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Abstract 
The inflammation of the meninges, the three membrane tissue layers that protect the brain and spinal 
cord, causes meningitis illness. The purpose of this study is to examine the underlying dynamics and 
properties of meningitis disease by using the Suspected-Exposed-Infected-Recovered SEIR model, 
which is based on infectious disease compartmental dynamics. The model is developed using the 
system of Ordinary Differential Equations (ODEs). The disease-free equilibrium point (DFEP) and 
endemic equilibrium point (EEP) are the equilibrium points studied in this study, and their stability 
properties are analysed by using Descartes Rule of Signs. The basic reproduction number, R0 of the 
meningitis disease distribution model is investigated using the Next-Generation Matrix approach to 
determine whether an infectious disease tends to fade out quickly or spread to epidemic proportions. If 
R0 > 1, some preventive steps must be taken to control transmission. Lastly, the SEIR model is 
simulated in MATLAB using the ODE45 built-in function. The parameter values are changed to examine 
how they affect the outputs.   
 
Keywords Meningitis; SEIR model; Ordinary Differential Equations; Stability analysis; Descartes Rule 
of Signs 
 
 
1. Introduction 
 
A study of 48 elderly patients with bacterial meningitis in Jutland, Denmark, from 1976 to 1988 indicated 
that diagnostic delay, defined as community-acquired bacterial meningitis (CABM) identified more than 
2 days after admission, was related with a 50 percent increase in mortality and a purely non-meningitis 
epidemiology [1]. Any inflammations of the meninges, the three membrane tissue layers that cover the 
brain and spinal cord are referred to as meninges which form the blood-brain barrier. The meninges 
and the cerebrospinal fluid that is produced in and circulated in the meninges have the primary role of 
protecting, cushioning, nourishing, and supporting the brain and spinal cord. 
 
It is essential to correctly diagnose the type of meningitis to receive potentially life-saving treatment as 
soon as possible as delay in diagnosis can contributes to poor outcomes There are many types of 
meningitis such as viral meningitis, fungal meningitis and bacterial meningitis but most common types 
is bacterial meningitis. While fungal meningitis which is a very rare type of meningitis that is caused by 
breathing cryptococcus, a common environmental fungus. Lastly, the most common type of meningitis 
is bacterial meningitis which is a dangerous type. 
 
In the initial stage, it is hard to study meningitis disease when it was initially discovered as it was hardly 
reported. Before the introduction of a meningitis vaccine, meningitis serogroup A accounted for 80–85 
percent of meningitis epidemics in the African meningitis belt. However, outbreaks and cases of 
meningitis caused by meningitis serogroups continue to be reported. To eliminate bacterial meningitis 
epidemics in the African Meningitis Belt, the rollout of multivalent meningitis conjugate vaccines is a 
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public health priority [2]. Due to fatal cases reported, the mortality rate can be overestimated when 
compared to the disease occurrence rate. Hence, the understandings about meningitis may help to 
prevent and control the transmission of meningitis. Therefore, by applying mathematical modelling and 
data analysis such as Suspected-Exposed-Infected-Recovered (SEIR) model is used to implement the 
meningitis disease prevention strategies as this approach can reduce death rates and the socio-
economic impacts.  
 
 This study may help to determine how the transmission of meningitis disease occurs and thus 
can help to prevent the spread of the disease. The SEIR model is based on the Ordinary Differential 
Equations (ODEs) system. This research also generates insights to control the value of R0 to be less 
than 1 via some preventive measures. The numerical simulations of SEIR model are also carried out 
by using MATLAB software to study the dynamical behaviour of the system at the equilibrium points. 
The significance of this research is to gain a better knowledge of the dynamics of meningitis disease by 
studying the stability analysis of the model.  
 
 This research aims to study a Suspected-Exposed-Infected-Recovered (SEIR) model for 
Meningitis disease and to perform the stability analysis of the proposed SEIR Model. Lastly, we aims 
to perform numerical simulation of the proposed model using MATLAB.  
 
