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Abstract 
The purpose of this study is to obtain analytical solutions for the unsteady one-dimensional advection- 
dispersion equations that are used to describe the pollutant concentration in a river. The unsteady flow in 
a river is considered as a one-dimensional characterized by a single spatial distance whereas the 
concentration of pollutant is assumed to be varied with time along the length of the river. With the application 
of Laplace Transform technique and addition of transform variable, the model equations can be solved and 
analyzed. Results obtained have shown that the concentration of pollutant increases from upstream to 
downstream. In zero dispersion case, the pollutant concentration is caused only by pure convection and 
rate of pollutant addition along the river. These mathematical models and their analytical solutions can 
predict water quality and provide reliable tools for water management in affected river areas. 
 
Keywords One-Dimensional Advection-Dispersion Equation; Pollutant Concentration; Laplace Transform. 
 
  
1. Introduction 
 
The advection-diffusion equation (ADE) explains the flow of heat, particles, oil reservoir simulations, 
transport of mass and energy, global weather production or other physical quantities in conditions where 
there are both diffusion and convection or advection. Advection is understood as the motion of particles 
along the bulk flow while diffusion is the net movement of particles from high concentration to a lower 
concentration. 

 
During the initial works while obtaining the analytical solutions of dispersion problems in ideal 

conditions, the basic approach was to reduce the advection–diffusion equation into a diffusion equation by 
eliminating the convective term(s). It was done either by introducing moving co- ordinates (Ogata and 
Banks 1961; Harleman and Rumer 1963; Bear 1972; Guvanasen and Volker 1983; Aral and Liao 1996; 
Marshal et al 1996) or by introducing another dependent variable (Banks and Ali 1964; Ogata 1970; Lai and 
Jurinak 1971; Marino 1974 and Al-Niami and Rushton 1977). Then, Laplace transformation technique has 
been used to get desired solutions. In addition to this method, Hankel transform method, Aris moment 
method, perturbation approach, method using Green’s function, superposition method has also been used 
to get the analytical solutions of the advection–diffusion equations in one, two and three dimensions. Yet, 
Laplace transformation technique has been commonly used because of being simpler than other methods 
and the analytical solutions using this method being more reliable in verifying the numerical solutions in 
terms of accuracy and the stability. 

  
Analytical solutions for one-dimensional transport in composite media are often derived with Laplace 

transforms (Carslaw and Jaeger 1959) and sometimes with Green’s functions. Adjoin solution   
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arbitrary initial and boundary conditions, as well as with different variations of dispersion and velocity, for 
which analytical solutions are not available (Djordjevich and Savovic 2013; Savovic and Djordjevich 2012, 
2013; Savovic and Caldwell 2003, 2009). 

 
Mathematical models have been used extensively to predict water quality and to provide reliable 

tools for water quality management in affected areas. According to research by Martinus Th. et al (2013) 
on the exact analytical solutions for contaminant transport in rivers, mathematical models have long proved 
useful for analyzing and predicting the transport of contaminants in streams. Due to the many complexes 
and often nonlinear physical, chemical and biological processes affecting contaminant transport in streams 
and rivers, numerical models are now increasingly used for prediction purposes (e.g., Anderson and 
Phanikumar, 2011; O’Connor et al., 2009; Runkel, 1998; Runkel and Chapra, 1993). Still, analytical and 
quasi-analytical approaches are useful for simplified analyses of a variety of contaminant transport 
scenarios, especially for relatively long spatial and time scales, when insufficient data are available to 
warrant the use of a comprehensive numerical model, and for testing numerical models.  

 
The paper released by Zanke, Patzold and von Rohden (2016) explored analytical solutions for 

reactive transport in rivers and their application in testing numerical models. The development and 
validation of analytical solutions for reactive transport in rivers used the idealized Homogeneous Reactor-
in-Series (HRS) model. Analytical solutions for the ADE in rivers are represented by the HRS model to 
demonstrate the pollutant transport and reaction processes in river systems. In addition to that, sensitivity 
analysis is also used to investigate the influence of different parameters on reactive transport processes. 
The analysis can deduce the effects of flow velocity, reaction rate coefficients, and initial concentrations on 
pollutant transport and transformation in rivers. On the other hand, Ristic and Papic (2019) explored another 
possible method to present an approximate analytical solution based on a perturbation method. The 
perturbation method is used to obtain a solution that captures the time- dependent behavior of the 
dispersion coefficient.  

