneous linear equation as  

    𝑥′ = 𝐴𝑥, 

where 𝐴 is a 2 × 2 matrix. 

Eigenvalue method is described as  

      𝐴𝑣 = 𝜆𝑣 

where 𝑣 is an eigenvector and 𝜆 is eigenvalue. We found that the eigenvalue of the Jacobian 

matrix, 𝐽 in two dimensions is as follow  

                                                              (𝐴 − 𝜆𝐼)𝑣 = 0 .                                          

Let take matrix 𝐴 as 

𝐴 = (
𝑎11

𝑎21

  
𝑎12

𝑎22

) 

Then, the determinant matrix becomes  

    det |
𝑎11 − 𝜆 𝑎12

𝑎21 𝑎22 − 𝜆
| = 0 . 

The characteristic equation gives 

(𝑎11 − 𝜆)(𝑎22 − 𝜆) − 𝑎12𝑎21 = 0 

𝜆2 − (𝑎11 + 𝑎12)𝜆 + 𝑎11𝑎22 − 𝑎12𝑎21 = 0 

𝜆2 − trace(𝐴)𝜆 + determinant(𝐴) = 0 

 

Therefore, the eigenvalue can be obtained by 

     

                                                                𝜆1,2 =
𝜏±√𝛿

2
                                               

 

where  

𝜏 = trace 𝐴 = 𝑎11 + 𝑎12 

𝜕 = determinant 𝐴 = 𝑎11𝑎22 − 𝑎12𝑎21 

𝛿 = discriminant 𝐴 = 𝜏2 − 4𝜕 

The general solution is given by 

 

   𝑥(𝑡) = 𝑐1𝑣1⃗⃗⃗⃗ 𝑒
𝜆1𝑡 + 𝑐2𝑣2⃗⃗⃗⃗ 𝑒𝜆2𝑡  

             

where 𝑣1⃗⃗⃗⃗  and 𝑣2⃗⃗⃗⃗  are linearly independent eigenvectors. 

 

3.3 Stability of Equilibrium Point 

Stability can be classified into two which are real and complex eigenvalues. Real 

eigenvalues can be categorized into group namely positive, negative and opposite sign. 

Meanwhile, complex eigenvalues are positive and negative real part with pure imaginary. 

 

The three properties as follows 

𝜏 = trace 𝐴 = 𝑎11 + 𝑎12 

 𝜕 = determinant 𝐴 = 𝑎11𝑎22 − 𝑎12𝑎21 

𝛿 = discriminant 𝐴 = 𝜏2 − 4𝜕 

 

can be used to determine the eigenvalues by (3.2). 

Therefore, the equilibrium can be classified into six cases which are: 

1. Unstable node for 𝜏 > 0 and 𝜕 > 0 

2. Saddle node for 𝜏 < 0 and 𝜕 > 0  

3. Saddle point for 𝜕 < 0  

4. Neutral center for 𝜏2 < 4𝜕 and 𝜏 = 0  
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5. Unstable spiral 𝜏2 < 4𝜕 and 𝜏 > 0 

6. Stable spiral 𝜏2 < 4𝜕 and 𝜏 < 0  

 

 

3.4 Real and Distinct Eigenvalue 

The general solution of the system is 

𝑋 (𝑡) = 𝑐1𝑣 1𝑒
𝜆1𝑡 + 𝑐2𝑣 2𝑒

𝜆2𝑡 

where  

• 𝑣1 and 𝑣2 are linearly independent eigenvectors. 

• 𝑋 1 = 𝑣 1𝑒
𝜆1𝑡 and 𝑋 2 = 𝑣 2𝑒

𝜆2𝑡 

 

The eigenvalues can be classify into three categories which are 

1. If both eigenvalues are negative (λ1 < 0,  λ2 < 0) , then it is asymptotically stable. 

2. If both eigenvalues are positive (λ1 > 0,  λ2 > 0) , then it is unstable. 

3. If eigenvalues are opposite sign ((λ1 < 0,  λ2 > 0) or (λ1 > 0,  λ2 < 0) , then it is 

unstable.  

