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Abstract 

 The conformable derivative is used to propose the advection-dispersion equation (ADE) for an accurate 

description of fluid flow and solute transport in porous media. Under various initial and boundary 

conditions, analytical solutions of the proposed conformable advection-dispersion equation (CADE) are 

produced. The analytical solutions of CADE in three different form which are stretched Gaussian, error 

function and asymmetrical are reduced to classical ADE with the conformable derivative order 𝛼 = 1. 

The analytical solutions are obtained using Fourier transformation technique. Furthermore, CADE 

models is also validated on the basis of empirical data in literatures, as opposed to the standard ADE 

(power-law) breakthrough curves of fluid flow and solute transport in porous media. As the result, it 

indicates that the presented CADE models is applicable for each case. Therefore, the CADE models 

described here can be utilized to accurately describe fluid flow and solute transport in porous media. 

 

Keywords: Advection-dispersion; Conformable derivative; Analytical solutions; Fluid flow; Solute 

transport 

 

1. Introduction 

Fluid flow and solute transport modelling in porous media is significant in a wide range of applications 

including hydrogeology, groundwater management, environmental protection, soil physics, petroleum 

engineering, chemical engineering and energy extraction. Many applications in the environment and 

the chemical process sector require transport in porous media [1]. Porous materials can be found in 

almost every aspect of existence including technology and nature. Almost all solid and semi-solid 

materials are "porous" to variable degrees with the exception of metals, some hard rocks and some 

polymers. To be classified as a porous medium, a substance or structure must possess these two 

characteristics. It must have holes or pores implanted in the solid or semi-solid matrix that are devoid 

of substances. A fluid such as air, water, oil or a mixture of fluids is frequently present in the pores. It 

must be permeable to a wide range of fluids which means fluids must be able to pass through one face 

of a material sample and emerge on the other. 

Advection and dispersion in natural pore-fracture networks are the fundamental fluid flow and 

solute transport mechanisms in porous media [2]. According to Philips and Castro [3], advection is 

mechanical transport of solutes along with the bulk flux of the water, where the water flux is driven by 

the gradient in the total mechanical energy of the solution. Dispersion refers to the spreading of the 

contaminant plume from highly concentrated areas to less concentrated areas.  

The solution to ADE with certain initial and boundary conditions frequently necessitates the use 

of numerical methods. In other cases, when an analytical approach is feasible, the solutions frequently 

involve constant velocities. There are various analytical solutions for constant velocity and dispersion 

coefficients, as well as various boundary conditions [4]. Its analytical solutions help to understand the 

contaminant or pollutant concentration distribution behaviour through an open medium like rivers, lakes, 

air and porous medium like groundwater. The classical advection–dispersion equations (ADE) for 

modelling advection–dispersion transport processes have become widely used. It is mostly applied in 

the area of transportation modelling [5]. Specifically, the advection-dispersion equation is commonly 
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used as governing equation for movement of contaminants or more widely solutes in saturated porous 

media. There are numerous analytical solutions for classical ADE. However, analytical solutions for the 

fractional advection–dispersion equation with hybrid circumstances tend to be relatively complicated, 

requiring tedious mathematical derivations and numerical simulations [6]. Therefore, a new perspective 

to time-dependent modelling is necessary with the conformable derivative technique arising. 

In this study, the conformable derivative is used to generalise the classical ADE, resulting in 

the conformable advection–dispersion equation (CADE). Three cases of CADE will be considered, 

which are stretched Gaussian solution, error function solution and asymmetrical solution. CADE models' 

prospective applicability have been validated through analytical derivations and experimental 

evaluations. 

 

2.    Literature Review 

2.1. Preliminary Concepts 

Definition 1. Given a function f(t): [0, ∞) → R, then the conformable derivative of f with order α ∈ (0, 1] 

is defined by  

 

 Tα f(t) = lim
𝜀→0

𝑓(𝑡+𝜀𝑡1−𝛼)−𝑓(𝑡)

𝜀
 ,                                                                                            (1) 

for all t > 0. If f is α-differentiable, i.e., Tα f(t) exists and lim
𝑡→0

(𝑇𝛼𝑓)(𝑡) also exists, then the conformable 

derivative at 0 is given by  

 

(𝑇𝛼𝑓)(0) = lim
𝑡→0

(𝑇𝛼𝑓)(𝑡). 

 

Lemma 2. If f is differentiable and α-differentiable for t > 0, then  Tα f(t) = 𝑡1−𝛼 𝑑𝑓

𝑑𝑡
 is valid [7]. 