 
2. Literature Review 
 
2.1. Introduction 
The inflammation of meninges that surround membranes of the spinal cord and brain is called 
meningitis. Meningitis disease can affects both children and adults as it spreads quickly in an isolated 
place [3]. The disease can be caused by a variety of pathogens, including bacteria, fungi, and viruses. 
Without living in complete isolation, it is difficult to prevent the spread of infection between people [4]. 
Vaccines are important to protect against meningitis as well as prevent bacteria from surviving in the 
nose and throat [5]. 
 
2.2. Origin of meningitis  
 
The history of meningitis is mentioned by Dr. Gaspard Viesseux as oubreak of a Swiss epidemic that 
began in 1805 [6]. According to Dr. Vieusseux, the outbreak began in a peculiar and terrifying manner 
a short distance from the city in a filthy sector populated by poor people and others vulnerable to the 
spread of any contagious disease. Several other epidemics in Europe and the U.S. were described after 
that. In 1840, the first outbreak in Africa was documented  [7]. Gaspard Vieusseux and Andre Matthey 
in Geneva, as well as Elisa Northin in Massachusetts who documented epidemic meningitis [8]. 
 
Anton Vaykselbaum, an Austrian bacteriologist, first described bacterial meningitis in 1887 [9]. Heinrich 
Quincke performed the first cerebrospinal fluid investigation in 1842 by using his innovative lumbar 
puncture technique (CSF) [10]. The introduction of serum therapy for meningitis disease in the twentieth 
century marked the beginning of modern medicine [11]. Vaccines against meisseria meningitis which is 
created in the early twentieth century and are still utilised in modern medicine [12].  
 
2.3. Mathematical modelling approach on Meningitis 
Mathematical modelling is important in understanding the transmission mechanisms, structures and 
aspects of meningitis disorders [13]. Mathematicians and epidemiologists have used a variety of 
mathematical models to predict the trajectory of an epidemic. Modelling methodologies are critical for 
understanding and anticipating the potential and severity of a meningitis disease epidemic. They also 
give crucial information for determining the severity of the activity in the illness [14]. 
 
2.3.1. Deterministic mathematical model 
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A deterministic mathematical model was used by Dr. Getachew Teshome Tilahun for pneumonia-
meningitis co-infection. The results reveals that implementing prevention controls has a significant 
influence on reducing the spread of pneumonia, meningitis and associated coinfections [15]. 
. 
2.3.2. Compartmental Model For Meningitis 
Several studies have used compartmental models to observe the pathophysiological mechanisms 
underlying the seasonal dynamic and epidemic occurrence of bacterial meningitis in the African region. 
Meningitis has a predictable seasonal pattern which is important to understand for better prevention 
and modelling. The two main explanations for hyperendemicity during the dry season imply a greater 
risk of invasive disease due to asymptomatic carriage of bacteria [16]. 
 
2.3.3. Application of Atangana Baleanu Caputo (ABC) derivative 
Meningitis dynamics studied by Swati Yadav and co-authors using a new mathematical model. They 
used the Atangana Baleanu Caputo–Fabrizio derivative to solve the Advection–Diffusion equation. 
They demonstrated how fractional calculus can be used to simulate real-world problems. Backward 
bifurcation occured in the model, where the locally stable disease-free equilibrium coexists with an 
endemic equilibrium [17]. 
 
2.3.4. Application of SIR model 
A SIR model was used by Kalimah Vereen to assess the influence of a vaccination campaign on the 
health for population in epidemic-prone countries. The model is numerically solved using the Euler 
method. In conclusion, in order to prevent disease spread in a densely populated area, vaccination 
rates must rise [18]. 
 
2.3.5. Application of SEIR model 
A study of SEIR model by Hurit aims to solve the spread of meningitis. Computer programming and 
simulations were employed as research methods. Numerical solutions created using the Euler, Heun 
and RK4 methods are shown. It can be inferred that vaccination can be used to stop the spread in 
humans [19]. 
 
