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Abstract 

Blood flow is a fluid dynamics problem in the human vascular system and dispersion of solute 

(medicine) in blood (solvent) flow is one of the practical problems in biomedical engineering. The 

purpose of this study is to analyse the effect of magnetic field on the dispersion of solute in pulsatile 

blood flow through an artery by modelling the blood as power law fluid. The integration and perturbation 

methods are utilised to find the solution for the unsteady blood flow velocity. The concentration of solute, 

dispersion function and mean concentration are obtained by solving the unsteady convective-diffusion 

equation with the Generalized Dispersion Model (GDM) and applying the integration approach. The 

presence of magnetic field produces magnetic force, which influences blood velocity and solute 

dispersion. The effects of the magnetic field on blood velocity and solute dispersion are graphically 

represented. The results show that when the fluid magnetization, magnetic field gradient and magnetic 

parameter rise, the blood velocity, mean concentration and dispersion function decrease. However, if 

the pressure gradient increases, the blood velocity, mean concentration and dispersion function 

increase. As a result, it is investigated that the magnetic field lowers the blood velocity and solute of 

dispersion function. The current research can assuredly be used to predict changes of blood flow 

behavior with the presence of magnetic field and helps people in need of study to comprehend the 

mechanism of solute dispersion process in pulsatile blood flow. 

Keywords: Magnetic field; Perturbation method; Power law fluid; Solute dispersion; Generalized 

Dispersion Model 

 

1. Introduction 

The investigation of the physical mechanisms of blood flow via blood vessels in the cardiovascular 

system is essential for understanding cardiovascular disorders such as atherosclerosis and post-

stenotic dilatation. Nicholas et al. [1] stated that the cardiovascular system, also known as the circulatory 

system, is made up of blood arteries, the heart and blood itself. The cardiovascular system's role is to 

transport blood throughout the body. The blood, as a medium, transports oxygen, nutrients and 

hormones to all sections of the human tissues, as well as carbon dioxide and other waste items out of 

the body. Furthermore, the cardiovascular system protects the body from infections and disorders [2]. 

Cardiovascular system relies heavily on the arterial pulse [3]. Human cells are capable of 

detecting and adapting to cyclic pressure and flow variations. Dincau et al. [4] mentioned that one of 

the flow variations is pulsatile flow which causes shear and strain forces on the endothelium, smooth 

muscle and fibroblast cells in both the large scale and microcirculation. At the cellular level, the 

mechanical strengths of pulsatility always initiate different cellular signalling pathways and have critical 

impacts on endothelium control of vasodilation and vascular remodelling, counting framework 

statement, programed cell passing, smooth muscle cell multiplication and atherosclerosis. In liquid 

elements, a flow with occasional varieties is known as pulsatile flow. 

Magnetic treatment is now routinely utilised to treat a variety of ailments. Magnetic therapy is 

the use of magnetic fields to assist the body in reducing muscular inflammation and discomfort. 

Marcinkowska-Gapinska and Nawrocka-Bogusz [5] stated that magnetic fields are used in a variety of 

medical professions, including neurology, orthopaedics, rheumatology and psychiatry. The magnetic 
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treatment may be beneficial for ischemic tissue reperfusion or during sepsis. Necrosis occurs 

gradually if blood supply to a tissue is restricted or diminished. A magnetic field applied locally might 

cause blood vessel relaxation and enhanced blood flow. 

The influence of a magnetic field on the rheological characteristics of whole blood is a poorly 

understood phenomena that has received little attention. Nobody conducts the research on solute 

dispersion in blood flow while accounting for the influence of a magnetic field using a power law fluid 

model. Therefore, the goal of this study is to develop a power law fluid model and theoretically examine 

the effects of magnetic fields on the solute dispersion of blood flow in a power law fluid. Solute 

dispersion research in blood flow can aid in the medical profession by producing an effective fluid model, 

blood velocity, solute dispersion, solute concentration and time for taking medicine. 

