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Abstract 

Ecological systems commonly exhibit inconsistencies in population density, particular species rates of 

growth, harvesting rates, and predatory rates, along with other shifting biological variables. Accordingly, 

the development of an eco-epidemiological system that takes prey harvesting and disease in prey 

species is proposed and a analysis about of the system is carried out in this study. In constructing the 

model, hypotheses are put forward, and the Lotka-Volterra framework is subsequently altered to reflect 

the assumptions generated. An in-depth analysis of stability at equilibrium points is conducted applying 

the Jacobian matrix and Eigenvalues. The time series graphs of different scenarios are plotted, and 

phase portraits of the predator-prey model are then analyzed using the MATLAB software. The 

graphical analysis has shown that the effect of infection parameter gives a negligible effect, meanwhile 

the harvesting parameter generates a severe impact to the system. The overall results obtained show 

that uncontrolled harvesting activities with the presence of diseases in the ecosystem will result to the 

extinction of both populations as times elapsed.  

Keywords: Predator; prey; harvesting; eigenvalue; stability. 

 
Introduction 

Bio-economic modelling has been widely applied and developed by a significant number of researchers 

and academicians throughout these decades. This approach employs the application of mathematics 

to portray the behaviors of complex biological processes and systems, including the fields of 

aquaculture, fisheries, and forestry, influenced by natural, ecological, economic, and conceptual 

variables (Llorente & Luna, 2015). Moussaoui and Auger (2021) assessed the stabilizing impact of 

marine reserves on fisheries dynamics using a bio-economic model of the fishery. In general, the 

dynamic mathematical models of harvested natural resources that have been applied in this study 

resemble the predominant Lotka-Volterra predator-prey models. This illustrates the significance of 

mathematical modelling and analysis in examining biological scenarios with numerous and fluctuating 

variables. 

A mathematical formulation for the dynamics of a predator and prey population was originally 

devised by Alfred Lotka and Vito Volterra individually in the 1920s, and the Lotka-Volterra predator-prey 

model has since evolved into a prominent and defining model of mathematical biology (Cherniha & 

Davydovych, 2022). In succeeding years, the predator-prey model has revolved among the eco-

epidemiology field of study and this problem has been the focus of much attention for many scientists’ 

and scholars’ discussion and studies.  It was initially analyzed by Anderson and May in 1986 with the 

objective of evaluating the dynamics of this prey-predator model where the predator species came into 

contact with an infected prey population. It was subsequently improved and developed by a theoretical 

approach into multiple sorts of prey-predator models, including diseased predator species as well as 

infected populations for both predator and prey populations, all of which are still relevant and utilized in 

diverse research studies thus far.  

Unpredictable and varying parameters caused by natural phenomena in ecological system 

should be taken into account, since these can become the biggest impediment and concurrently result 

in inaccuracies in an effort to propose and structure a mathematical model. The existence of toxins and 

various sources of infection can cause the ecosystem to suffer disease, which surely affects the 

predator-prey model. When the epidemiological and demographic components of a disease are 
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combined into a single model, eco-epidemic research analyses how it spreads throughout interacting 

populations (Shaikh et al., 2017). The Susceptible-Infective-Removed (SIR) model, first developed by 

Kermack-McKendrick in 1927, illustrates how a disease develops and spreads through contact 

(Carvalho & Gonçalves, 2021). Since the prey and predator populations come into contact with each 

other in the ecosystem, disease in the prey species are predominantly transmitted to the predator 

species and the epidemics are anticipated to affect the predator species concurrently. 

In particular, numerous species in the ecological system are indeed being mined and harvested, 

and this scenario cannot be disregarded since it results to several impacts on the predator-prey 

paradigm. The model of harvested predator-prey has also gained quite a lot of attention by researchers 

in this twentieth century. Mahata et al. (2021) conducted a study to examine the impact of harvesting 

effort disruption on the stable state of a collection of prey-predator models. They determine whether the 

disruption to the model is caused by selectively harvesting both predators and prey or by solely 

harvesting prey by examining several settings. A study by Ang et al. (2018) investigated the toxin 

emitted by both predator and prey species, and a prey-predator system of a fisheries model impacted 

by harvesting efforts has also been proposed. The study has concluded that, in comparison to the 

poison emitted, the effects of harvesting on the dynamical behaviors of the system are more visible and 

significant. The toxin parameters didn't seem to be as important or impactful as the harvesting settings. 