 

3.5 Complex Eigenvalue 

For  λ1,  λ2 = 𝑎 ± 𝑏𝑖 , we differentiate into the following cases: 

1. If  𝑎 > 0, then it is spiral point and unstable. 

2. If 𝑏 > 0, then it is spiral point and asymptotically stable. 

3. If  λ1 = 𝑏𝑖,  λ2 = −𝑏𝑖, then it is center and stable. 

 

3.6 Aquaponics Model Assumptions 

The assumption obtained from [11]. This research will be considered nitrite as important 

concentration between ammonia and nitrate. The assumptions are made as follows: 

i. The aquaponics ecosystem is a closed environment. 

ii. The fish population increases at some natural survival rate  (
𝐁𝐢𝐫𝐭𝐡𝐬

𝐃𝐞𝐚𝐭𝐡𝐬
) , 

hindered by a carrying capacity due to the limited tank space. 

iii. There is additional fish decay due to increased ammonia presence in the 

water until it reaches a critical ammonia level where no fish will survive. This 

can be reasonably modeled by using a ratio  (
𝐀𝐦𝐦𝐨𝐧𝐢𝐚 𝐏𝐫𝐞𝐬𝐞𝐧𝐭

𝐓𝐨𝐱𝐢𝐜 𝐀𝐦𝐦𝐨𝐧𝐢𝐚 𝐋𝐞𝐯𝐞𝐥
) . 

iv. Ammonia is present in the system exclusively due to fish waste and hence 

grows at a rate proportional to the population of fish. It decays due to its 

conversion to nitrite at a rate proportional to its concentration. 

v. Nitrite is present in the system as it arises through the nitrogen cycle. It 

grows at a rate proportional to the ammonia in the system, and decays at a 

rate proportional to its own concentration. 

vi. Nitrate grows at a rate proportional to the level of nitrite, and decays due to 

plant uptake at a rate which interacts with the total nitrate and the total plant 

population. 

vii. Plants grow at a constant rate hindered by a carrying capacity indicative of 

the limited surface area of the system. 

viii. Modelling the concentrations of ammonia, nitrite, and nitrate in the system 

will capture any other relationships due to the bacteria present in the 

nitrogen cycle. 

ix. The system is well mixed so the nitrogen cycle occurs naturally and plants 

have even access to nitrate. 
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x. The systems are established in a way that water pH and temperature are 

within a healthy range for the fish. 

 

 3.7 Derivation of Aquaponics System 

From the assumption, we can generate model for aquaponics system. There are several 

variables will represent the term in this system which are: 

• 𝐹(𝑡) is representing the population of fish. 

• 𝐴(𝑡) is representing the concentration of ammonia (in mg). 

• 𝑍(𝑡) is representing the concentration of nitrite (in mg). 

• 𝑁(𝑡) is representing the concentration of nitrate (in mg). 

• 𝑃(𝑡) is representing the population of the plant. 

3.7.1 Model for Population of Fish 

Regarding the assumptions (ii) and (iii), population of fish will affected due the limitation of 

the surface of tank. We can say that, the population of fish will decrease as the concentration 

of ammonia increase. This is because the fish population cannot survive since the water 

became toxic as the ammonia increase. Thus, the model can be formulated as 

 

                                                 
𝑑𝐹

𝑑𝑡
= 𝑎1 (1 −

𝐹

𝐾𝐹
) −

𝐴

𝐾𝐴
𝐹 .                    

3.7.2 Model for Concentration of Ammonia 

The presence of ammonia is come from fish waste and food that are not eaten by fish. So, 

the concentration of ammonia is proportional to the fish populations as population of fish 

increases then concentration of ammonia will also increases. But to be noted that, the 

concentration of ammonia influenced by the nitrification process that converts ammonia into 

nitrite. This process will decrease the concentration of ammonia in the water. Hence, the 

model can be represented as  

 
𝑑𝐴

𝑑𝑡
= 𝑎2𝐹 − 𝑎3𝐴 . 