2.3.6.  Application of Next-Generation Matrix (NGM) Method 
A study of the basic reproduction number, 𝑅0 using Next-Generation Matrix (NGM) approach by 
Diekmann. They clarify up some ambiguity in the literature about how to construct this matrix. They 
provide a step-by-step method for building the NGM using simple materials obtained directly from the 
model's parameters [20]. 
 
3. Methodology 
3.1. System of Ordinary Differential Equations (ODEs) 
An ordinary differential equation (ODE) is an equation that consists of one or more functions of one 
independent variable, as well as their derivatives. Differential equations are required for a mathematical 
representation of nature because they form the basis for many physical theories [21].  
 
The ODE is defined as a relationship with one independent variable 𝑥, a real 
dependent variable 𝑦 and no intermediate variables, with some of its derivatives such 
as 𝑦, 𝑦′, 𝑦’’, ..., 𝑦𝑛 with respect to 𝑥. Levermore said that first-order systems of n-th ordinary differential 
equations for functions 𝑥 𝑗(𝑡),  𝑗 = 1, 2, ..., 𝑛 that can be put into the normal form [22] 
 
!"1
!#

= 𝑓1 (𝑡, 𝑥1, 𝑥2, ..., 𝑥(𝑛) ),  
!"2
!#

= 𝑓2 (𝑡, 𝑥1, 𝑥2, ..., 𝑥(𝑛) ),       
 :             (1) 
 . 
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!#

= 𝑓n (𝑡, 𝑥1, 𝑥2, ..., 𝑥(𝑛) ). 
 
3.2. Stability Analysis of ODEs  
3.2.1. Equilibrium Points 
An equilibrium point is a constant solution to a differential equation in differential equations. Therefore, 
the first derivatives of the first order ODE equilibrium point are zero. The dimensional system is 
considered as follows 
   
!%"
!#
= 𝑓&	(𝑥, 𝑦),                        (2) 

!%#
!#
= 𝑓'	(𝑥, 𝑦).                        (3) 

 
Thus, we let equilibrium points of Equation (3.2) and Equalion (3.3) equal to zero as follows: 
𝑓&	(𝑥, 𝑦) 	= 	0,                      (4) 
𝑓'	(𝑥, 𝑦) 	= 	0.              (5) 
 
Then, the stability and properties of non-linear systems are studied using Jacobian linearization, a 
standard notion in control theory.  The Jacobian Matrix, J is defined as follows: 

                             𝐽 = 	

⎣
⎢
⎢
⎢
⎢
⎡
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(""
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⋯ ()"
("$

()#
(""

()#
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("$

⋯ ⋯ ⋱ ⋯
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(""

()%
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⋯ ()%
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⎥
⎥
⎥
⎥
⎤

.																																																																			(6) 

 
Then, we need to find the eigenvalues where we first need to identify the eigenvectors where 
eigenvector is a vector result in the original vector multiplied by some factor when multiplied by a 𝑛 x 𝑛 
matrix. With I as an identity matrix, we may find the eigenvalues 𝜆 as the values that satisfy the following 
equation, where 𝑑𝑒𝑡 is the determinant matrix is obtained as follows: 
      𝑑𝑒𝑡(𝜆𝐼	 − 	𝐴) 	= 	0,      (7) 
where A is the Jacobian matrix A. 
 
After the 𝜆 is determined, we may obtain the characteristics polynomial equations and determine the 
number of positive and negative real zeros for polynomial by Descartes Rule of Sign method. For 
positive roots, we need to let the 𝑓(𝑥) is equal to or less than the number of changes in the sign of the 
coefficients and arrange the function in descending powers of the variable and count number of changes 
in sign for the coefficients of 𝑓(𝑥). While, we need to let 𝑓(−𝑥) is equal to or less than the number of 
changes in the sign of the coefficients and arrange the function in ascending powers of the variable and 
count number of changes in sign for the coefficients of 𝑓(−𝑥)  to determine the negative roots.  
 
