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Abstract 
There has been an increase in occurrence of harmful algal blooms (HAB) reported over the last decade. 
HAB harms the ecosystem and can cause toxic effects on human and marine creatures. Some of the 
factors that influence the rise of HAB include nutrient availability, composition, and biotic factors such as 
competition and grazing. The purpose of this study is to formulate a mathematical model of zooplankton 
and phytoplankton relationship using ordinary differential equations. Phase portraits based on the 
mathematical model of the nonlinear zooplankton model system have been developed in this study to 
analyze the dynamical behaviors of the mathematical model. Results were compared between the critical 
points of the system which consisted of three equilibrium points. The linearization method is applied to the 
nonlinear differential equations to obtain the eigenvalues and eigenvectors for the equilibrium points. The 
phase portraits for each set of equilibrium points and eigenvectors are used to interpret and discuss the 
stability for the nonlinear ordinary differential equations. 
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1. Introduction 
 
Harmful algal bloom (HAB) refers to an occurrence that happens in natural marine or freshwater 
environments. This circumstance can be identified by a significant rise in the population of phytoplankton. 
The situation is also recognized as phytoplankton blooms, micro-algal blooms, toxic algae, red tides, and 
harmful. The proliferation of various phytoplankton species on the water surface disturbs the ecosystem 
and can have negative effects on humans, fish, and shellfish. This is mainly attributed to some microalgae 
that produce toxins, which can accumulate in shellfish and create a risk to human health when being 
consumed. Additionally, a certain types of microalgae species can cause fish mortality by clogging their 
gills, leading to lack of oxygen and subsequent death [8]. The presence of high level of density of algal 
blooms in water leads to a reduction in dissolved oxygen [19]. 

 
During the past decades, coastal region of the world have affected by harmful algal blooms seriously 

and causes massive losses in aquaculture, fisheries, human health, tourism, and ecosystems. Most HABs 
are caused by rapid proliferation of one or a few toxic or deleterious species of microalgae, although there 
is no universally accepted standard for the cell density that defines a bloom, as the blooming species and 
particularly its harmful effects. Studies on the negative effects of HABs have heretofore mainly focused 
on valuable animals and environmental factors such as dissolved oxygen and nutrients. However, 
investigations on the effect of HABs on plankton community structure and succession have been rare and 
were generally based on single trophic level and microscopic counting, except for one recent publication 
reporting the effects of a natural dinoflagellate bloom on the microbial community structure and succession 
via metagenomic approach [4]. 
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As already mentioned earlier, HAB harms the ecosystem. The harm of microalgae can be easily 
seen by observing marine food resources. If marine food resources like aquaculture are affected, it can 
show the severity of the HAB. There are cases where some species are not visibly affected by the algae, 
but toxins accumulate in their organs. These toxins can be transmitted to humans through the consumption 
of contaminated seafood [8]. Some algal blooms are the result of an excess of nutrients, particularly 
phosphorus and nitrogen into water, and higher concentrations of these nutrients in water cause increased 
growth of algae and green plants. As more algae and plants grow, others die. This dead organic matter 
becomes food for bacteria that decomposes it. With more food available, the bacteria increase in number 
and use up the dissolved oxygen in the water. When the dissolved oxygen content decreases, many fish 
and aquatic insects can’t survive. This results in dead area [6]. 

 
Some prior studies on harmful algal bloom have been conducted on the zooplankton – 

phytoplankton – fish model relation. There is a need to focus on the nonlinear ordinary differential equation 
system between zooplankton and phytoplankton with the growth rate of phytoplankton with the grazing 
rate of the zooplankton as the trigger mechanism, in which they are controlling the initiation of the outbreak 
and the refractory mechanism, which causes the model to return to its original state [6]. 
 
2. Nonlinear Ordinary Differential Equations 
 
A complete nonlinear ordinary differential equation system for a zooplankton and phytoplankton 
relationship is derived based on the approach as presented by Nurul Huda Gazi and Kalyan Das (2010). 
The essence of the trigger mechanism assumed in our model lies in the interaction of the growth rate of 
phytoplankton with the grazing rate of the zooplankton. This is evidence that herbivore grazing plays a 
crucial role in the initial stages of a red tide outbreak. The rate of production of zooplankton, while their 
loss from the system is through death and natural predation by higher members of the food web, is via the 
consumption of the phytoplankton population. The model is given as 

𝑑𝑥
𝑑𝑡 = 𝑟𝑥 &1 −

𝑥
𝐾* − 𝑅!

𝑥"

𝑎" + 𝑥" 𝑦,
(1)	

𝑑𝑦
𝑑𝑡 = −𝜇𝑦 + 𝑏𝑅!