 

3.7.3 Model for Concentration of Nitrite 

From assumption (v), nitrite is present in the system through nitrification process in nitrogen 

cycle. Its grow at a rate of proportional to the ammonia in the system. Nitrite decays at a rate 

proportional to its own concentration. Then, the model can be written as  
𝑑𝑍

𝑑𝑡
= 𝑎4𝐴−𝑎5𝑍 . 

 

3.7.4 Model for Concentration of Nitrate 

The concentration of nitrate grows at a rate of proportional to the concentration of nitrate. 

However, the concentration of nitrate also grows at a rate of proportional to the concentration 

of ammonia. The change of concentration of nitrate is directly proportional to the 

concentration of ammonia. Since the nitrate act as food that helping the plant to grow, the 

concentration of nitrate decay due to the plant uptake. Thus, the model can be represented 

as  

 

                                                     
𝑑𝑁

𝑑𝑡
= 𝑎6𝑍 − 𝑎7𝑁𝑃      . 

3.7.5 Model for Population of Plant 
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From assumption, the plant grows at a constant rate. The plant grows increase as the nitrate 

is increase. The nitrate act as a food, so if the nitrate increase, the plant will get enough 

nutrient to grow up and the plant population will increase as well. The rate of plant grows are 

prevented from the capacity indicative of the limited space of the system. By considering 

assumption (vi), we will obtain the model for the growth rate of the plant where can be written 

as 

 
𝑑𝑃

𝑑𝑡
= 𝑎8 (1 −

𝑃

𝐾𝑃
)𝑁𝑃 . 

4. Result and Analysis 

Result and analysis are done by using the parameter estimation as below [11] 

Table 1 Data of parameter estimation 

PARAMETERS VALUE 

𝒂𝟏 0.0124 

𝒂𝟐 0.1 

𝒂𝟑 0.94 

𝒂𝟒 2.7 

𝒂𝟓 5.0 

𝒂𝟔 3.384 

𝒂𝟕 0.92 

𝒂𝟖 0.056 

𝑲𝑨 12500 

𝑲𝑭 250 

𝑲𝑷 300 

 

4.1  Equilibrium Points 

The equilibrium points are obtained by letting the equation equal to zero. 

4.1.1 The Equilibrium Point for Population of Fish, F and Concentration of Ammonia, A 

Case I: 𝐹 = 0, 𝐴 = 0 and 

Case II: 𝐹 = 213.3856,  𝐴 = 22.7006. 

 

4.1.2     The Equilibrium Point for Concentration of Ammonia, A and Concentration of Nitrite, 

Z 

Case I: 𝐴 = 0,   𝑍 = 0. 

Case II:  𝐴 = 22.7006,   𝑍 = 11.523. 

 

4.1.3     The Equilibrium Point for Concentration of Nitrite, Z and Concentration of Nitrate, N 

Case I: 𝐴 = 0, 𝑍 = 0 then  𝑁 = 0 . 

Case II:  𝐴 = 22.7006,   𝑍 = 11.523 , then 𝑁 = 0.296 . 

 

4.1.4     The Equilibrium Point for Concentration of Nitrate, N and Population of Plant, P 

Case I:   𝑍 = 0,  𝑁 = 0,   𝑃 = 𝑃 . 

Case II:   𝑍 = 0 ,  𝑁 = 𝑁 , = 0 . 

Case III:  𝑍 = 11.523,  𝑁 = 0.296 , 𝑃 = 300. 
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4.2 Solution for Population of Fish, F and Concentration of Ammonia, A 

The general Jacobian matrix A and Z is 

 

𝐽(𝐴, 𝑍) = (
−0.94 0
2.7 −5

) 

 

4.2.1 Solution for Case I 

For Case I, equilibrium point is at (0,0), hence the Jacobian matrix gives 

 

𝐽(0,0) = (
−0.94 0
2.7 −5

) = 𝐶2.  