These highlighted that the harvesting efforts in both species are one of the vital variables to be taken 

into account in our mathematical model. 

It takes a lot of work and time to conduct a research study with several varying parameters, 

especially when trying to study natural settings and occurrences. Nevertheless, with the advancement 

and improvement of mathematical analysis and its application in biological sciences, it has now become 

practically viable to explore these scenarios by making a few amendments to the conventional systems 

that have been developed and made available through prior studies based on the intended scenario. 

Considering that ecology has a significant beneficial impact on human essential nature as they provide 

natural sources, a study is required to analyze scenarios related so that the food chain in our ecosystem 

is not affected by extinction and further unwanted repercussions on natural resources can be avoided 

before they cause significant harm to the community. 

 
Model Formulation 

The model of predator-prey with diseased and harvested prey population follows the transfer diagram 

of eco-epidemiological model as follows: 

 

 

Figure 1 Transfer diagram of eco-epidemiological model for predator-prey model. 

 

In this study, we address an eco-epidemiological prey-predator system incorporating infectious 

disease and harvested in prey population in the proposed framework. We presumed that there would 

be a predator and a mechanism to protect against predation. In this model, 𝐼(𝑡) represents the infected 

prey population density at time 𝑡 with harvesting efforts is taken into consideration, while 𝑃(𝑡) 

represents the predator population density with respect to time 𝑡.  

Furthermore, some of the following postulates and considerations are made in order to develop 
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our eco-epidemiological model: 

I. Infected prey population, 𝐼(𝑡) obeys extrinsic growth with death rate of 𝑑1 with the 

assumption of the infected prey do not recover or become immune from the disease. 

II. The death rate of predator population, 𝑑2 is considered, where the death rate of the 

predator contains natural mortality due to infection from the infected prey, and 

III. The infected prey species is harvested by a linear rate. 

 

Based on above postulates, the following predator-prey model structure can be written as follows: 

  

𝒅𝑰(𝒕)

𝒅𝒕
=  𝑨 − 𝜶𝟏𝑰𝑷 − 𝒅𝟏𝑰 − 𝒒𝑬𝑰, 

 (1) 

      
𝒅𝑷(𝒕)

𝒅𝒕
=  𝜷 + 𝜶𝟐𝑰𝑷 − 𝒅𝟐𝑷                    

   

𝐼(0) > 0,     𝑃(0) > 0,     𝑡 > 0 

where 

𝐴 : The constant recruitment rate of prey species. 

𝛽 : The constant recruitment of predator species. 

α1  :  Prey-predator interaction parameter of the prey   

      species. 

α2  :  Prey-predator interaction parameter of the predator   

     species. 

𝑑1 : Death rate of infected prey species. 

𝑑2 : Death rate of predator species. 

𝑞 : Catchability coefficient of infected prey species. 

𝐸 : The harvesting effort. 

 

 

Stability analysis  

We examine and analyze the stability and equilibrium points of the system. One of the efficient 

approaches to determine the stability is by applying the Jacobian matrix, where the system is 

generalized to: 

 

𝐽 = [

𝜕𝐹1

𝜕𝐼

𝜕𝐹1

𝜕𝑃
𝜕𝐹2

𝜕𝐼

𝜕𝐹2

𝜕𝑃

], 

 

where 𝐹1 and 𝐹2 were taken from system (1), such that  

 

𝑭𝟏 =  𝑨 − 𝜶𝟏𝑰𝑷 − 𝒅𝟏𝑰 − 𝒒𝑬𝑰, 

 

𝑭𝟐 =  𝜷 + 𝜶𝟐𝑰𝑷 − 𝒅𝟐𝑷, 

 

and the equilibrium points is obtained by solving both equations from system (1): 

 

𝑑𝐼(𝑡)

𝑑𝑡
= 0  and  

𝑑𝑃(𝑡)

𝑑𝑡
= 0. 