3.3.  Basic Reproduction Number 
The basic reproduction number (R0) is an epidemiological statistic for describing contagiousness or 
transmissible of infectious agents. The value of the parameter determines the severity of a disease in 
terms of mortality and morbidity and is summarized into two situations as follows [23]: 
 
• 𝑅0 > 1 represents that each infected person creates more than one new infectionon average and 

the disease can spread across the population. 
• 𝑅0 < 1 represents that over the period of its infectious phase, an infected individual generates 

less than one new infected individual on average and the virus cannot spread. 
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4. SEIR Model 
In SEIR model, there are four classes: population of suspected people affected by the disease is 
denoted by the Suspected class S(t) over time t. The population of people who have been exposed to 
a disease but have not yet been affected is referred as the exposed class E(t). The Infected class, I(t) 
define the population of people who have been infected with the disease while the recovered class, R(t) 
denotes the population of people who have been cured of the sickness [19]. 
4.1. Assumption and Formulation for Meningitis Disease 
Major assumptions of the SEIR model are  

● Meningitis disease has a long incubation period. 
● The natural birth and death rates are included. 
● The environment is unsupportive. 
● individuals may enter the subpopulation after done with the treatment. 

 
Consider the system of differential equations with size of population, N as follows 

𝑑𝑆
𝑑𝑡 = 	𝜇	 − 𝜇𝑆	 − 𝛽𝑆𝐼	 − 𝜈𝑆, 
𝑑𝐸
𝑑𝑡 = 𝛽𝑆𝐼	 − (𝜇 + 𝜎)𝐸, 
𝑑𝐼
𝑑𝑡 = 	𝜎𝐸	− (𝜇 + 𝛾)𝐼, 
𝑑𝑅
𝑑𝑡 = 		𝛾𝐼	 − 𝜇𝑅	 + 𝜈𝑆. 

 
Table 1: Definition of parameters 

Parameters Definition 

𝛽 The rate between S(t) and E(t) 

𝜎 The rate between E(t) and I(t) 

𝛾 The rate between I(t) and R(t) 

𝜇 Birth\Death rate of population 

𝜈 Vaccination rate of population 
 
 
4.2. Stability Analysis of SEIR Model for Meningitis 
4.2.1. Equilibrium Points 
To determine the equilibrium points for SEIR model, Equations (1) -(4) must be equated to zero as "#

"$
=

	0, 	"%
"$
= 	0, 	"&

"$
= 	0, and  "'

"$
= 	0. 

After solving the Equations, we may obtain (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) as follows 

(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) =	  
 

= 8 (*	,	(*	,	-))/
(*	,	0)	(*	,	1)	(*	,	-)	!

, 2
*	,	0)	(*	,	1)(*,-)

+ 3
*	,	0)	(*	,	1)

, 24,	-((2	,	4)
(2	,	5)!	(2	,	5)(2	,	4)

, 542

22(2	,	5)	(2	,	4)
	+	6	(2	,	6)

722
9       (5) 

 
 
4.2.2.  Disease Free Equilibrium Point (DFEP) and its stability 
At disease-free equilibrium point (DFEP), there is no disease infection in the population, and hence the 
disease is eradicated.  
Therefore, by letting 𝐸 = 𝐼 = 0 in Equations (4.1) - (4.2) with assumption and obtain the (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗)  
as follows  

(4.1) 
 
(4.2) 
 
(4.3) 
 
(4.4) 
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(7) 

(8) 

 

   (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) = 	D +	
	(+	.	/)

, 0, 0,			 /	
	(+	.	/)

E        (6)

               
Next, to determine the stability analysis point at DFEP, we need to find Jacobian matrix based on 
Equations (4.1) - (4.2) as follows 
 

𝐽 = 	 F

−𝜇 − 𝛽𝐼	 − 𝜈 	 0 	 −𝛽𝑆 										 0
𝛽𝐼 	 	−(𝜇 + 𝜎) 	 𝛽𝑆 												 0

0
𝜈 	 𝜎

0 		 −(𝜇 + 𝛾)
𝛾 	 0

−𝜇

H.												 