 

2.2. Advection-Dispersion Equation 

The one-dimensional ADE for the description of concentration distribution of fluid flow and solute 

transport in porous media is represented as 

 

                                 
𝜕𝐶(𝑥,𝑡)

𝜕𝑡
 = 𝐷

𝜕2𝐶(𝑥,𝑡)

𝜕𝑥2
 - 𝑢

𝜕𝐶(𝑥,𝑡)

𝜕𝑥
 ,                                        (2) 

  

 

2.3. Conformable Advection-Dispersion Equation  

The conformable advection-dispersion equation is expressed as 

(3) 

 

 
                   

𝜕𝛼𝐶(𝑥, 𝑡)

𝜕𝑡𝛼
= 𝐷𝛼

𝜕2𝐶

𝜕𝑥2
− 𝑢

𝜕𝐶

𝜕𝑥
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2.4.  Fourier Transform Method 

Fourier transform (FT) is a mathematical transform that dissolve functions depending on space or time 

into functions depending on spatial or temporal frequency. The Fourier transform is not limited to 

functions of time but the domain of the original function is commonly referred to as the time domain. 

There is also an inverse Fourier transform that mathematically synthesizes the original function from 

its frequency domain representation, as proven by the Fourier inversion theorem.  

 

 

3.  Mathematical Formulation 

 

3.1. Stretched Gaussian Solution 

For an instantaneous point source, the conformable advection-dispersion equation is 

 𝜕𝛼𝐶(𝑥, 𝑡)

𝜕𝑡𝛼
= 𝐷𝛼

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑢

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
, 

 

(4) 

𝐶(𝑥, 0) = 𝛿(𝑥) 

 

Employing the Fourier transform to both sides of the CADE in equation (4) and taking Lemma 2 will get 

  

 𝑑𝐶̂ (𝜔, 𝑡)

𝑑𝑡
+ (𝐷𝛼𝜔2 + 𝑢𝑖𝜔)𝑡𝛼−1𝐶̂(𝜔, 𝑡) = 0, 

 
(5) 

 

with the initial condition 𝐶̂(𝜔, 0) =
1

√2𝜋
 . The analytical solution of the equation (5) can be expressed as 

 
𝐶̂(𝜔, 𝑡) =

1

√2𝜋
𝑒𝑥𝑝 {−

𝐷𝛼𝜔2 + 𝑢𝑖𝜔

𝛼
 𝑡𝛼} 

 
(6) 

 

The inverse Fourier transform will deduce the analytical solution of the CADE represents as a stretched 

Gaussian distribution as the following 

 
𝐶(𝑥, 𝑡) = √

𝛼

4𝜋𝐷𝛼𝑡𝛼
  exp {

−𝛼

4𝐷𝛼𝑡𝛼
(𝑥 −

𝑢𝑡𝛼

𝛼
)2}, 

 
(7) 

 

and when 𝛼 = 1, 

 
𝐶(𝑥, 𝑡) =  

1

√4𝜋𝐷𝑡
 exp {

−(𝑥 − 𝑢𝑡)2

4𝐷𝑡
} 

 
(8) 

 

  

 

3.2. Error Function Solution  

Consider the conformable advection–dispersion equation in semi-infinite media 

 𝜕𝛼𝐶(𝑥, 𝑡)

𝜕𝑡𝛼
= 𝐷𝛼

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑢

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
  

(9) 

 

with the conditions 

 𝐶(𝑥, 0) = 0, 𝐶(∞, 𝑡) = 0, 𝐶(0, 𝑡) = 𝐶0 (10) 

 

The CADE in equation (9) reduces to the following conformable diffusion equation by using 

transformation 
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𝜕𝛼𝐶(𝑥′, 𝑡)

𝜕𝑡𝛼
= 𝐷𝛼

𝜕2𝐶

𝜕𝑥′2 
(11) 

Applying a dimensionless Boltzmann transform, 𝜉 and rearranging equation (11) based on Lemma 2, 

we can obtain an ordinary differential equation, 

 
                

𝑑2𝐶

𝑑𝜉2
+ 2𝛼3𝜉

𝜕𝐶

𝜕𝜉
= 0 

 
(12) 

The equation (12) has the following analytical solution  

 
         

𝐶0 erfc(𝛼√𝛼𝜉)

erfc (
−𝑢𝑡𝛼

√4𝛼𝐷𝛼𝑡𝛼
)

 
 
 
(13) 

