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Abstract 

The purpose of this study to investigate the effect of body acceleration and temperature on the solute 

dispersion in blood flow through an artery treating the blood as a Casson fluid model. The Casson fluid 

model in a circular straight pipe is formulated mathematically. Velocity of Casson fluid model is 

determined by solving momentum and constitutive equations. The concentration of solute, dispersion 

function and mean concentration are obtained by solving the convective diffusion equation using 

Generalized Dispersion Model (GDM). The influenced of body acceleration and temperature are 

investigated on the solute dispersion in blood flow and discussed graphically. The velocity of blood flow 

increases with the increases of body acceleration and slip velocity. When the temperature, yield stress 

and plug core region increases, the velocity decreases. The body acceleration, yield stress and plug 

core region increases in the center of the artery and dispersion decreases in the outer region near the 

wall. Dispersion begins to increase in the outer region near the wall due to the decreases in viscosity 

causing the temperature in the middle of the artery decreases. Mean concentration increases as the 

body acceleration, temperature, yield stress, plug core region and stenosis height increases. 

Acceleration in human body affect the mean concentration of solute. The effects of small temperature 

variations can cause severe damage to the human body which affect the overall blood behavior in the 

circulation and reduces viscosity. This research is significant to determine the effectiveness of solute 

dispersion when body acceleration and temperature are taken into account in blood flow through artery. 

Keywords: Temperature; Body acceleration; Solute dispersion; Casson fluid; Generalized Dispersion 

Model 

 

1. Introduction 

In recent development, Toghraie et al. [1] stated that many authors explored area in blood flow since 

medical science is not able to solve all problems individually. Tiwari et al. [2] analysed the effect of 

temperature in blood flow of Hershel-Bulkley (H-B) for drug delivery or transportation of nutrient to body 

that involved solute dispersion model using Generalized Dispersion Model (GDM). Meanwhile, Roy and 

Beg [3] investigated the temperature-dependent viscosity in blood flow and heat transfer characteristics 

in an artery with stenosis using implicit finite difference method formula. 

Sinha et al. [4] stated that in the human circulatory system, blood flows through different 

branches of arteries whose heat was distributed through the tissues to the rest of the body where the 

heat cannot accumulated in any part of the tissue medium. Thus, the temperature was generally 

stronger depending on blood flow where blood circulation in human body plays an important role in 

transmission heat between living tissues, especially peripheral veins [1]. Changing on temperature can 

help to predict the cancers and Siegel et al. [5] stated that temperature has been used to analysing 

breast cancer. Nowadays, due to unhealthy diet, smoking, diabetes and hypertension may led to 

cancer. According to World Health Organization that cardiovascular disease (CVD) was leading cause 

death globally. Haghighi and Chalak [6] stated every day, human body had been exposed to the body 

acceleration that cause vibration when driving vehicle or rapid body movements in the sports that may 

led to headaches and increasing heart rate. Jaafar et al. [7] investigated the steady dispersion in blood 

flow through narrow arteries in chemical reaction using Casson fluid has been solved by using classical   
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integration model. 

To authors’ knowledge, the composition of variable temperature-dependent viscosity in Casson 

fluid for dispersion of solutes in blood flow through artery did not receive sufficient attention. Thus, an 

attempt is made in this study to extend the studies of stenosis through body acceleration by 

incorporating the effect of temperature in blood flow. Hence, the purpose of this study is to investigate 

the steady flow behaviour of blood in stenosed artery with the effect of temperature and body 

acceleration using Casson fluid model. The objectives of this study are to formulate the mathematical 

model of Casson fluid model through blood flow, to solve the momentum and continuity equation of 

velocity in blood flow, to solve unsteady convective-diffusion to obtain concentration of solute, 

dispersion function, longitudinal coefficient and concentration using GDM and to analyse the effect of 

temperature and body acceleration on the dispersion of solute in blood flow.  

 

2. Mathematical Formulation 

 

2.1. Non-dimensional variables 

The following is non-dimensional variables: 
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where 
0u  is the fluid characteristic velocity. ,r  

0 ,R  ,  ,  
0 ,u  ( ),F t  ,rA  ,P  ,z  ,u  ,y  ,su  ( )R z  are 

plug core radius, radius of artery in outer region of stenosis, shear stress, viscosity coefficient of Casson 

fluid, fluid characteristic of velocity, heartbeat movement, circular frequency, radial direction, axial 

distance, velocity, yield stress, slip velocity and stenosed radius in non-dimensional variables. 