 

Then, by using eigenvalue method, characteristic equations are obtained for the respective equilibrium 
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points by substituting: 

 

|𝐽 − 𝜆𝐼| = 0, 

 

where 𝜆 is the eigenvalues. 

 

The value of 𝜆𝑖 are calculated, and the stability for each equilibrium point is determined by referring to 

the following table of stability analysis. 

 

Table 1 Stability Properties of Linear and Locally Linear Systems 

Stability Properties of Linear Systems 

Eigenvalues Type of Critical Point Stability 

𝝀𝟏 > 𝝀𝟐 > 𝟎 Node Unstable 

𝝀𝟏 < 𝝀𝟐 < 𝟎 Node Asymptotically stable 

𝝀𝟏 > 𝟎 > 𝝀𝟐 Saddle point Unstable 

𝝀𝟏 = 𝝀𝟐 > 𝟎 Proper or improper node Unstable 

𝝀𝟏 = 𝝀𝟐 < 𝟎 Proper or improper node Asymptotically stable 

𝝀𝟏, 𝝀𝟐 = 𝝁 + 𝒊𝝈   

𝝁 > 𝟎 Spiral point Unstable 

𝝁 < 𝟎 Spiral point Asymptotically stable 

𝝁 = 𝟎 Centre Stable 

 

 

Therefore, the equilibrium points obtained from the predator-prey model of system (1) are  

 

𝐼 =
𝐴

𝜶𝟏𝑃 + 𝑑1 + 𝑞𝐸
, 

 

𝑃 =
𝜶𝟏𝛽 + 𝜶𝟐𝐴 − 𝑑1𝑑2 − 𝑑2𝑞𝐸 ± √(𝜶𝟏𝛽 + 𝜶𝟐𝐴 − 𝑑1𝑑2 − 𝑑2𝑞𝐸)2 + 4(𝜶𝟏𝑑2)(𝑑1𝛽 + 𝛽𝑞𝐸)

2𝜶𝟏𝑑2

 

 

Therefore, the equilibrium points P1 obtained from the model is 

P1 = (
A

𝜶𝟏m1+d1+qE
, m1), 

where 

m1 =
𝜶𝟏β + 𝜶𝟐A − d1d2 − d2qE + √(𝜶𝟏β + 𝜶𝟐A − d1d2 − d2qE)2 + 4(𝜶𝟏d2)(d1β + βqE)

2𝜶𝟏d2

. 

 

The equilibrium point P2 is given by 

P2 = (
A

𝜶𝟏m2 + d1 + qE
, m2), 

where 

m2 =
𝜶𝟏β + 𝜶𝟐A − d1d2 − d2qE − √(𝜶𝟏β + 𝜶𝟐A − d1d2 − d2qE)2 + 4(𝜶𝟏d2)(d1β + βqE)

2𝜶𝟏d2

. 

 

This system possess two coexistence equilibrium points, and both points are taken into consideration for 



 
 
Anati Ali, Nur Emylia Elyza Sable (2023) Proc. Sci. Math. 17: 11-22 
 

 
15 

the theoretical computation. After substituting possible values of all parameters in the next section of 

numerical simulation, only the positive equilibria where both species exist is referred to be the equilibrium 

point of the system. Hence, by using eigenvalue method, characteristic equations are obtained for the 

respective equilibrium points by substituting: 

|J − λI| = 0, 

 

where the λ is the eigenvalues. Therefore,  

J1 = [
−𝛼1m1 − d1 − qE − λ −𝛼1 (

A

𝛼1m1+d1+qE
)

𝛼2m1 𝛼2 (
A

𝛼1m1+d1+qE
) − d2 − λ

], 

 

which yields the following characteristic equation: 

 

jλ2 − (𝛼2A − j2 − d2j)λ + d2j2 − 𝛼2Aj + 𝛼1𝛼2Am1 = 0, 

where 

j =  𝛼1m1 + d1 + qE. 