 

 Substituting 𝜉 and 𝑥′ into equation (13) yields (14) 

 

𝐶0𝑒𝑟𝑓𝑐 (
𝑥 −

𝑢𝑡𝛼

𝛼

√4𝛼𝐷𝛼𝑡𝛼/𝛼
) [𝑒𝑟𝑓𝑐 (

−𝑢𝑡𝛼

√4𝛼𝐷𝛼𝑡𝛼
)]

−1

 

 

It is important to note that the CADE degenerates to the classical ADE because the conformable 

fractional derivative decreases to the classical integer derivative with differential order 𝛼 = 1. As a 

result, the analytical CADE solution in equation (14) yields the conventional ADE solution, i.e. 

 
                         𝐶(𝑥, 𝑡) = 𝐶0𝑒𝑟𝑓𝑐 (

𝑥 − 𝑢𝑡

√4𝐷𝑡
) [𝑒𝑟𝑓𝑐 (

−𝑢𝑡

√4𝐷𝑡
)]

−1

 

 

(15) 

When the average velocity, 𝑢 = 0, equation (14) turns into 

 
                         𝐶(𝑥, 𝑡) = 𝐶0𝑒𝑟𝑓𝑐 (

√𝛼𝑥

√4𝐷𝛼𝑡𝛼
) 

 

(16) 

Meanwhile, the traditional ADE is reduced to the normal diffusion equation, which has the following 

well-known analytical solution in terms of error function: 

                       𝐶(𝑥, 𝑡) = 𝐶0𝑒𝑟𝑓𝑐 (
𝑥

√4𝐷𝑡
) 

 

(17) 

 

3.2. Asymmetrical Solution 

Ogata and Bank [8] proposed an asymmetrical solution to classical ADE with acceptable boundary 

conditions, i.e., the CADE in equation (9) with 𝛼 = 1, as a solution to classical ADE.  

 
                     𝐶(𝑥, 𝑡) =

𝐶0

2
[erfc (

𝑥 − 𝑢𝑡

√4𝐷𝑡
) + exp (

𝑢𝑥

𝐷
) erfc (

𝑥 + 𝑢𝑡

√4𝐷𝑡
)] 

(18) 

 

We aim to propose an asymmetrical solution of the presented CADE in equation (9) using analogous 

reasons, as motivated by the aforementioned publications. Using a transformation similar to the one 

described in [8], that is 

 
                         𝐶(𝑥, 𝑡) = 𝐾(𝑥, 𝑇) exp (

𝑢𝑥

2𝐷𝛼
−

𝑢2𝑇

4𝐷𝛼
) 

(19) 

where 𝑇 = 𝑡𝛼/𝛼. The following boundary value problem is deduced by substituting equation (19) into 

equation (9). 

 
                         

𝜕𝐾(𝑥, 𝑇)

𝜕𝑡
= 𝐷𝛼

𝜕2𝐾(𝑥, 𝑇)

𝜕𝑥2
 

 

 
                     𝐶(0, 𝑇) = 𝐶0 𝑒𝑥𝑝 (

𝑢2𝑇

4𝐷𝛼
) , 𝐶(𝑥, 0) = 0, 𝐶(∞, 𝑇) = 0 

(20) 
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which is similar to the problem presented by Ogata and Bank [8]. 

 

As a result, the desired CADE solution in equation (9) can be written as 

 
𝐶(𝑥, 𝑡) =

𝐶0

2
[𝑒𝑟𝑓𝑐 (

𝑥 − 𝑢𝑡𝛼/𝛼

√4𝐷𝛼𝑡𝛼/𝛼
) + 𝑒𝑥𝑝 (

𝑢𝑥

𝐷𝛼
) 𝑒𝑟𝑓𝑐 (

𝑥 + 𝑢𝑡𝛼/𝛼

√4𝐷𝛼𝑡𝛼/𝛼
)] 

(21) 

 

4.   Results and discussion 

 

4.1. Stretched Gaussian Solution 

Figure 1 illustrates the outcomes of equation (7) formed by the process of Fourier transformation 

technique. The concentration values calculated from the analytical solution of equation (7) for under 

point source problem as stretched Gaussian solution are shown. The parameter values used here are 

based on the experimental study done for CO2-CH4 dispersion in Estaillades carbonate conducted by 

Honari et. al., (2015). The solid curves in Figure 1 represent equation (7) in which concentration values 

are evaluated in a finite domain 0 ≤ 𝑥 ≤ 20 at times 𝑡(𝑠𝑒𝑐𝑜𝑛𝑑) = 86400 is chosen for various value of 

𝛼 which are 0.2, 0.5, 0.7 and 1.0, for the input values 𝑢 = 0.009 𝑚𝑚𝑠−1, 𝐷 = 0.152 𝑚𝑚2/𝑠 are taken. 