 

2.2. Governing equation 

2.2.1. Momentum equation 

The non-dimensional momentum equation with body acceleration of steady flow is defined as  
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where 
0a  is constant parameters of the pressure gradient, 

0A  is the non-dimensional of body 

acceleration, p  is the pressure,   is the shear stress, z  is the axial coordinate for a circular pipe, r  is 

the radial coordinate and  
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where 
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( )1  is the non-dimensional of viscosity parameter index, 
wT  is the non-dimensional of temperature 

of the vessel wall,   is the non-dimensional of viscosity, T
 is the non-dimensional of equilibrium 

temperature, according to Tiwari et al. [2] ( )T  is the non-dimensional of temperature-dependent 

viscosity of Reynold model and 

 

 ( ) ( )0 cosF t A t = +  (5) 

is the non-dimensional of acceleration of the body, 
0A  is denoted as non-dimensional of body 

acceleration,   is non-dimensional of circular frequency, t  is the non-dimensional of time and   is the 
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non-dimensional of lead angle of ( )F t  which relates to the heartbeat movement. The boundary 

condition of momentum equation in Eq. (2) is given as follows: 

 

 finite at 0.r = =  (6) 

 

2.2.2. Convective diffusion coefficient 

The non-dimensional of constitutive equation of Casson fluid is given by 

 

 2 ,y y

du

dr
   − = + −  (7) 

where u  is the non-dimensional of velocity of Casson fluid,   is the non-dimensional of viscosity 

coefficient of Casson fluid model and 
y  is the non-dimensional of yield stress. The boundary condition 

is given as follows: 
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where 
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where ( )R z  is the radius of the stenosed segment. The non-dimensonal of the radius artery in Eq. (9) 

is given as follows: 
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where 2

0 ,C bR=  
0R  represents the non-dimensional of radius of the artery in outer region of the 

stenosis, ( )R z  is the non-dimensional of radius of the stenosed segment and   is the non-dimensional 

of height of stenosis at middle point. 

 

2.3. Method of solution 

The non-dimensional of velocity expression in the outer non-plug core is given as  
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where /dp dz  is the non-dimensional of axial pressure gradient, r  is plug core region, pr  is the non-

dimensional plug flow region, 
su  is the non-dimensional of slip velocity and ( )R z  is the non-dimensional 

of radius of the stenosed segment. By evaluating pr r=  in the Eq. (11), the non-dimensional of velocity 

of fluid in the plug flow region is given as follows: 
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The non-dimensional of mean velocity is given by 
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and has been solved using integral method. It forms 
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Generalized Dispersion Model (GDM) is a derivative series expansion the approach of Gill and 

Sankarasubramanian [13] which given as  
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where ( )iK t  is the transport coefficient. The dispersion function of ( )1 ,f r t  plays an important role in 

calculating the mean concentration, ( )1,mC z t . The dispersion function is given as follows: 

 

 
1 1 1( , ) ( ) ( , ),s tf r t f r f r t= +  (16) 

where 
1 ( )sf r  is the dispersion function in the steady state and 

1 ( , )tf r t  is the dispersion function in the 

unsteady state that describes the time dependent nature of the dispersion of the solute. The dispersion 

function at steady state is given by 
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and the dispersion function in outer region is given as follows: 
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Eq. (17) and Eq. (18) are solved using Eq. (18) to get 1sf
−

 and 1sf
+
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and 
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The steady dispersion function in the plug flow region, 1sf
−

 and outer flow region, 1sf
+

 is given as follows: 
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The general solution of 
1 ( , )tf r t  is given as  

 

 
2

1 0

1

( , ) ( ),mt

t m m

m

f r t A e J r
 


−

=

=  (24) 

where 
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The mean concentration is obtained using Inverse Fourier Transform (IFT) [8]. It is given as follows: 
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From Eq. (26), the local concentration is determined [10]. It is given as follows: 
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3. Results and Discussion 

 

3.1. Velocity of the blood flow 

The effect of temperature and body acceleration are graphically computed in this section. The results 

of velocity are obtained and discussed by fixing various parameters in the flow analytic expression after 

solving the momentum equation and defining the yield stress. 

The velocity of Casson fluid with the effect of body acceleration and temperature as illustrated 

in Figure 1 and the result has been validated with Dash et al. [9]. The result for Casson fluid without the 

effect of body acceleration shows a good result with the Casson fluid’s velocity in the previous study 

[9]. Compared to the current result, the results show that increasing of body acceleration tends to 

increase the velocity of the blood flow. 