 
Singh et al. (2018) studied analytical solutions for solute transport in rivers with time-varying velocity 

and dispersion coefficient. It focused on the solute transport processes in rivers, specifically considering 
the time-varying nature of velocity and dispersion coefficients. The paper emphasized that the velocity and 
dispersion coefficients in rivers can exhibit temporal variations due to factors such as diurnal variations, 
tidal effects, and flow regime changes. These variations significantly influence solute transport processes 
and need to be accounted for in accurate modelling. The method used is the method of characteristics, a 
mathematical technique used for solving partial differential equations, to derive analytical solutions for 
solute transport in rivers with time-varying velocity and dispersion coefficients.  

 
In more recent years, Keshav Paudel (2021) further research ing advection-dispersion equation of 

pollutant concentration using Laplace Transformation. The main assumptions in the research are similar 
such as one-dimensional steady state flow with constant dispersion coefficient and negligible chemical 
reactions. In addition to that, it also shared similar conditions such as homogeneous and isotropic medium 
where the pollutant is transported in uniform properties in all directions. It is later determined via numerical 
studies that the pollutant concentration along with time is caused only by pure convection and rate of 
pollutant addition along the river. If the added pollutant rate along the river is in a very small amount, the 
variation of pollutant concentration along the river at different times coincides with each other.  

This present study will formulate the mathematical model of one-dimensional equation of pollutant 
concentration which includes a source term and is treated as two different regions of upstream and 
downstream. 
 
2. Mathematical Model 
 
This study will focus on obtaining an analytical solution for one-dimensional advection-diffusion equation 
using Laplace transform. In the river, the unsteady flow is considered one-dimensional characterized by a 
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single spatial distance x (m).  
 

It is established that the river is divided into two regions x ≥ 0 and x ≤ 0 and the origin is at 𝑥 = 0. 
The variation of 𝐶(𝑥, 𝑡) with the time 𝑡 from 𝑡 = 0 up to 𝑡 → ∞ is also taken into account in this problem. The 
special case for which the dispersion coefficient D = 0 is studied in detail. 

 
The governing equations of one-dimensional ADE representing pollutant concentration along a river 

can be written as (Pimpunchat et al, 2009; Ali S Wadi et al, 2014): 

∂	(AC!)
∂t = 𝐷

∂"(AC!)
∂𝑥" −	

∂(vA𝐶!)
∂x − 𝑘!

𝑋
𝑋 + 𝑘 𝐴𝐶!, 𝑥 ≤ 0, 𝑡 > 0 

∂	(AC")
∂t = 𝐷

∂"(AC")
∂𝑥" −	

∂(vA𝐶")
∂x − 𝑘!

𝑋
𝑋 + 𝑘 𝐴𝐶" + 𝑞	, 0 ≤ 𝑥 < 𝐿	 ≤ ∞, 𝑡 > 0 

𝐶! and 𝐶" are the concentrations of the pollutant in the two regions respectively (𝑘𝑔𝑚#$) 
𝐴 is the cross-section area of the river (𝑚") 
𝐷 is the dispersion coefficient of pollutant in 𝑥 direction (𝑚". 𝑑𝑎𝑦#!) 
𝑣 is the water velocity in the 𝑥 direction (𝑚. 𝑑𝑎𝑦#!) 
𝑘!is the degradation rate coefficient for pollutant (𝑑𝑎𝑦#!) 
𝑘 is the half-saturated oxygen demand concentration for pollutant decay (𝑘𝑔𝑚#$) 
𝑋(𝑥, 𝑡) is the concentration of the dissolved oxygen within the river (𝑘𝑔𝑚#$) 
 