 

As a result, the equilibrium P1 generates the subsequent two eigenvalues: 

 

λ1 =
𝛼2A − j2 − d2j − √(𝛼2A − j2 − d2j)2 − 4j(d2j2 − 𝛼2Aj + 𝛼1𝛼2Am1)

2j
, 

λ2 =
𝛼2A − j2 − d2j + √(𝛼2A − j2 − d2j)2 − 4j(d2j2 − 𝛼2Aj + 𝛼1𝛼2Am1)

2j
. 

 

In this instance, we take into account two cases in which the parameter might vary. The cases that are 

considered are: 

(𝜶𝟐𝐀 − 𝐣𝟐 − 𝐝𝟐𝐣)𝟐 − 𝟒𝐣(𝐝𝟐𝐣𝟐 − 𝜶𝟐𝐀𝐣 + 𝜶𝟏𝜶𝟐𝐀𝐦𝟏) > 𝟎, (i) 

(𝜶𝟐𝐀 − 𝐣𝟐 − 𝐝𝟐𝐣)𝟐 − 𝟒𝐣(𝐝𝟐𝐣𝟐 − 𝜶𝟐𝐀𝐣 + 𝜶𝟏𝜶𝟐𝐀𝐦𝟏) < 𝟎. (ii) 

 

The property of λ1 < 0 < λ2 is satisfied by the eigenvalues whenever the condition (i) is true, 

where in this case, the equilibrium point P1 fulfils the characteristics of an unstable saddle point. 

Otherwise, the property of imaginary eigenvalues is fulfilled whenever case (ii) holds. As a corollary, in 

this case, we consider another three conditions for the real part of the eigenvalue. If the real part is 

positive, the equilibrium point P1 fulfils the characteristics of an unstable spiral point. Contrarily, if the 

eigenvalue P1 have a negative real part, then it is an asymptotically stable spiral point. Ultimately, when 

the real part of the eigenvalue P1 is equals to zero, then it is a stable centre. 

 

Furthermore, the eigenvalues for the equilibrium P2 is determined, where  P2 = (
A

𝛼1m2+d1+qE
, m2). 

Therefore, the Jacobian Matrix will become 

J2 = [
−𝛼1m2 − d1 − qE − λ −𝛼1 (

A

𝛼1m2+d1+qE
)

𝛼2m2 𝛼2 (
A

𝛼1m2+d1+qE
) − d2 − λ

]. 

 

The characteristic equation for P2 is as follows 

 

  kλ2 − (𝛼2A − k2 − d2k)λ + d2k2 − 𝛼2Ak + 𝛼1𝛼2Am2 = 0, 

where 

k =  𝛼1m2 + d1 + qE. 
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As a result, the equilibrium 𝑃2 generates the subsequent two eigenvalues: 

 

λ1 =
𝛼2A − k2 − d2k − √(𝛼2A − k2 − d2k)2 − 4k(d2k2 − 𝛼2Ak + 𝛼1𝛼2Am2)

2k
, 

λ2 =
𝛼2A − k2 − d2k + √(𝛼2A − k2 − d2k)2 − 4k(d2k2 − 𝛼2Ak + 𝛼1𝛼2Am2)

2k
. 

 

In this circumstance, we are examining two possible situations in which the value of the parameter could 

vary. The following cases are taken into account: 

 

(𝜶𝟐𝐀 − 𝐤𝟐 − 𝐝𝟐𝐤)𝟐 − 𝟒𝐤(𝐝𝟐𝐤𝟐 − 𝜶𝟐𝐀𝐤 + 𝜶𝟏𝜶𝟐𝐀𝐦𝟐) > 𝟎, (iii) 

(𝜶𝟐𝐀 − 𝐤𝟐 − 𝐝𝟐𝐤)𝟐 − 𝟒𝐤(𝐝𝟐𝐤𝟐 − 𝜶𝟐𝐀𝐤 + 𝜶𝟏𝜶𝟐𝐀𝐦𝟐) < 𝟎. (iv) 

  

When the requirement (iii) is met, the eigenvalues satisfy the property of  λ1 < 0 < λ2, and in this 

particular case, the equilibrium point P2 meets the criteria for an unstable saddle point. Otherwise, 

whenever circumstances (iv) is valid, the condition of imaginary eigenvalues is observed. In this instance, 

we analyze three additional specifications for the real part of the eigenvalue as a result of the analysis. 