 

 

Figure 1: Validation of present velocity with Dash et al. [9] 

Figure 2 shows the variation of velocity, u  for different values of body acceleration, 0A  in the 

blood flow with 1, =  1,t =  0, =  0.02,a =  2.5,b =  0.5,z =  0,su =  0.1,y =  2.5B =  and 2P = . The 

velocity increases when body acceleration increases. Sudden changing of velocity in human body 

makes blood flow disrupted. 
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Figure 3 shows the variation of velocity, u  for different values of temperature, T  in the blood 

flow with 
0 2,A =  1, =  1,t =  0, =  0.02,a =  2.5,b =  0.5,z =  0.1,y = 0,su = 0 1,u =  

0 1R =  and 2P = . 

The velocity decreases when temperature increases. Due to fluid viscosity, there is loss of kinetic 

energy of fluid to heat, which tend to increase fluid temperature, but in ordinary situations this heating 

is negligible. Changes in temperature can change the viscosity of the blood. 

 

 
Figure 2: Variation of velocity, u  for different 

values of body acceleration, 0A  in the blood flow 

with 1, =  1,t =  0, =  0.02,a =  2.5,b =  0.5,z =  

0,su =  0.1,y =  2.5B =  and 2P =  

 
Figure 3: Variation of velocity, u  for different 

values of temperature, T  in the blood flow with 

0 2,A =  1, =  1,t =  0, =  0.02,a =  2.5,b =  

0.5,z =  0.1,y =  0,su =  
0 1,u =  

0 1R =  and 

2P =  

 

3.2. Steady dispersion function 

The steady dispersion of Casson fluid with the effect of body acceleration and temperature as illustrated 

in Figure 4 and the result has been validated with Dash et al. [9]. Without the impact of body 

acceleration, the result of Casson fluid’s steady dispersion shows a good result in the present study [9]. 

The present results show the steady dispersion decreases in outer region near the wall, increases of 

body acceleration at the centre of artery compared to the current results. 

 

 

Figure 4: Validation of present steady dispersion with Dash et al. [9] 

Figure 5 shows the variation of steady dispersion function for different values of body 

acceleration, 
0A  in the blood flow with 1, =  2.8,t =  0.01, =  0.01,a =  0,b =  0.05,z =  2.5,B =  0.01y =  

and 3P = . When body acceleration increases at the centre of artery and steady dispersion decreases 

in outer region near wall. As the amplitude of the body’s acceleration increases, blood flow decreases, 

causing the dispersion function to decrease and the dispersion of solutes to be affected by fluctuating 

blood flow. 

Figure 6 shows the variation of steady dispersion function for different values of temperature, 

T  in the blood flow with 
0 0.1,A =  1, =  2.8,t =  0.01, =  0.01,a =  0,b =  0.05,z =  2.5,B =  0.01,y =  

2,P =  0 1u =  and 0 1R = . When temperature decreases at the centre of artery and steady dispersion 

increases in outer region near wall. An increase in varying viscosity parameters leads to growth in axial 

scattering due to decreased viscosity and smoother flow velocity. 
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Figure 5: Variation of steady dispersion function 

for different values of body acceleration, 
0A  in the 

blood flow with 1, =  2.8,t =  0.01, =  0.01,a =  

0,b =  0.05,z =  2.5,B =  0.01y =  and 3P =  

 
Figure 6: Variation of steady dispersion function 

for different values of temperature, T  in the 

blood flow with 
0 0.1,A =  1, =  2.8,t =  0.01, =  

0.01,a =  0,b =  0.05,z =  2.5,B =  0.01,y =  

2,P =  
0 1u =  and 

0 1R =  

 

3.3. Unsteady dispersion function 

Figure 7 shows the variation of unsteady dispersion function for different values of body 

acceleration, 
0A  in the blood flow with 1, =  0,t =  0.05, =  0.01,a =  0,b =  0.5,z =  1,B =  0.01y =  

and 1P = . The dispersion function increases as the amplitude of body acceleration increases at the 

center of artery and decreases in the outer region near the wall. As the amplitude of the body’s 

acceleration increases, blood flow decreases, causing the dispersion function to decrease and the 

dispersion of solutes to be affected by fluctuating blood flow. 

Figure 8 shows the variation of unsteady dispersion function for different values of temperature, 

T  in the blood flow with 0 0.1,A =  1, =  0,t =  0.05, =  0.01,a =  0,b =  0.5,z =  1,B =  0.01,y =  1,P =  

0 1u =  and 
0 1R = . Temperature increases, the unsteady dispersion function decreases. The heat 

transfer aspect significantly affects the axial propagation in the flow through tubes with medium or less 

reactive walls. 