The initial and boundary conditions associated are as follows; 

𝐶!(𝑥, 0) = 	𝐶"(𝑥, 0) = 0	 

𝐶!(0, 𝑡) = 	𝐶"(0, 𝑡), 𝑡 > 0 

𝑑𝐶!(0, 𝑡)
𝑑𝑥 = 	

𝑑𝐶"(0, 𝑡)
𝑑𝑥 , 𝑡 > 0 

 
3. Analytical Solution 
 

Laplace transformation technique is used to get the analytical solution. It is estimated that the 
concentration of pollutant increases as 𝑥 increases from the upstream to downstream. It is also predicted 
that the pollutant concentration is caused only by pure convection and rate of pollutant addition along 
the river. 
            
By implementing the laplace transform method, the following solutions can be obtained. 

𝐶C!(𝑥, 𝑝) =
𝐷

𝑘! + 𝑝
. 𝛼!𝑒𝑥𝑝 G𝑥 H𝛿 + J

𝛼 + 𝑝
𝐷 KL +

𝐷
𝑘! + 𝑝

. 𝛼"𝑒𝑥𝑝 G𝑥 H𝛿 −J
𝛼 + 𝑝
𝐷 KL	 

𝐶C"(𝑥, 𝑝) =
𝑞

𝐴𝑝(𝑘! + 𝑝)
+

𝐷
𝑘! + 𝑝

. 𝛼$𝑒𝑥𝑝 G𝑥 H𝛿 + J
𝛼 + 𝑝
𝐷 KL +

𝐷
𝑘! + 𝑝

. 𝛼%𝑒𝑥𝑝 G𝑥 H𝛿 −J
𝛼 + 𝑝
𝐷 KL 

𝛼!, 𝛼", 𝛼$		and 𝛼% are constants that can be determined using the boundary condition, 𝐶C!(0, 𝑝) =
𝐶C"(0, 𝑝) and &'

(!(*,,)
&.

= &'("(*,,)
&.

. 
 

The inverse of the equations have been obtained by taking the inverse Laplace transformation 
and applying the convolution theorem and shift theorem. Thus, 𝐶!(𝑥, 𝑡)and 𝐶"(𝑥, 𝑡) are given by: 
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𝐶!(𝑥, 𝑡) =
𝑞

4𝑘!𝐴
{exp[(𝛿 − 𝛽)𝑥]}𝑒𝑟𝑓𝑐 X−

𝑥
2√𝐷𝑡

+ √𝛼𝑡[ +
𝑞

4𝑘!𝐴
{exp[(𝛿 + 𝛽)𝑥]}𝑒𝑟𝑓𝑐 X−

𝑥
2√𝐷𝑡

− √𝛼𝑡[

−
𝑞

2𝑘!𝐴
{exp[−𝑘!𝑡]}𝑒𝑟𝑓𝑐 X−

𝑥
2√𝐷𝑡

+\(𝛼 − 𝑘!)𝑡[

−
𝑞

4𝑘!𝐴
𝛿
𝛽
{exp[(𝛿 + 𝛽)𝑥]}𝑒𝑟𝑓𝑐 X−

𝑥
2√𝐷𝑡

− √𝛼𝑡[

+
𝑞

4𝑘!𝐴
𝛿
𝛽
{exp[(𝛿 − 𝛽)𝑥]}𝑒𝑟𝑓𝑐 X−

𝑥
2√𝐷𝑡

+ √𝛼𝑡[ 

where 𝑥 ≤ 0. 