 

To obtain the eigenvalues, determinant matrix is determined as 

 

|
−0.94 − 𝜆  0

2.7   −5 − 𝜆
| = 0 

 

(−0.94 − 𝜆)(−5 − 𝜆) = 0. 

Therefore, the eigenvalues are 

 

𝜆5 = −0.94 and 𝜆6 = −5. 

 

Based on the stability properties, the system is asymptotically stable since 

 𝜆6 < 𝜆5 < 0 .  

 

 

Figure 2 The phase portrait for concentration of ammonia versus population of fish (Case I). 

 

The Figure 2 shows that the system is unstable since the trajectory is keeping away and 

away from the equilibrium point(0,0). We can say that the system is not complete and 

unstable because of the nonexistence population of fish and concentration of ammonia. 

For  𝜆1 = 0.0124, 

𝑋1
⃗⃗⃗⃗ = (

1
0.1

0.9524

) 𝑒0.0124𝑡. 
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For 𝜆2 = −0.94, 

𝑋2
⃗⃗⃗⃗ = (

0
5
) 𝑒−0.94𝑡. 

 

Hence, the general solution for Case I is 

(
𝐹1

𝐴1
) = 𝑐1 (

1
0.1

0.9524

) 𝑒0.0124𝑡 + 𝑐2 (
0
5
) 𝑒−0.94𝑡. 

 

𝐹1 = 𝑐1𝑒
0.0124𝑡, 

 

𝐴1 = 𝑐1(0.1050)𝑒0.0124𝑡 + 𝑐2(5)𝑒−0.94𝑡. 

 

 

4.2.2 Solution for Case II 

 

The equilibrium point is at(213.3856 , 22.7006). Then, the Jacobian matrix becomes 

 

𝐽(213.3856 , 22.7006) = (
−0.0106   −0.0171

0.1   −0.94
) = 𝐷1. 

 

To get eigenvalues, determinant matrix is determined as 

|
−0.0106 − 𝜆   −0.0171

0.1   −0.94 − 𝜆
| = 0. 

 

(−0.0106 − 𝜆)(−0.94 − 𝜆) + 0.0017 = 0, 

 

λ3 = −0.0124  and 𝜆4 = −0.9440. 

 

Based on stability properties, the system is asymptotically stable since  λ3 < 𝜆4 < 0. 

 

 

Figure 3 The phase portrait for concentration of ammonia versus population of fish (Case II) 

Based on the Figure 3, the system is asymptotically stable since the direction of trajectory is 

approaching to equilibrium point(213.3856,22.7006). We can say that the system is 

asymptotically stable since there is exist the population of fish and concentration of 

ammonia. 
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For λ3 = −0.0124 ,  

𝑋3
⃗⃗⃗⃗ = (

1
0.0901

) 𝑒−0.0124𝑡. 

For 𝜆4 = −0.9440, 

 

𝑋4
⃗⃗⃗⃗ = (

0.0253
1

) 𝑒−0.9440𝑡. 

 

Hence, the general solution for Case II is 

(
𝐹2

𝐴2
) = 𝑐3 (

1
0.0901

) 𝑒−0.0124𝑡 + 𝑐4 (
0.0253

1
) 𝑒−0.9440𝑡. 

 

𝐹2 = 𝑐3𝑒
−0.0124𝑡 + 𝑐4(0.0253)𝑒−0.9440𝑡, 

𝐴2 = 𝑐3(0.0901)𝑒−0.0124𝑡 + 𝑐4𝑒
−0.9440𝑡. 

 

4.3      Solution for Concentration of Ammonia, A and Concentration of Nitrite, Z 

4.3.1 Solution for Case I 

For Case I, equilibrium point is at (0,0), hence the Jacobian matrix gives 

 

𝐽(0,0) = (
−0.94 0
2.7 −5

) = 𝐶2. . 

 

To obtain the eigenvalues, determinant matrix is determined as 

 

|
−0.94 − 𝜆  0

2.7   −5 − 𝜆
| = 0 

 

(−0.94 − 𝜆)(−5 − 𝜆) = 0. 