 

 
Figure 7: Variation of unsteady dispersion 

function for different values of body acceleration, 

0A  in the blood flow with 1, =  0,t =  0.05, =  

0.01,a =  0,b =  0.5,z =  1,B =  0.01y =  and 

1P =  

 
Figure 8: Variation of unsteady dispersion 

function for different values of temperature, T  in 

the blood flow with 0 0.1,A =  1, =  0,t =  

0.05, =  0.01,a =  0,b =  0.5,z =  1,B =  1,P =  

0 1,u =  0.01,y =  and 
0 1R =  

 

3.4. Dispersion function 

Figure 9 shows the variation of dispersion function for different values of body acceleration, 0A  

in the blood flow with 1, =  0.2,t =  0.02, =  0.01,a =  0,b =  0.5,z =  2.5,B =  0.01y =  and 3P = . It 

is showed that dispersion function decreases with the body acceleration and it approaches when the 
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value of body acceleration is increasing. According to Patel and Sirs [10], the flexing of red blood cells 

and their migration of the core is one of the factors that influence the dispersion of solute in blood flow. 

Figure 10 shows the variation of dispersion function for different values of temperature, T  in 

the blood flow with 0 1,A =  1, =  0.2,t =  0.02, =  0.01,a =  0,b =  0.5,z =  2.5,B =  0.01,y =  3,P =  

0 1u =  and 
0 1R = . The dispersion function decreases with the increasing of temperature. According to 

Tiwari et al. [2], the varying viscosity properties lead to a reduction in viscosity and result in a smoother 

flow in the region. 

 

 
Figure 9: Variation of dispersion function for 

different values of body acceleration, 
0A  in the 

blood flow with 1, =  0.2,t =  0.02, =  0.01,a =  

0,b =  0.5,z =  2.5,B =  0.01y =  and 3P =  

 
Figure 10: Variation of dispersion function for 

different values of temperature, T  in the blood 

flow with 0 1,A =  1, =  0.2,t =  0.02, =  

0.01,a =  0,b =  0.5,z =  2.5,B =  0.01,y =  

3,P =  
0 1u =  and 

0 1R =  

 

3.5. Mean concentration 

Figure 11 shows the variation of mean concentration for different values of body acceleration, 

0A  in the blood flow with ( ) 2,F t =  0.02,a =  0,b =  5,z =  1,B =  0.75,y =  1.4,sz =  11,su =  1,Pe =  

0 =2.5R  and 1.5P = . The mean concentration of solute increases as the pressure gradient increases. 

Acceleration in the body, then a sharp decrease in mean concentration. The heart pumps blood with 

high flow when the concentration of solute increases.  

 

Figure 11: Variation of mean concentration for different values of body acceleration, 
0A  in the 

blood flow with ( ) 2,F t =  0.02,a =  0,b =  5,z =  1,B =  0.75,y =  1.4,sz =  11,su =  1,Pe =  
0 =2.5R  and 

1.5P =  

Figure 12 shows the variation of mean concentration for different values of temperature, T  in 

the blood flow with ( ) 2,F t =  0.02,a =  0,b =  5,z =  1,A =  0.75,y =  1.4,sz =  11,su =  1,Pe =  
0 =2.5R  

and 1.5P = . Temperature increases, the mean concentration increases. The temperature-dependent 

viscosity reduces the difference in mean concentration. The effects of small temperature variations can 

cause severe damage to the human body. 
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Figure 12: Variation of mean concentration for different values of temperature, T  in the blood flow with 

( ) 2,F t =  0.02,a =  0,b =  5,z =  1,A =  0.75,y =  1.4,sz =  11,su =  1,Pe =  
0 =2.5R  and 1.5P =  

 

4. Conclusion 

 

The results indicate the higher of temperature, the lower the flow of velocity. Then, the velocity of blood 

flow increases in blood flow while velocity increases with the increases of pressure gradient. Meanwhile, 

temperature decreases at the centre of artery and steady dispersion increases in outer region near wall. 

Then, body acceleration increases at the centre of artery and steady dispersion decreases in outer 

region near wall. Besides, temperature increases, the unsteady dispersion function increases. Then, 

when body acceleration increases at the centre of artery and steady dispersion decreases in outer 

region near wall. The dispersion function increases and it approaches zero when temperature 

increases. Meanwhile, the dispersion function decreases and it approaches when the value of body 

acceleration increases. For mean concentration, temperature increases, the mean concentration 

increases. The temperature-dependent viscosity reduces the difference in mean concentration. The 

mean concentration of solute increases as the pressure gradient increases. Acceleration in the body, 

then a sharp decrease in mean concentration. The current findings are helpful in addressing the issues 

of dispersion in human body. In the future, this research can be extended to two different models. It 

should also be noted that the velocity and flow rate of the two-fluid blood flow model are higher than 

single fluid blood flow model. 
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