 
Thus, after obtaining the polynomial characteristic, we may use Descartes rule of signs by finding the 
real roots and obtain the negative roots which leads to a conclusion that the disease-free equilibrium 
point (DFEP) of SEIR model is locally asymptotically stable whenever 𝑅0 < 1.  
  
4.2.3.  Endemic Equilibrium Point (EEP) and its stability 
By using the Equation (4.5) and use the same method as the disease-free equilibrium point (DFEP), 
we may determine the Jacobian matrix and obtain the polynomial characteristic. By using Descartes 
rule of signs, the characteristic polynomial has five negative roots which leads to a conclusion that 
endemic equilibrium point (EEP) of SEIR model is locally asymptotically stable whenever 𝑅0 < 1.  
 
4.3. Basic Reproduction Number,  
To obtain the basic reproduction number, 𝑅0,, we need to determine the 𝑑𝑒𝑡(𝐹𝑉81 − 𝜆𝐼)	 where matrix 
F represents the rate of appearance of new infections in compartments, while matrix V represents the 
rate of transfer of individuals from one compartment to another.  
Thus, we obtain  

𝑭 = 80 𝛽
0 09 		,							𝑽	 = 		 ?

𝜇 + 𝜎 0
𝜎 𝜇 + 𝛾B.											 

 
 
Next, we need to find 𝑑𝑒𝑡(𝑭𝑽	83 − 𝜆𝐼) 

𝑅0 	= 𝑑𝑒𝑡(𝑭𝑽	−1−𝜆𝐼)	=	 "
𝛽𝜎

(𝜇+𝜎)(𝜇+𝛾)− 	𝜆
𝛽(𝜇+𝛾)

(𝜇+𝜎)(𝜇+𝛾)
0 0−𝜆

" 	= 	0	   

 
and obtain  

 |𝜆3| 	= 	 𝜆3 	= 		
74

(𝜇+𝜎)(𝜇+𝛾) , 𝜆/ = 0. 

 
Since 𝜆1 is the dominant eigenvalue, thus we conclude the 𝑅0		are as follow  

𝑅0 	= 𝛽𝜎
(𝜇+𝜎)(𝜇+𝛾)	. 

 
5. Results and discussion 
 
5.1.  Parameters Values of SEIR Model 
 
The simulation of the models is obtained by using MATLAB. Several simulations are carried out by 
adjusting the parameters to understand the transmission dynamics of the meningitis disease. Each 
parameter is changed at a time to see how it affects the results. The initial parameter values of the 
model used in this simulation are presented in Table 2. 
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Table 2: Definition of initial parameters 
 

Parameters Definition 
Estimated 

value 

𝛽 The rate between S(t) and E(t) 0.90 

𝜎 The rate between E(t) and I(t) 0.20 

𝛾 The rate between I(t) and R(t) 0.50 

𝜇 Birth\Death rate of population 0.12 

𝜈 Vaccination rate of population 0.50 
 
5.2. Simulation Results of SEIR Model 

 
Figure 1 Simulation of SEIR model for β= 0.9, σ= 0.5, γ= 0.2, μ= 0.12 and ν = 0.5. 

 
Figure 1 shows all four classes of SEIR model with initial parameters. The suspected S(t) population 
shows decline curve at the first 10 days and increases gradually over time, after day 10. This decreasing 
curve is likely as they become infected due to the high rate between suspected and infected individually. 
All four classes show a similar curve after day 20 as the curve began to flatten. 
 
5.3. Result of changes in parameters  
5.3.1. Changes in beta 
The changes in the infection rate, 𝛽 is explained in Figure 2 where the parameter value of 𝛽 varies 
from 0.9 to 0.2 and then increase to 2.  