The equilibrium point P2 satisfies the criteria for an unstable spiral point if the eigenvalues have a positive 

real part. On the other hand, if the real part of the eigenvalue P2 is negative, the point corresponds to the 

property of an asymptotically stable spiral. Following that, a stable center is attained when the real part 

of the eigenvalue P2 equals zero. 

 

 

Nullclines  

The nullclines for System (1) is generated by considering both equations 

𝐝𝐈(𝐭)

𝐝𝐭
= 𝟎, (4) 

𝐝𝐏(𝐭)

𝐝𝐭
= 𝟎. (5) 

 

Solving equation both equation (4) and equation (5), the nullclines that have been obtained from System 

(1) are 

I =  
A

𝛼1P + d1 + qE
, P =  

β

d2 − 𝛼2𝐼
. 

 

Hence, the intersections between the I-nullcline and P-nullcline will give the equilibrium point for System 

(1). 

 

 

The Presence of Periodic Solution 

A method for determining upper bounds on the number of periodic solution or also known as limiting 

cycles in analytical differential systems is established by the Bendixson-Dulac theorem. Thus, consider 

the system (1) of ODEs where the first equation is assumed to be: 

 

dI(t)

dt
=  A − 𝛼1IP − d1I − qEI 

     = f(I, P), 

 

and the second equation of system (1) is considered to be:  
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dP(t)

dt
=  β + 𝛼2IP − d2P 

           = g(I, P). 

 

Thus by considering the function of φ(I, P) =
1

IP
 , thus the Dulac function is assessed to be: 

 

∂[φf(I, P)]

∂I
+

∂[φg(I, P)]

∂P
=

∂

∂I
[

A

IP
− α −

d1I + qEI

P
] +

∂

∂P
[

β

IP
+ α −

d2

I
] 

               =  − (
A

I2P
+

d1 + qE

P
+

β

IP2
) 

   ≠ 0.                  

 

Therefore, the system of ODEs of the predator-prey model proposed in this study possesses no periodic 

solution or limit cycle considering the fact that the Dulac’s function will always be negative and will never 

be equal to zero on every circumstances that varies since all the parameters are assumed to be positive.  

 

Numerical Simulations 

For the purpose of investigating the dynamical behaviors of the predator-prey model of System (1), the 

numerical simulations are provided to substantiate the theoretical results obtained in the previous 

sections with the help of MATLAB software. For simplicity, we set the parameters of the model as follows: 

 

 

Table 2  The parameters description of the predator-prey model. 

Parameter Value 

𝑨 0.69 

𝜷 0.12 

𝜶𝟏 0.241 

𝜶𝟐 0.196 

𝒅𝟏 0.001 

𝒅𝟐 0.34 

𝒒 0.037 

𝑬 1.905 

 

In this section, we examine the effects of different parameters where the constant recruitment of both 

predator and prey populations are varied. In these plots, we assume that the initial conditions of both 

predator and prey populations is given by 𝐼(0) = 1.05 and 𝑃(0) = 0.05 to obtain the subsequent graphs 

of both populations. Firstly, when the parameters are set as 𝐴 = 0.69 and 𝛽 = 0.12, the time series plot 

of the predator-prey model of System (1) is given by the following Figure 2. 
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Figure 2  Time series plot of the predator-prey model with harvested prey species. 

 

 Referring to Figure 2, it is illustrated that the number of populations for the prey species is smaller 

than it is for the predator populations considering the fact that the prey species encounter from prey-

predation interactions and simultaneously suffer from infectious disease as the time 𝑡 increases. In 

addition, it is portrayed in the time series graph that the number of populations for the predator species 

is slightly higher to some extent compared to the prey species. This is due to the certainty that, after the 

prey-predation interactions between both species, the predator populations will benefit more since they 

are at the top of the food chain. In spite of that, a noticeable decrease in the predator populations is 

shown in the graph owing to the fact that they were affected by the toxin released by the prey populations 

and the death rate themselves. 