 

2. Mathematical Formulation 

 

2.1 Non-dimensional variables  

Consider the non-dimensional variables as below: 
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where ( )
1n
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=  has the dimension of Newtonian fluid viscosity. Meanwhile, 

0, , , , , , , , , , , mr u u t p z g C D    and H  are the radius, velocity, first term of the perturbation series of 

velocity, time, pressure, shear stress, density of the fluid, gravitational acceleration, Reynolds number, 

solute concentration, constant molecular diffusion and magnetic field intensity respectively. 

 

2.2 Governing equations 

 

2.2.1 Momentum and constitutive equations 

The non-dimensionalized momentum and constitutive equations are defined as 
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where n is the power law index. 

The non-dimensionalized boundary conditions for Equations (2) and (3), respectively are given as 

 

is finite at 0r =         (4) 

and 

0 at 1.u r= =                (5) 
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2.3 Method of solution 

The series expansion of the perturbation method is obtained by applying the Reynolds number   as 

the single variable (where 1  ). In the perturbation series, velocity u  and shear stress   are 

extended as follows: 

0 1( , , ) ( , , ) ( , , ) ...u r z t u r z t u r z t= + +     (6) 

and 

0 1( , , ) ( , , ) ( , , ) ... .r z t r z t r z t  = + +    (7) 

The perturbation series expansion of u  in Equation (6) and   in Equation (7) are substituted into 

Equations (2) and (3), respectively and integrated with respect to r  to get 

0 1
2
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Which are the first term of the perturbation series of shear stress 0  and the second term of the 

perturbation series of shear stress 1 . After that, it formed the first term of the perturbation series of 

velocity 0u  and the second term of the perturbation series of velocity 1u  respectively as 
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0u  and 1u  in Equations (10) and (11) are substituting respectively into the perturbation series of velocity 

in Equation (6), the unsteady velocity in the outer flow region is obtained as 
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The velocity in the outer flow region in Equation (12) is dimensionalized using the non-

dimensional variables in Equation (1) to determine the solution for concentration. The velocity in the 

outer flow region is obtained in dimensional form as
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Applying Equation (13) to solve for mean velocity 
mu  by using integral method gives 
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The velocity in the outer flow region in Equation (13), as well as the mean velocity in Equation 

(14) are used to calculate the relative velocity in the outer flow region based on its definition of 

ˆ
o o mu u u= −  and the result is as follows: 
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Generalized Dispersion Model (GDM) is used in the convective-diffusion equation to calculate the 

dispersion function, longitudinal diffusion coefficient and mean concentration. GDM is a derivative 

series extension of Gill and Sankarasubramanian [6] technique, which is given by ( )1,mC z t  as 
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where ( )iK t  is the transport coefficient derived as 
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The coefficient of 
1/mC z   is the dispersion function 

1( , )f r t , which is used to measure the departure 

of the local concentration 
1( , , )C r z t from the mean concentration 

1( , )mC z t . The dispersion function is 

given as follows 

1 1 1( , ) ( ) ( , ),s tf r t f r f r t= +              (19) 

where 1 ( )sf r  is the steady state dispersion function and 1 ( , )tf r t  is the unsteady state dispersion 

function, which represents the time-dependent nature of solute dispersion. The boundary conditions of 

1 ( )sf r  and 
1 ( , )tf r t  are given by 
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The differential equation of dispersion function at the steady state in outer flow region is given by 
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Solving the differential equation of dispersion function at the steady state in outer flow region in Equation 

(24) using boundary condition in Equation (20) becomes 
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where 1PF  and CI  are defined as 
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The general solution of 1 ( , )tf r t  is given as 
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The solution of mean concentration of solute 1( , )mC z t  is computed by using Inverse Fourier Transform 

(IFT) and gives
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where erf is the error function. 