𝐶"(𝑥, 𝑡) =
𝑞
𝑘!𝐴

−
𝑞
𝑘!𝐴

{exp[−𝑘!𝑡]} −
𝑞

4𝑘!𝐴
{exp[(𝛿 − 𝛽)𝑥]}𝑒𝑟𝑓𝑐 X

𝑥
2√𝐷𝑡

− √𝛼𝑡[

+
𝑞

4𝑘!𝐴
𝛿
𝛽
{exp[(𝛿 + 𝛽)𝑥]}𝑒𝑟𝑓𝑐 X

𝑥
2√𝐷𝑡

+ √𝛼𝑡[ +
𝑞

2𝑘!𝐴
{exp[−𝑘!𝑡]}𝑒𝑟𝑓𝑐 X

𝑥
2√𝐷𝑡

+ \(𝛼 − 𝑘!)𝑡[

−
𝑞

4𝑘!𝐴
{exp[(𝛿 + 𝛽)𝑥]}𝑒𝑟𝑓𝑐 X

𝑥
2√𝐷𝑡

+ √𝛼𝑡[ −
𝑞

4𝑘!𝐴
{exp[(𝛿 − 𝛽)𝑥]}𝑒𝑟𝑓𝑐 X

𝑥
2√𝐷𝑡

− √𝛼𝑡[ 

where 𝑥 ≥ 0. 
 
By substituting the dimensionless variables into the equation, 

𝐶!∗(𝑥∗, 𝑡∗) =
1
4
{exp[(𝛿∗ − 𝛽∗)𝑥∗]}𝑒𝑟𝑓𝑐	 X

−𝑥∗ + 2𝐷∗𝛽∗𝑡∗

2√𝐷∗𝑡∗
[ +

1
4
{exp[(𝛿∗ + 𝛽∗)𝑥∗]}𝑒𝑟𝑓𝑐	 X

−𝑥∗ + 2𝐷∗𝛽∗𝑡∗

2√𝐷∗𝑡∗
[

−
1
2
{exp[−𝑡∗]}𝑒𝑟𝑓𝑐	 X

−𝑥∗ + 2𝐷∗𝛽∗𝑡∗

2√𝐷∗𝑡∗
[ −

𝛿∗

4𝛽∗
{exp[(𝛿∗ + 𝛽∗)𝑥∗]}𝑒𝑟𝑓𝑐	 X

−𝑥∗ − 2𝐷∗𝛽∗𝑡∗

2√𝐷∗𝑡∗
[

+
𝛿∗

4𝛽∗
{exp[(𝛿∗ − 𝛽∗)𝑥∗]}𝑒𝑟𝑓𝑐	 X

−𝑥∗ + 2𝐷∗𝛽∗𝑡∗

2√𝐷∗𝑡∗
[ 

𝐶"∗(𝑥∗, 𝑡∗) = 1 − exp[−𝑡∗] −
𝛿∗

4𝛽∗
{exp[(𝛿∗ + 𝛽∗)𝑥∗]}𝑒𝑟𝑓𝑐	 X

𝑥∗ − 2𝐷∗𝛽∗𝑡∗

2√𝐷∗𝑡∗
[

+
𝛿∗

4𝛽∗
{exp[(𝛿∗ + 𝛽∗)𝑥∗]}𝑒𝑟𝑓𝑐	 X

𝑥∗ + 2𝐷∗𝛽∗𝑡∗

2√𝐷∗𝑡∗
[ +

1
2
{exp[𝑡∗]}𝑒𝑟𝑓𝑐 X

𝑥∗ − 2𝐷∗𝛽∗𝑡∗

2√𝐷∗𝑡∗
[

−
1
4
{exp[(𝛿∗ + 𝛽∗)𝑥∗]}𝑒𝑟𝑓𝑐	 X

𝑥∗ + 2𝐷∗𝛽∗𝑡∗

2√𝐷∗𝑡∗
[ −

1
4
{exp[(𝛿∗ − 𝛽∗)𝑥∗]}𝑒𝑟𝑓𝑐	 X

𝑥∗ − 2𝐷∗𝛽∗𝑡∗

2√𝐷∗𝑡∗
[ 

 
Special Case of Zero Dispersion 
Another case is the model including time and zero dispersion, where 𝑟 ≫ 0 and is approximately zero. 
Hence, the case equation is reduced to: 