 

 

Figure 3  Time series plot of the predator-prey model with no harvesting efforts. 

 

The time series for the proposed predator-prey model, ignoring the harvesting efforts where the 

harvesting parameter is set to be zero, where 𝐸 = 0 is illustrated in Figure 3. Notice that the plots for the 

number of populations for both predator and prey populations are slightly different from the time series 

plot with harvested prey species with the harvesting parameter 𝑞 = 1.095  which was illustrated in Figure 

2. 

 

Figure 4  Comparison of time series plots between the predator-prey model with 

harvesting and  

no harvesting efforts. 

 

Assume  𝐼1 and  𝑃1 represents the prey and predator population with harvesting parameter 𝑞 =

0.195 respectively; while  𝐼2 and 𝑃2 represents the prey and predator population with non-harvested prey 

populations where  𝑞 = 0 respectively. Collating both prey populations, it is shown that  𝐼2 is slightly higher 

than  𝐼1 at the beginning of the time series plot. However, it is decreasing and slightly lower than  𝐼1 as 

the time 𝑡 increases. This is logically true considering the fact that the prey populations affected by the 
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harvesting activities as the time passed. As the prey populations decreases, there are unnoticeable 

impact of harvesting activities for the predator populations due to the harvesting activities is still under 

control. Hence, the source of food for the predator populations is still enough, thus the number of 

populations does not decline. In spite of that, the slope between prey and predator populations with 

harvesting parameters is smaller compared to the non-harvested plots. This is because it is certainly true 

that when the harvesting activities occur, the prey populations, without any shadow of doubt, will 

continuously decline and harvested, while in contrast, the number of predator population is still high 

considering that the harvesting activities is under control and not affecting the food chain in the 

ecosystem.  

 

 

Figure 5  Time series plot of the predator-prey model with uncontrolled harvesting activity 

for the  

prey species. 

 

As time goes to infinity, it is demonstrated in the graph from Figure 5 that the prey species will 

continue to decline and is expected to be endangered or threaten to extinction as the time passed. In this 

plot, we set the harvesting parameters 𝑞 = 9.570 to represent the uncontrolled harvesting activities. 

There will be a rapid decline in the number of populations for the prey species after some time 𝑡 due to 

the prey populations experiencing uncontrolled harvesting activities, prey-predator interactions and also 

infected simultaneously. Concurrently, the predator populations is also experiencing aforementioned 

characteristic as the prey populations in this scenario considering that their source of food is decreasing 

in the ecosystem which influencing their populations as well.  

 

 

Figure 6  Comparison of time series plot when death rate of prey population is higher. 

  

 On top of that, we further examined the effect of infection on the prey populations of the predator-

prey system. This scenario is assessed by varying the death rate parameter of the prey species, where 

we set 𝑑1 = 0.39. Assume  𝐼1 and  𝑃1 represent the prey and predator population with 𝑑1 = 0.001 
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respectively; while  𝐼2 and 𝑃2 represent the prey and predator populations with infected prey populations 

where  𝑑1 = 0.39  respectively. There is no obvious difference between both plots, thus leading us to the 

conclusion that the infection in the prey species does not yield any severe impacts to the ecological 

system and will only affect a smaller number of populations for both predator and prey species in the 

ecosystem. 

 

 

Figure 7  Time series plots with varying parameters of constant recruitment for predator 

and prey  

populations. 

 

 In addition to all the above analysis, we further analyze the system by altering the parameters 

for constant recruitment of predator and prey populations. Therefore, we first assume  𝐼1 and  𝑃1 

represents the prey and predator population with 𝐴 = 0.69 and 𝐵 = 0.12  respectively; while  𝐼3 and 𝑃3 

represents the prey and predator population where 𝐴 = 0.0.75 and 𝐵 = 0.25 respectively while other 

parameters keep the same value as in Table 2. It is clearly portrayed that higher value of parameters for 

both populations will result to a higher number of populations for predator species. When the constant 

recruitment of prey species increases, food supply for predator species also increases, and thus 

producing a higher number of populations for the predator species. Contradictorily on the flip side, the 

number of population for the prey species 𝑃3 is moderately lower than 𝑃1. This is believed to be due to 

the increment of predator-prey interactions and more prey species is infected to the disease, generating 

a declined trend for the prey populations.  