Therefore, the eigenvalues are 

 

𝜆5 = −0.94 and 𝜆6 = −5. 

 

Based on the stability properties, the system is asymptotically stable since 

 𝜆6 < 𝜆5 < 0 .  

 

 
Figure 4 The phase portrait for concentration of nitrite versus concentration of ammonia 

(Case I) 

The Figure 4 shows that the system is asymptotically stable since the direction of trajectory 

are approaching the equilibrium point(0,0). 
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For 𝜆5 = −0.94 , 

𝑋5
⃗⃗⃗⃗ = (

1.5307
1

) 𝑒−0.94𝑡. 

For 𝜆6 = −5, 

𝑋6
⃗⃗⃗⃗ = (

0
1
) 𝑒−5𝑡. 

 

Therefore, the general solution for Case I is 

 

(
𝐴1

𝑍1
) = 𝑐5 (

1.5307
1

) 𝑒−0.94𝑡 + 𝑐6 (
0
1
) 𝑒−5𝑡. 

 

𝐴1 = 𝑐5(1.5307)𝑒−0.94𝑡, 

 

𝑍1 = 𝑐5𝑒
−0.94𝑡 + 𝑐6𝑒

−5𝑡. 

 

4.3.2 Solution for Case II 

The equilibrium point for Case II is at(26.4523,14.2696). Hence, the Jacobian matrix 

becomes 

 

𝐽(26.4523,14.2696) = (
−0.94 0
2.7 −5

) = 𝐶2. 

 . 

To obtain the eigenvalues, determinant matrix is determined as 

 

|
−0.94 − 𝜆  0

2.7   −5 − 𝜆
| = 0 

 

(−0.94 − 𝜆)(−5 − 𝜆) = 0. 

 

𝜆7 = −0.94 and 𝜆8 = −5. 

 

Based on the stability properties, the system is asymptotically stable since 

 𝜆6 < 𝜆5 < 0 .  

 

For eigenvectors, the eigenvectors for Case II are likewise with eigenvectors for Case I. 

Thus, the general solution for Case I is 

 

(
𝐴2

𝑍2
) = 𝑐7 (

1.5307
1

) 𝑒−0.94𝑡 + 𝑐8 (
0
1
) 𝑒−5𝑡. 

 

𝐴2 = 𝑐7(1.5307)𝑒−0.94𝑡, 

 

𝑍2 = 𝑐7𝑒
−0.94𝑡 + 𝑐8𝑒

−5𝑡. 

 

 

4.4     Solution for Concentration of Nitrite, Z and Concentration of Nitrate, N 

The general Jacobian matrix for Z and N is 

 

𝐽(𝑍, 𝑁) = (
−5 0
0 −0.92𝑃

). 

 

4.4.1 Solution for Case I 

For Case I, equilibrium point is at(0,0). Therefore, the Jacobian matrix becomes 
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𝐽(0,0) = (
−5 0
0 −0.92𝑃

) = 𝐶3. 

 

In order to get the eigenvalues, determinant matrix is determined as 

|
−5 − 𝜆 0

0 −0.92𝑃 − 𝜆
| = 0. 

(−5 − 𝜆)(−0.92𝑃 − 𝜆) = 0. 

 

𝜆9 = −5 and 𝜆10 = −0.92𝑃. 

 

Based on the stability properties, the system is asymptotically stable since both eigenvalues 

less than zero, 𝜆9 < 𝜆10 < 0.  

 

 
Figure 5 The phase portrait for concentration of nitrate versus concentration of nitrite (Case 

I). 

Based on Figure 5, we can see that the direction of arrows seems moving toward the 

equilibrium point (0,0).Therefore, the system is asymptotically stable. 

For 𝜆9 = −5 , 

𝑋9
⃗⃗⃗⃗ = (

2
0
) 𝑒−5𝑡. 