From Equation (30), the local concentration is determined as below: 
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3. Results and discussion 

 

3.1 Velocity of the blood flow 

The influence of several variables such as fluid magnetization M , pressure gradient P , induced 

magnetic field gradient /H z   and magnetic parameter 1F  on the variation of velocity u  with radius 

r  has been investigated in this study. To explore the variations in u , several parameters such as M

= 0.0-0.8, P = 10-30, /H z  = 1-41 and 1F = 0.00029-0.80029 were used. 

 Figure 1 shows how the velocity reduces progressively as M  rises. This is due to the magnetic 

force acting in the opposite direction of the solute, causing the impact of velocity to be reduced. As the 

M  value rises, the resistive forces that prevent fluid flow rise as well and lowering blood velocity. The 

result in Figure 2 shows that raising P  causes an increase in blood velocity. The artery's blood flow 

rate and velocity vary in inverse proportion to the entire cross-sectional area of the blood vessel. As a 

result, increasing the vessel's total cross-sectional area causes the flow rate to drop. Next, in Figure 3, 

it can be observed that the /H z   increment caused the velocity to drop. 

 As far as is known, the magnetic field may induce a charged particle to move in a circular or spiral 

manner. When a particle advances along a magnetic field line into an area where the field grows 

stronger, it experiences a force that reduces the element of velocity parallel to the field. As seen in 

Figure 4, increasing 1F  causes a decrease in blood velocity. 

 

Figure 2 Variation of velocity with radius 

for fixed values of M = 2, /H z  = 10, 0 = 1, 

a = 0.25, 0H = 0.2, 0U = 36,  = 0.035, n = 1, 

t = 1,  = 1 and different values of P = 10, 15, 

20, 25, 30 

Figure 1 Variation of velocity with radius 

for fixed values of P = 2, /H z  = 1, 0 = 1, 

a = 1, 0H = 1, 0U = 1,  = 1, n = 1, t = 1,  = 

1 and different values of M = 0.0, 0.2, 0.4, 0.6, 

0.8 
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3.2 Steady dispersion function 

Figures 5-7 show the variation of steady dispersion function 1sf  with radius for fixed value of n = 3 for 

different values of magnetic parameter 1F , induced magnetic field gradient /H z   and pressure 

gradient P  respectively. From Figure 5 and Figure 6, the steady dispersion function decreases as 1F  

and /H z   increase, however the steady dispersion function increases when P  increases as shown 

in Figure 7. 

 

 

Figure 3 Variation of velocity with radius 

for fixed values of M = 2, P = 15, 0 = 1, a = 

0.25, 0H = 0.2, 0U = 36,  = 0.035, n = 1, t = 

1,  = 1 and different values of /H z  = 1, 11, 

21, 31, 41 

 

Figure 4 Variation of velocity with radius 

for fixed values of /H z  = 10, P = 15, n = 1, 

t = 1,  = 1 and different values of 1F = 

0.00029, 0.20029, 0.40029, 0.60029, 0.80029 

 

Figure 5 Variation of steady dispersion 

function with radius for fixed values of /H z  = 

10, P = 1, n = 3, t = 1, a = 0.00001,  = 1, b = 

0, z = 0.05 and different values of 1F = 0.030, 

0.035, 0.040, 0.045, 0.050 

 

Figure 6 Variation of steady dispersion 

function with radius for fixed values of 1F = 

0.08, P = 1, n = 3, t = 1, a = 0.00001,  = 1, 

b = 0, z = 0.05 and different values of 

/H z  = 0, 1, 2, 3, 4 
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3.3 Unsteady dispersion function 

Figures 8-10 demonstrate the variation of the unsteady dispersion function 1tf  with radius for a fixed 

value of n = 3 for different values of the magnetic parameter 1F , the induced magnetic field gradient 

/H z   and the pressure gradient P . According to Figures 8 and 9, the unsteady dispersion function 

drops as 1F  and /H z   grow, but it increases when P  increases as illustrated in Figure 10. 