A dynamical system's paths in a phase plane are represented geometrically by a phase portraits. 

A distinct curve or point is used to represent each set of beginning circumstances. Consequently, a phase 

portraits of the system of ODEs proposed in this study was plotted utilizing the pplane8 function in the 

MATLAB software. The phase portraits gives an illustration of the stability at equilibrium points of the 

System (1). The trajectories in each quadrant of the system is represented by arrows in the phase 

portraits and further analysis is evaluated. The phase portraits is illustrated in the following Figure 8.  

 

 

Figure 8  Phase portraits of the predator-prey model with harvested prey species. 
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 The value of equilibrium 𝑃1 based on the parameters in Table 2 is (1.388, 1.7661). Thus, the 

positive equilibrium 𝑃1 in this predator-prey system is considered to be asymptotically stable spiral point 

since it yields imaginary eigenvalues and have the real parts of both eigenvalues less than zero. 

Specifically, the value of eigenvalues for equilibrium 𝑃1 is −0.2825 + 0.2641𝑖  and −0.2825 − 0.2641𝑖 

where the Jacobian Matrix yields 

𝐽 = [
−0.4971 −0.3345
0.3462 −0.0679

]. 

 

  This is on par with the theoretical computation that has been evaluated in previous section by 

substituting the value of parameters as stated in Table 2.  

 

 

It is clearly portrays in the phase portraits that the plane curve consisting of points continuously 

moves towards the fixed equilibrium point while revolving around it demonstrating a spiral formation. 

Thus, the numerical solutions obtained using the MATLAB software has proven that the theoretical 

computations in the previous sections is true.  

On the other hand, the other equilibrium point specifically point 𝑃2 which holds the value of 

(12.0631, −0.0593) is ignored since it possess negative values of the predator populations. The plot of 

nullclines for the predator-prey system in this study is shown in the following Figure 10. 

 

 

Figure 10 The plot of nullclines for predator-prey model of System (1). 

 

Therefore, the only equilibrium point that represent the coexistence of both species in this study is 

equilibrium point  𝑃1 which possess the value of (1.388, 1.7661) and attain the properties of an 

asymptotically stable spiral point. 

 
 

Conclusion 
In the previous section, a predator-prey system with harvested and infected prey species was proposed 
based on postulates that had been put forward beforehand. The equilibrium points of the system were 
obtained, and stability analysis was investigated using the Jacobian matrix and the eigenvalue method. 
The nullclines of the system have been analyzed and the non-existence of limit cycle have been proved 
by the Bendixson-Dulac theorem. Then, numerical simulations have been conducted with the aid of the 
MATLAB software, distinct time series plots were plotted, the phase portrait of the predator-prey system 
that have been proposed in this study was obtained, and thorough analyses have been discussed.  
 The effect of harvesting efforts and infection on the prey species has been studied based on a 
variety of time series plots that have been obtained in this study. The comparison between the initial 
time series plot and the plot of infected prey populations yields a negligible difference, indicating that the 
infection does not have any severe consequences in the predator-prey system. Variation in the 
harvesting coefficient, on the other hand, has an immense influence on the overall system. A high 
harvesting parameter value resulted in a visible shift in the graph, illustrating that unrestrained harvesting 
measures on prey populations will lead to the extinction of both species as evolution proceeds. 
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Therefore, it can be concluded that the harvesting parameters are more influential than the infection 
parameters in the ecosystem. Hence, law enforcement of harvesting activities should be administered 
seriously, and severe sentences should be imposed on irresponsible parties with the objective of curbing 
illicit harvesting. With these measure, the biological diversity will be preserved, extinction can be 
prevented from happening, and the wealth of marine resources will immensely benefit society as a whole. 
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