Based on Figure 1, the four solid curves at 𝑡(𝑠𝑒𝑐𝑜𝑛𝑑) = 86400 which is same as 1 day show that 

the concentration values at 𝛼 = 0.2, 0.5, 0.7  and 1.0 decrease starting from the origin, (𝑥 = 0) to the 

other end of finite domain (𝑥 = 20). Also, as parameter of 𝛼 becomes higher, concentration value at 

respective position is lower or it can also be said that as parameter of 𝛼 rises from 0.2 to 1.0, the value 

of concentration decreased but for 𝑥 < 6 only. After that, there is an area which the concentration for 

the smallest 𝛼 (0.2) is lower than the higher 𝛼. In addition, from the same figure, it can also be seen at 

the smallest value of 𝛼 = 0.2, the concentration value decreases the fastest and for 𝛼 = 1.0, the line is 

where almost no changes compared to the others as the other end of the medium is approached. This 

means that the value of concentration is so small where it is almost zero when the parameter 𝛼 = 1.0. 

Apart from that, in Figure 2, three different curves with different velocities are drawn for the value 

𝑢 = 0.009 𝑚𝑚 𝑠−1, 0.23 𝑚𝑚 𝑠−1 and 1.149 𝑚𝑚 𝑠−1 at 𝛼 = 0.2. The time taken for this process is 86400 

second and the dispersion coefficient, D is 0.152 𝑚𝑚2/𝑠. When the velocity, 𝑢 = 0.009 𝑚𝑚 𝑠−1 and 

0.23 𝑚𝑚 𝑠−1, the highest value of concentration obtained for this two curves is almost at the same level. 

This condition indicates that the curves and path of this two concentration are quite consistent. When 

at 𝑢 = 1.149 𝑚𝑚 𝑠−1, the concentration is almost at zero starting from the origin (𝑥 = 0) to the end of 

range 𝑥 which is at 𝑥 = 20 mm. This shown that the value of concentration is very small at this velocity. 

Figure 3 illustrates the concentration values plotted with dispersion coefficient 𝐷 = 0.152 𝑚𝑚2𝑠−1 

and 0.123 𝑚𝑚2𝑠−1 for velocity, 𝑢 = 0.009 𝑚𝑚 𝑠−1  and 𝑡 = 86400 𝑠. The parameter of 𝛼 used in this 

case is 0.5. These two lines have the same shape but different in concentrations. From the figures, it is 

observed that when the dispersion coefficient is higher, the concentration becomes lower. The 

concentration of each line increases from the origin until one point where around 𝑥 = 7 𝑚𝑚. After that, 

the concentration value decreases until they have the same value of concentration at around 𝑥 =

17𝑚𝑚. Overall, Figures 1- 3, it can be seen that the solution satisfies the Gaussian distribution shape 

(plotted on the side only here). 
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Figure 1  Concentration profiles of the CADE 
model in equation (7) with the ordinary ADE 

(𝛼 = 1) 

 
Figure 2  The CADE model in equation (7) for 

different velocity, 𝑢 at 𝛼 = 2  

 

 

 
Figure 3  The CADE model in equation (7) with the breakthrough profile for different dispersion 

coefficient, 𝐷 

 

 

4.2. Error Function Solution 

Figure 4 shows the CO2 concentration values evaluated from analytical solution of equation (14) for 

Dirichlet problem as error function solution. The parameters are taken from the experiment of CO2-

CH4 displacement and dispersion in sandpacks in enhanced gas recovery conducted by Liu et. al., 

(2015). The curves in figure 4 represent concentration values in a finite domain 0 ≤ 𝑥 ≤ 1 for various 

value of 𝛼 which are 0.2, 0.5, 0.7 and 1.0 , for input values 𝐶0 = 1.0, 𝑢 = 0.114 (10−3m/s),  𝑡 = 86400 𝑠 

and 𝐷 = 1.890 (10−7 m2/s) are taken. 

Based on Figure 4, the smaller the values of 𝛼, the faster the concentration values decrease. 

When 𝛼 = 1, there is almost no changes along the path compared to the others where the 

concentration value maintain at 𝐶 = 1 from the beginning until the end of range of x which is at 𝑥 = 1 

m. 