 

For 𝜆10 = −0.92𝑃 , 

𝑋10
⃗⃗ ⃗⃗ ⃗⃗ = (

0
1
) 𝑒−0.92𝑃𝑡. 

 

Therefore, the general solution for Case I is 

 

(
𝑍1

𝑁1
) = 𝑐9 (

2
0
) 𝑒−5𝑡 + 𝑐10 (

0
1
) 𝑒−0.92𝑃𝑡. 

 

𝑍1 = 2𝑐9𝑒
−5𝑡 

 

𝑁1 = 𝑐10𝑒
−0.92𝑃𝑡 

 

4.4.2 Solution for Case II 

The equilibrium point is at (14.2696,
84.0376

𝑃
). 
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𝐽 (14.2696,
84.0376

𝑃
) = (

−5 0
0 −0.92𝑃

) = 𝐷3. 

 

The eigenvalues and eigenvectors for Case II are likewise with Case I since variable Z and N 

in Jacobian matrix does not change. 

 

𝜆9 = −5 and 𝜆10 = −0.92𝑃. 

 

Based on the stability properties, the system is asymptotically stable since both eigenvalues 

less than zero, 𝜆9 < 𝜆10 < 0. The phase portrait is likewise with phase portrait for Case I. 

 

Hence, the general solution for Case II is 

 

(
𝑍2

𝑁2
) = 𝑐11 (

2
0
) 𝑒−5𝑡 + 𝑐12 (

0
1
) 𝑒−0.92𝑃𝑡 

 

𝑍2 = 2𝑐11𝑒
−5𝑡 

 

𝑁2 = 𝑐12𝑒
−0.92𝑃𝑡. 

 

 

4.5      Solution for Concentration of Nitrate, N and Population of Plant, P 

The general Jacobian matrix for N and P is 

 

𝐽(𝑁, 𝑃) = (
−0.92𝑃 −0.92𝑁

0.056𝑃 (1 −
𝑃

300
)   0.056𝑁 (1 −

𝑃

300
) − 𝑎8

𝑁𝑃

300

). 

 

 

4.5.1     Solution for Case I 

The equilibrium point for Case I is at (0, 𝑃). Hence, Jacobian matrix becomes 

 

𝐽(0, 𝑃) = (
−0.92𝑃 0

0.056𝑃 (1 −
𝑃

300
)   0

). 

 

In order to get the eigenvalues, determinant matrix is determined as 

 

|
−0.92𝑃 − 𝜆 0

0.056𝑃 (1 −
𝑃

300
)   −𝜆

| = 0 

 

(−𝜆)(−0.92𝑃 − 𝜆) = 0 

 

𝜆13 = 0 and  𝜆14 = −0.92𝑃. 

 

The existence population of plant,P will be considered whether it is decline or incline in 

population. 𝜆14 = −0.92𝑃 can be either negative or positive eigenvalue since we do not know 

exact value of P.  
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Figure 6 The phase portrait for population of plant versus concentration of nitrate (Case I). 

From Figure 6, we can see that when P  is negative, N  are keep away from zero. This is 

because, when the plant population decline, there always exist the concentration of the 

nitrate. But, when P is positive, N are closed to zero and there exist the population of plant 

and concentration of nitrate will be affected the system. 

For 𝜆13 = 0 , 

𝑋13
⃗⃗ ⃗⃗ ⃗⃗ = (

0
1
). 

For 𝜆14 = −0.92𝑃, 

𝑋14
⃗⃗ ⃗⃗ ⃗⃗ = (

1
0
) 𝑒−0.92𝑃𝑡. 

 

Therefore, the general solution for Case I is 

 

(
𝑁1

𝑃1
) = 𝑐13 (

0
1
) + 𝑐14 (

1
0
) 𝑒−0.92𝑃𝑡, 

 

𝑁1 = 𝑐14𝑒
−0.92𝑃𝑡, 

𝑃1 = 𝑐13. 