 
Changes of β in S(t) 

 
Changes of β in E(t) 
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Changes of β in I(t) 

 
Changes of β in R(t) 

 
Figure 2 Variation in the number of populations for different 𝛽 values. 

 
The rate of change of the suspected S(t) population is inversely proportional to the infection rate as the 
curve shows that this relationship changes with higher number of suspected individuals at the first 10 
days compared to the original values for a given period of time. The rate of change of the exposed 
population is directly proportional to the infection rate as the simulation results for exposed E(t) 
population shows that as the value of infection rate increases, so does the size of the exposed 
population. Next, the simulation results for infected I(t) population shows the curve has the highest peak 
when β=2, compared to the original β =0.9 in infected population. As the value of the infection rate 
increases, the number of infected individuals increase over time. Lastly, the simulation results for R(t) 
show that as the value of the infection rate increases, the number of infected individuals increase over 
time. This shows that the rate of change of the infected population is inversely proportional to the size 
of the population. 
 
5.3.2. Changes in sigma 
The changes of the transfer rate between 𝐸(t) and 𝐼(𝑡) classes, 𝜎 is explained in Figure 3 where the 
parameter value of 𝜎 varies from 0.5 to 0.1 and then increases to 2.  
 

 
Changes of σ in S(t). 

 
Changes of σ in E(t). 

 
Changes of σ in I(t). 

 
Changes of σ in R(t). 

 
 

Figure 3 Variation in the number of populations, for different 𝜎 values. 
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The suspected S(t) population shows that as the value of the transfer rate between E(t) and I(t) classes, 
𝜎 decreases, the population of suspected individuals decreases over time. The rate of change of the 
suspected population is directly proportional to the size of suspected class. Next, the population of 
exposed individuals decreases over time. It shows that the rate of change of the population is directly 
proportional to the transfer rate between E(t) and I(t) classes. The curve with lowest transfer rate has 
the lowest number of infected individuals compared to other classes. Lastly, the recovered R(t) curve 
shows that the rate of change of the recovery population is directly proportional to the transfer rate as 
the value of the 𝜎	 increases, the number of recovered individuals increases over time.  
 
5.3.3. Changes in gamma 
The changes in the recovery rate, 𝛾 is explained in Figure 4 where the parameter value of 𝛾 varies 
from 0.2 to 0.1 and then increases to 1.  
 

 
Changes of 𝛾 in S(t) 

 
Changes of 𝛾 in E(t) 

 
Changes of 𝛾 in I(t) 

 
Changes of 𝛾 in R(t) 

 
Figure 4 Variation in the number of populations for different 𝛾 values. 

The suspected S(t) simulation results shows the rate of change of the suspected population is inversely 
proportional to the recovery rate, 𝛾. As the value of 𝛾 increases, the population of suspected individuals 
decreases over time. Next, as the value of 𝛾 increases, the population of exposed individuals decreases 
over time. Moreover, the infected I(t) simulation results shows that the rate of change of the infected 
population is inversely proportional to the recovery rate, 𝛾 due to the lowest recovery rate, 𝛾	 = 	0.1 has 
the lowest number of infected individuals compared to other 𝛾. Lastly, when the value of the 𝛾 increases, 
the number of recovered R(t) individuals increases over time. This shows that the rate of change of the 
recovered population is directly proportional to the recovery rate.  
 
Conclusion 
The SEIR compartmental model is used to investigate the transmission spread of meningitis disease. 
The SEIR model is an extended model of SIR model for infectious disease research. It is divided into 
four classes which are suspected, exposed, infected and recovered populations. The SEIR model is 
used as a reference model for meningitis disease transmission. The simulation results showed that 
immunizations would enhance the healing of meningitis and provide a forecast of future instances of 
the disease. Findings also can be considered as a reference for future pandemic prevention of 
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meningitis disease. In the future, more research into this model should be done to see if it can forecast 
cases based on time and location, and if other considerations should be made for other Malaysian 
states. 
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