𝜕(𝐴𝐶$)
𝜕𝑡 =

𝜕(𝑣𝐴𝐶$)
𝜕𝑥 − 𝑘!𝐴𝐶$ + 𝑞 

It is later solved by applying Laplace transformation and subsequently summarized to this form: 

𝐶$(𝑥, 𝑡) =
𝑞
𝑘!𝐴

−
𝑞
𝑘!𝐴

{exp[−(𝑘!𝑡)]} + 𝑝!{𝑒𝑥𝑝 − (𝑘!𝑡)]} −
𝑞
𝑘!𝐴

aexp b− X
𝑘!
𝑣 [ 𝑥cd +

𝑞
𝑘!𝐴

aexp b−X
𝑘!
𝑣 𝑥 + 𝑘!𝑡[cd

− 𝑝! aexp b− X
𝑘!
𝑣 𝑥 + 𝑘!𝑡[cd + 𝑝" aexp b−X

𝑘!
𝑣 [𝑥cd 

Its dimensionless form is as follows: 

𝐶$∗(𝑥∗, 𝑡∗) = 1 − exp[−𝑡∗] + 𝑝!∗ exp[−𝑡∗] − exp[−𝑥∗] + exp[−(𝑥∗ + 𝑡∗)] − 𝑝!∗{exp[−(𝑥∗ + 𝑡∗)]} +
𝑝"∗{exp[−𝑥∗]}  

 
Special Case of Steady State Solution 
The steady state solution is obtained by taking the limit of 𝑡 → ∞. Hence, in the case of 𝐶!(𝑥), 𝐶"(𝑥) 
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and 𝐶$(𝑥) take the form of; 

𝐶!(𝑥) = 	
𝑞
𝑘!𝐴

X
𝛽 − 𝛿
2𝛽 [	{exp[(𝛿 + 𝛽)𝑥]}					, 𝑥 ≤ 0 

𝐶"(𝑥) = 	
𝑞
𝑘!𝐴

e1 − X
𝛽 + 𝛿
2𝛽 [f	{exp[(𝛿 − 𝛽)𝑥]}					, 𝑥 ≥ 0 

𝐶$(𝑥) = 	
𝑞
𝑘!𝐴

X1 − aexp b−X
𝑘!
𝑣 [ 𝑥cd[ 

For 𝑥 ≤ 0, the time 𝑡 has very small effect on 𝐶1. For 𝑥 ≥ 0, as 𝑡 increases 𝐶2 increases and 
reaches its maximum value as 𝑡 → ∞. 
 
Special Case of Time and Zero Dispersion 

Another case to be explored is the model including time and zero dispersion, 𝐷 = 0. The 
equation is as follows: 

𝜕𝐶C$(𝑥, 𝑝)
𝜕𝑥 + (𝑘! + 𝑝)

𝐶C$(𝑥, 𝑝)
𝑣 =

1
𝑣 X𝑝! +

𝑞
𝐴𝑝[ 

Where 𝑝 > 0. This 𝑝 represents the Laplace transform variable. Therefore, the general solution of 
the equation is 

𝐶C$(𝑥, 𝑝) = g 0
1,
+ 𝑝!h

!
(2!3,)

+ 𝛼4{exp	[−g
2!3,
5
h 𝑥]} 

𝛼4 is an arbitrary constant. When 𝐶C$(0, 𝑝)=
,"
,

 is applied,  

,"
,
= g 0

1,
+ 𝑝!h

!
(2!3,)

+ 𝛼4{exp	[− g
2!3,
5
h0]} 

𝐶C$(𝑥, 𝑝) =
0

1,(2!3,)
+ ,!

2!3,
− 0

1,(2!3,)
iexp j− g2!3,

5
h 𝑥kl − ,!