Apart from that, in Figure 5, three different curves are drawn for the different value of dispersion 

coefficient which are 𝐷 = 2.517 (10−7 m2/s), 4.517      (10−7 m2/s) and 6.517 (10−7 m2/s) for velocity, 

𝑢 = 0.057 (10−3𝑚𝑚 𝑠−1)  and 𝑡 = 86400 𝑠. The parameter of 𝛼 used in this case is 0.7. The graphic 

shows that the values of concentration decrease slightly more quickly as the dispersion coefficient 

value rises, from 𝑥 = 0 to 𝑥 = 0.25. However, the concentration behavior act differently after that. 
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In Figure 6, three different curves are drawn for the value 𝑢 = 0.057 × 10−3 𝑚/𝑠, 0.085 

× 10−3 𝑚/𝑠 and 0.142 × 10−3 𝑚/𝑠. The time taken for this process is 86400 second and the 

dispersion coefficient, D is 1.890 × 10−7𝑚2/𝑠 . The initial condition for three curves are the same 

since the initial condition, 𝐶0 = 1. For 𝑢 = 0.057 × 10−3 𝑚/𝑠 where the smallest value of velocity 

among them, the concentration was dropped fastest followed by 𝑢 = 0.085 × 10−3 𝑚/𝑠 and 0.142 

× 10−3 𝑚/𝑠. 

 
Figure 4  Concentration profile of the CADE model in equation (14) with breakthrough profiles for 

CO2-CH4 in sandpacks at different 𝛼 

 

              

Figure 5  The CADE model in Equation (3.26) with breakthrough profiles for 𝐷 at 𝛼 = 0.7 
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Figure 6   The CADE model in equation (14) for different velocity, u.     

 

  

 

4.3. Asymmetrical Solution 

Figure 7 shows the concentration values evaluated from analytical solution of equation (21) for 

asymmetrical solution. The parameter values used here are based on the experimental data from 

Honari et. al., (2015). The curves in Figure 7 represent concentration values in a finite domain 0 ≤ 𝑥 ≤

1 with 𝑡(𝑠𝑒𝑐𝑜𝑛𝑑) = 86400 𝑠 for various value of 𝛼 which are 0.2, 0.5, 0.7 and 1.0 , for input values 𝐶0 =

1.0, 𝑢 = 0.0001 (m/s) and 𝐷 = 16.4 (10−8 m2/s) are taken. 

Based on Figure 7,  the smaller the values of 𝛼, the faster the concentration values decrease. 

When 𝛼 = 1, there is almost no changes along the path compared to the others where the concentration 

value maintain at 𝐶 = 1 from the beginning until the end of range of x which is at 𝑥 = 1 m. 

 

 

 
Figure 7  Concentration profiles of the CADE model in equation (21) for different 𝛼. 

 

Apart from that, in Figure 8, three different curves are drawn for the value 𝑢 =

0.23 𝑚𝑚 𝑠−1, 0.387 𝑚𝑚 𝑠−1 and 0.696 𝑚𝑚 𝑠−1. The curves in Figure 8 represent concentration values 

for value of 𝛼 = 0.2, input values 𝐶0 = 1.0,  𝑡 = 86400 𝑠 and 𝐷 = 0.152 mm2/s are taken. When the 

velocity is smaller, the values of concentration will drop faster. For  𝑢 = 0.23 𝑚𝑚 𝑠−1, the 

concentration was dropped fastest followed by 𝑢 =  0.387 𝑚𝑚 𝑠−1. When 𝑢 =  0.696 𝑚𝑚 𝑠−1, the line 
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changes almost nothing along the path in comparison to the others since the concentration value is 1 

from the start of the range of x to the end, which is at x=20 mm. 

 

 
Figure 8  The CADE model in equation (21) with different velocity, u 

 

Conclusion 

The main scope of this study is to produce analytical solutions for the conformable derivative advection–

dispersion equations. As a result, by illustrating the behavior of fluid flow and solute transport in porous 

media, the CADE models represented by these solutions are validated. All of the CADE models 

provided are in great agreement with actual data in the literature, indicating that they may be used to 

accurately describe fluid flow and solute transport in porous media. It is indicated that the conformable 

derivative can be associated with the concept of derivative with respect to another function. The 

variation or different of conformable derivative orders have been analysed through the plotting graphs 

in this study. Such analytical solutions could be used to validate the conformable derivative model. 
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