 

Figure 7 Variation of steady dispersion function 

with radius for fixed values of 1F = 0.08, /H z  = 1, 

n = 3, t = 1, a = 0.00001,  = 1, b = 0, z = 0.05 and 

different values of P = 1.0, 1.1, 1.2, 1.3, 1.4 

 

 

Figure 8 Variation of unsteady dispersion 

function with radius for fixed values of /H z  = 

10, P = 1, n = 3, t = 1, a = 0.00001,  = 1, b = 

0, z = 0.05 and different values of 1F = 0.030, 

0.035, 0.040, 0.045, 0.050 

 

 

Figure 9 Variation of unsteady dispersion 

function with radius for fixed values of 1F = 0.08, 

P = 1, n = 3, t = 1, a = 0.00001,  = 1, b = 0, 

z = 0.05 and different values of /H z  = 0, 1, 

2, 3, 4 
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3.4 Dispersion function 

Figures 11-13 show how the dispersion function 1f  varies with radius for a fixed number of n = 3 for 

different values of the magnetic parameter 1F , the induced magnetic field gradient /H z   and the 

pressure gradient P . According to Figures 11 and 12, the dispersion function decreases as 1F  and 

/H z   rise, but increases while P  increases as seen in Figure 13. 

 

 

Figure 10 Variation of unsteady dispersion function 

with radius for fixed values of 1F = 0.08, /H z  = 1, n = 

3, t = 1, a = 0.00001,  = 1, b = 0, z = 0.05 and 

different values of P = 1.0, 1.1, 1.2, 1.3, 1.4 

 

 

 

Figure 11 Variation of dispersion function 

with radius for fixed values of /H z  = 10, P = 

1, n = 3, t = 1, a = 0.00001,  = 1, b = 0, z = 

0.05 and different values of 1F = 0.030, 0.035, 

0.040, 0.045, 0.050 

 

 

 

 

Figure 12 Variation of dispersion function 

with radius for fixed values of 1F = 0.08, P = 1, 

n = 3, t = 1, a = 0.00001,  = 1, b = 0, z = 

0.05 and different values of /H z  = 0, 1, 2, 

3, 4 
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3.5 Mean concentration 

Figures 14-16 show how the mean concentration mC  varies with time for a fixed number of n = 3 for 

the magnetic parameter 1F , the induced magnetic field gradient /H z   and the pressure gradient P

. According to Figures 14 and 15, the mean concentration decreases as 1F  and /H z   rise, but 

increases while P  increases as seen in Figure 16. 

 

 

 

 

Figure 13 Variation of dispersion function with 

radius for fixed values of 1F = 0.08, /H z  = 1, n = 3, 

t = 1, a = 0.00001,  = 1, b = 0, z = 0.05 and 

different values of P = 1.0, 1.1, 1.2, 1.3, 1.4 

 

 

 

 

 

 

Figure 14 Variation of mean concentration 

with time for fixed values of /H z  = 10, P = 1, 

n = 3, t = 1, a = 0.00001,  = 1, b = 2.5, z = 5, 

Pe = 1 and different values of 1F = 0.0, 0.1, 0.2, 

0.3, 0.4 

 

 

 

 

 

 

 

Figure 15 Variation of mean concentration 

with time for fixed values of 1F = 0.08, P = 1, n

= 3, t = 1, a = 0.00001,  = 1, b = 2.5, z = 5, 

Pe = 1 and different values of /H z  = 0, 10, 

20, 30, 40 
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Conclusion 

The influence of magnetic field on unsteady solute dispersion through an artery is studied analytically 

using the perturbation method in an unsteady blood flow. The findings of this study revealed that the 

power law fluid model is an appropriate fluid model for predicting blood flow behavior in a small straight 

circular pipe (artery) with moderate strain rate. The Generalized Dispersion Model (GDM) and 

integration approach can be used to solve the unsteady convective-diffusion equation analytically and 

yield the solute concentration, dispersion function and mean concentration. When the pressure gradient 

increases, all three major of solute problems which are velocity, concentration and dispersion function 

increase, however when the fluid magnetization, magnetic field gradient and magnetic parameter all 

increase, the velocity, concentration and dispersion function of the solute all drop. 
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