𝑥"

𝑎" + 𝑥" 𝑦,
(2) 

with the non-negative initial conditions given by 𝑥(0) = 𝑥# > 0 and 𝑦(0) = 𝑦# > 0.  
The system above can be simplified as 

𝑑𝑥
𝑑𝑡 = 𝑥𝑔(𝑥) − 𝑦𝑝(𝑥), (3)	

𝑑𝑦
𝑑𝑡 = 𝑦(ℎ(𝑥) − 𝜇) (4) 

with 

𝑔(𝑥) = 𝑥 &1 −
𝑥
𝐾* ,

(5) 

𝑝(𝑥) = 𝑅!
𝑥"

𝑎" + 𝑥" ,
(6) 

ℎ(𝑥) = 𝑏𝑅!
𝑥"

𝑎" + 𝑥" ,
(7) 

where, 
 

Table 1  Parameters for nonlinear equation 
 

Parameters Description 
𝑥(𝑡) Densities of phytoplankton in marine ecosystem 
𝑦(𝑡) Densities of zooplankton in marine ecosystem 
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𝑔(𝑥) Growth rate of phytoplankton in absence of zooplankton 
𝑝(𝑥) Functional response of zooplankton 
ℎ(𝑥) Numerical response of zooplankton 
𝑟 Maximum growth rate 
𝐾 Carrying capacity 
𝑅! Maximum specific predation rate 

𝑎 How quickly maximum specific predation is attained as prey densities 
increase 

𝜇 Rate of removal of zooplankton by death and predation 
𝑏 Ratio of biomass consumed to biomass of new herbivores produced 

 
The nonlinear ODE is a prey and predator model system with zooplankton as the prey, and 

phytoplankton as the predator. There are some assumptions that can be made from the model. In the 
absent of phytoplankton, the population of zooplankton will grow at the natural rate, $%

$&
= 𝑥𝑔(𝑥), 𝑔(𝑥) > 0. 

Meanwhile, in the absent of zooplankton, the population of phytoplankton could decrease at the natural 
rate, $'

$&
= −𝜇𝑦, 𝜇 > 0. The present of both zooplankton and phytoplankton is beneficial for the growth of 

the population of phytoplankton and is harmful for the growth of the population of zooplankton. 
 
3. Linearization of Nonlinear ODEs 
 
In this section, linearization is used to analyze the system. The parameters 𝑔(𝑥), ℎ(𝑥), 𝑝(𝑥), and 𝜇 are 
assumed to be positive. This system represents the predator-prey relationship between zooplankton and 
phytoplankton where the variables 𝑥 and 𝑦 are restricted to be nonnegative. In this context, the system is 
known as the Lotka-Volterra equations. 

 
To analyze the system, the first step is to find the critical points of the system. By referring to the 

zero isoclines of the model system yield three equilibrium points which are (0,0), (𝐾, 0), and 𝐸(𝑥∗, 𝑦∗)  
where 𝑥∗, 𝑦∗ are given by 

𝑥∗ =
𝑎√𝜇

B𝑏𝑅! − 𝜇
(8) 

and  

𝑦∗ =
𝑏𝑟
𝜇 D1 −

𝑥∗
𝐾E𝑥∗.

(9) 

By applying the linearization in equation (1) and (2) at those points, one can observe the 
approximate behavior of the solutions over time when an initial condition is close to the equilibrium points. 
We start by computing the derivative matrix 

𝐷𝐹(𝑥, 𝑦) =

⎝

⎜
⎛
𝑟 −

2𝑟𝑥
𝐾 − 𝑅!𝑦 M

2𝑥) − 2𝑥(𝑎" + 𝑥")
𝑎" + 𝑥" N −𝑅!

𝑥"

𝑎" + 𝑥"

𝑏𝑅!𝑦 M
2𝑥) − 2𝑥(𝑎" + 𝑥")

𝑎" + 𝑥" N −𝜇 + 𝑏
𝑅!𝑥"

𝑎" + 𝑥"⎠

⎟
⎞

(10) 

The linearization at the equilibrium solution (0,0) is given by 

𝐷𝐹(0,0) = R𝑟 0
0 −𝜇S = 𝐴 (11) 

The matrix A in (11) is then subtracted with 𝜆𝐼 in which 𝜆𝐼 = &𝜆 0
0 𝜆* 
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𝐴 − 𝜆𝐼 = R𝑟 0
0 −𝜇S − &

𝜆 0
0 𝜆* (12) 

 
This will give the matrix 
 

R𝑟 − 𝜆 0
0 −𝜇 − 𝜆S (13) 

From the equation acquired in (13), the determinant can be searched by 

𝑑𝑒𝑡 R𝑟 − 𝜆 0
0 −𝜇 − 𝜆S (14) 

Solving the equation in (14) will give 

(𝑟 − 𝜆)(−𝜇 − 𝜆) (15) 

By having the equation in (15) equal to 0, two values of 𝜆 are obtained 

𝜆 = 𝑟, 𝜆 = −𝜇 (16) 

Then, the linearization at the equilibrium solution (𝐾, 0) is given by 

𝐷𝐹(𝐾, 0) =

⎝

⎛
−𝑟 −𝑅!