2!3,
iexp j−g2!3,

5
h 𝑥kl + ,"

,
iexp j− g2!3,

5
h 𝑥kl

  

The inverse of Laplace transform of equation is; 

𝐶C$(𝑥, 𝑡) =
𝑞
𝐴 (

1
𝑘!
−
1
𝑘!
{exp[−(𝑘!𝑡)]}) + 𝑝!{𝑒𝑥𝑝 − (𝑘!𝑡)]} −

𝑞
𝐴 (

1
𝑘!
−
1
𝑘!
{exp[−(𝑘!𝑡)]})

⊗ eexp b−X
𝑘!
𝑣 [ 𝑥c𝐻 g𝑡 −

𝑥
𝑣hf − 𝑝! oexp p−eX

𝑘!
𝑣 [ 𝑥 + 𝑘!𝑡fq𝐻 g𝑡 −

𝑥
𝑣hr

+ 𝑝" oexp p−eX
𝑘!
𝑣 [ 𝑥fq𝐻 g𝑡 −

𝑥
𝑣hr 

Where 𝐻 g𝑡 − .
5
h is a Heaviside function defined by: 

𝐻g𝑡 − .
5
h = 1	if 𝑡 > .

5
 

and  
𝐻g𝑡 − .

5
h = 0	if 𝑡 < .

5
 

 
Additionally, ⊗ also denotes the multiplication operation in the Convolution Theorem. By using the 
Convolution Theorem equation,  
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𝐶$(𝑥, 𝑡) =
𝑞
𝑘!𝐴

−
𝑞
𝑘!𝐴

{exp[−(𝑘!𝑡)]} + 𝑝!{𝑒𝑥𝑝 − (𝑘!𝑡)]} −
𝑞
𝑘!𝐴

aexp b− X
𝑘!
𝑣 [ 𝑥cd +

𝑞
𝑘!𝐴

aexp b−X
𝑘!
𝑣 𝑥 + 𝑘!𝑡[cd

− 𝑝! aexp b− X
𝑘!
𝑣 𝑥 + 𝑘!𝑡[cd + 𝑝" aexp b−X

𝑘!
𝑣 [𝑥cd 

Where 𝑡 > .
5
. To write the equation in dimensionless form, the following dimensionless variables are used: 

𝑥∗ = 2!
5
𝑥,  𝑡∗ = 𝑘!𝑡,	 𝐶$∗(𝑥∗, 𝑡∗) =

'#(.,6)
$

%!&
, 𝑝!∗ =

,!
$

%!&
,	 𝑝"∗ =

,"
$

%!&
 

Where 5
2!
	scale for length and 0

2!1
 scale for concentration. Hence,  

𝐶$∗(𝑥∗, 𝑡∗) = 1 − exp[−𝑡∗] + 𝑝!∗ exp[−𝑡∗] − exp[−𝑥∗] + exp[−(𝑥∗ + 𝑡∗)] − 𝑝!∗{exp[−(𝑥∗ + 𝑡∗)]}
+ 𝑝"∗{exp[−𝑥∗]} 

 
In the steady state case where 𝑡 → ∞, 

𝐶$(𝑥) = 	
𝑞
𝑘!𝐴

−
𝑞
𝑘!𝐴

aexp b−X
𝑘!
𝑣 [ 𝑥cd + 𝑝" aexp b−X

𝑘!
𝑣 [ 𝑥cd 

For the special case when 𝑝" = 0, the equation becomes as follows; 

𝐶$(𝑥) = 	
𝑞
𝑘!𝐴

X1 − aexp b−X
𝑘!
𝑣 [ 𝑥cd[ 

 
4. Result and Discussion 
 
Analytical solutions obtained from previous research have ignored the solution in the important interval of 
the time 𝑡, where 0 ≤ 𝑡 ≤ ∞. However, this solution in this particular period is important due to the fact that 
the remediation by aeration occurs in this period of time 𝑡, before the pollutant concentration reaches its 
maximum values as 𝑡 → ∞. Hence, this paper has been able to overcome this drawback and the pollutant 
concentration at any time 𝑡 in the period 0 ≤ 𝑡 ≤ ∞ can be obtained. 