 

4.5.2 Solution for Case II 

The equilibrium point for Case II is at(𝑁, 0) . Thus, the Jacobian matrix for N and P becomes 

 

𝐽(𝑁, 0) = (
0 −0.92𝑁
0   0.056𝑁

). 

 

 

To find eigenvalues, determinant matrix is determined as 

 

|
−𝜆 −0.92𝑁
0   0.056𝑁 − 𝜆

| = 0, 

 

(−𝜆)(0.056𝑁 − 𝜆) = 0, 

 

𝜆 = 0 and 𝜆 = 0.056𝑁. 

 

Same as before, variable N can be either negative or positive. 
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For = 0 , 

𝑋15
⃗⃗ ⃗⃗ ⃗⃗ = (

1
0
). 

 

For 𝜆 = 0.056𝑁, 

𝑋16
⃗⃗ ⃗⃗ ⃗⃗ = (

16.4286
1

) 𝑒0.056𝑁 𝑡. 

 

Therefore, the general solution for Case II is 

 

(
𝑁2

𝑃2
) = 𝑐15 (

1
0
) + 𝑐16 (

16.4286
1

) 𝑒0.056𝑁 𝑡. 

 

𝑁2 = 𝑐15 + 16.4286𝑐16𝑒
0.056𝑁 𝑡 

 

𝑃2 = 𝑐16𝑒
0.056𝑁 𝑡. 

 

4.5.3 Solution for Case III 

The equilibrium point is (0.2801,300). The Jacobian matrix for N  and P  will becomes 

𝐽(0.2801,300) = (
−276 −0.2561
0   −0.0156

). 

 

To find eigenvalues, 

 

|
−276 − 𝜆 −0.2561

0   −0.0156 − 𝜆
| = 0, 

 

(−276 − 𝜆)(−0.0156 − 𝜆) = 0, 

 

𝜆17 = −276 and 𝜆18 = −0.0156. 

 

Figure 7 The phase portrait for population of plant versus concentration of nitrate (Case III). 

Based on phase portrait in Figure 7, we see that when N is negative and P is positive, the 

arrow will moving toward the line = 0 , when both N and P are negative, the arrow will go 

away from line 𝑁 = 0 . We can conclude that, when the concentration of nitrate decrease, 

the plant population can be either decrease or increase. But, when N is positive and P is 

positive, the arrow are approach line = 0 . Here, we can say that, the plant population is 

exist but the concentration of nitrate will affected the system. 

For 𝜆17 = −276 , 
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𝑋17
⃗⃗ ⃗⃗ ⃗⃗ = (

1
0
) 𝑒−276𝑡. 

 

For 𝜆18 = −0.0156 , 

𝑋18
⃗⃗ ⃗⃗ ⃗⃗ = (

−0.0009
1

) 𝑒−0.0156𝑡. 

Therefore, the general solution for Case III is 

 

(
𝑁3

𝑃3
) = 𝑐17 (

1
0
) 𝑒−276𝑡 + 𝑐18 (

−0.0009
1

) 𝑒−0.0156𝑡. 

 

𝑁3 = 𝑐17𝑒
−276𝑡 − 0.0009𝑐18𝑒

−0.0156𝑡 

 

𝑃3 = 𝑐18𝑒
−0.0156𝑡 

 

5.        Conclusion 

Mathematical model for aquaponics system is formulated by using the assumption from [19]. 

The combination of assumption helps to form the system of ordinary differential equation 

(ODE). Since the system of ordinary differential equation is nonlinear, the Jacobian matrix 

has been used in order to linearize the nonlinear system of ODE. Eigenvalue method can be 

used when the system of ODE is linear system. Hence, the eigenvalue and eigenvector can 

be obtained. The eigenvalue help us to determine the stability of equilibrium point meanwhile 

the eigenvector used to determine the general solution of the system. The phase portrait 

also plotted in order to visualize the shape and behaviour of the trajectory, so the stability 

can be checked. After analyzing the data, we found that the fish population, concentration of 

ammonia, concentration of nitrite, concentration of nitrate and plant population are 

independently coexistence in the aquaponics system. 
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