 
In order to showcase the findings, MATLAB, a programming and numeric computing platform is 

used to analyze the data obtained. 
 

   
zFigure 1 Analytical Unsteady State Solution with Dispersion for 𝐶!(𝑥, 𝑡)and 𝐶"(𝑥, 𝑡)at different 

time, 𝑡 
 

Figure 1 shows the variation of (𝐶1, 𝐶2) in the range of −10 ≤ 𝑥 ≤ 20 (m) with the time 𝑡 for the case 
when 𝐷 ≠ 0, for 𝑡 = 0.5, 𝑡 = 1.0 and 𝑡 = 1.5 (in days) and as 𝑡 approaches infinity. In order to test the model, 
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the parameters, 𝐴, 𝑣, 𝑞 and 𝐷 are taken to be equal to 1 and 𝑘1 = 2. Based on the figure, it can be deduced 
that the time, 𝑡, has very small or minor effect on the pollutant concentration (𝐶1) for when the single spatial 
distance 𝑥 ≤ 0. 

 
Generally, it can be analyzed that the concentration of pollutant increases as x increases from 

upstream to downstream.  
 

    
 

Figure 2  𝐶$∗(𝑥∗, 𝑡∗) as a function of space and time along the river with different values of 𝑝"∗ where 
𝑝!∗	and 𝑡∗ are constant  

 
Next, Figure 2 shows the variation of 𝐶$∗ along the river with different values of	𝑝"∗. The other values 

are as follows; 𝑞 = 0.06𝑘𝑔𝑚#!𝑑𝑎𝑦#!, 𝑘! = 8.27	𝑑𝑎𝑦#!, 𝐴 = 2100𝑚", 	𝑝! = 0, 0.0001, 0.0002, 0.0003𝑘𝑔𝑚#$,
𝑝!∗ = 2894.5, 𝑡∗ = 6.616. Based on the figure, for 𝑝"∗ = 0 (water without pollution) from the upstream of the 
river 𝑥∗ = 0,	as 𝑥∗ increases,  𝐶$∗ also increases due to the presence of 𝑝!∗. For the other values of 𝑝"∗, 
𝑥∗increases causes 𝐶$∗ to decrease. Last but not least, at any cross-section where 𝑥∗ = constant, 𝐶$∗ 
increases as 𝑝"∗	increases.  

 
Special Case of Steady State Solution 
 

 
Figure 3 Steady State Case for 𝐶!, 𝐶" and 𝐶$ 

 
In the context of the advection-dispersion equation (ADE), the steady state case refers to a scenario 

where the concentration distribution of a substance being transported remains constant over time. In other 

(a) (b) 

 

(c) 
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words, there is no change in the concentration of pollutant in the medium as time progresses. These are 
the equations for 𝐶1(𝑥), 𝐶2(𝑥) and 𝐶3(𝑥) as 𝑡 → ∞. 
 
Conclusion 
 
Using Laplace transformational method, the study derived analytical solutions for the unsteady pollutant 
concentration 𝐶(𝑥, 𝑡) in a one -dimensional advection-dispersion equation. This research is built upon the 
previous work by Pimpunchat et al. (2007), which focused on the steady-state case. The obtained solutions 
predicted the pollutant concentration as a function of space and time, considering various flow parameters. 
To simplify the analysis, the solution for pollutant concentration is expressed in dimensionless form as 
𝐶!∗(𝑥∗, 𝑡∗) and 𝐶"∗(𝑥∗, 𝑡∗), both of which depend on only two dimensionless parameters 0

2!1
, representing the 

ratio of advection to dispersion and 𝛿∗, representing the distance over which pollutant is transported. 
Through numerical studies, it is revealed that the variation of 𝐶$∗(𝑥∗, 𝑡∗) increased as one of the 
dimensionless parameters (time, initial pollution at source) increased while holding the other two 
parameters constant. Furthermore, it is also found that the variation of 𝐶$∗ with time 𝑡∗ is negligible for the 
special case when 𝑝!∗ = 𝑝"∗ = 0. In closing, it is generally acknowledged that as the distance from the 
pollution source (𝑥) increases, the concentration of pollutant (𝐶) approaches a constant value.  
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