𝐾"

𝑎" +𝐾"

0 −𝜇 + 𝑏
𝑅!𝐾"

𝑎" +𝐾"⎠

⎞ = 𝐵 (17) 

The matrix B in (4.17) is then subtracted with 𝜆𝐼 

𝐵 − 𝜆𝐼 =

⎝

⎛
−𝑟 −𝑅!

𝐾"

𝑎" +𝐾"

0 −𝜇 + 𝑏
𝑅!𝐾"

𝑎" +𝐾"⎠

⎞− &𝜆 0
0 𝜆* (18) 

This will give the matri 

⎝

⎛
−𝑟 − 𝜆 −𝑅!

𝐾"

𝑎" +𝐾"

0 −𝜇 + 𝑏
𝑅!𝐾"

𝑎" +𝐾" − 𝜆⎠

⎞ (19) 

From the equation acquired in (4.19), the determinant can be searched by 

det

⎝

⎛
−𝑟 − 𝜆 −𝑅!

𝐾"

𝑎" +𝐾"

0 −𝜇 + 𝑏
𝑅!𝐾"

𝑎" +𝐾" − 𝜆⎠

⎞ (20) 

Solving the equation in (20) will give 

(−𝑟 − 𝜆)M−𝜇 + 𝑏
𝑅!𝐾"

𝑎" +𝐾" − 𝜆N (21) 

By having the equation in (21) equal to 0, two values of 𝜆 are obtained 

𝜆 = −𝑟, 𝜆 = −𝜇 + 𝑏
𝑅!𝐾"

𝑎" +𝐾" (22) 

Lastly, the linearization at the equilibrium solution 𝐸∗(𝑥∗, 𝑦∗) is given by 
 

𝐷𝐹((𝑥∗, 𝑦∗) =	
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⎝

⎜
⎛
𝑟	 −	

2𝑟
𝐾 𝑥∗ − 𝑅!𝑦∗ M

2𝑥∗) − 2𝑥∗(𝑎" + 𝑥∗")
(𝑎" + 𝑥∗")"

N −𝑅!
𝑥∗"

𝑎" + 𝑥∗"

𝑏𝑅!𝑦∗ M
2𝑥∗) − 2𝑥∗(𝑎" + 𝑥∗")

(𝑎" + 𝑥∗")"
N −𝜇 + 𝑏

𝑅!𝑥∗"

𝑎" + 𝑥∗"
− 𝜆

⎠

⎟
⎞
= 𝐶 (23)	

 

The matrix B in (23) is then subtracted with 𝜆𝐼 
 

𝐶 − 𝜆𝐼 =

⎝

⎜
⎛
𝑟	 −	

2𝑟
𝐾 𝑥∗ − 𝑅!𝑦∗ M

2𝑥∗) − 2𝑥∗(𝑎" + 𝑥∗")
(𝑎" + 𝑥∗")"

N −𝑅!
𝑥∗"

𝑎" + 𝑥∗"

𝑏𝑅!𝑦∗ M
2𝑥∗) − 2𝑥∗(𝑎" + 𝑥∗")

(𝑎" + 𝑥∗")"
N −𝜇 + 𝑏

𝑅!𝑥∗"

𝑎" + 𝑥∗"
− 𝜆

⎠

⎟
⎞
− &𝜆 0

0 𝜆* (24) 

This will give the matrix 

⎝

⎜
⎛
𝑟 −

2𝑟
𝐾 𝑥∗ − 𝑅!𝑦∗ M

2𝑥∗) − 2𝑥∗(𝑎" + 𝑥∗")
(𝑎" + 𝑥∗")"

N − 𝜆 −𝑅!
𝑥∗"

𝑎" + 𝑥∗"

𝑏𝑅!𝑦∗ M
2𝑥∗) − 2𝑥∗(𝑎" + 𝑥∗")

(𝑎" + 𝑥∗")"
N −𝜇 + 𝑏

𝑅!𝑥∗"

𝑎" + 𝑥∗"
− 𝜆

⎠

⎟
⎞

(25) 

From the equation acquired in (25), the determinant can be searched by 

det

⎝

⎜
⎛
𝑟 −

2𝑟
𝐾 𝑥∗ − 𝑅!𝑦∗ M

2𝑥∗) − 2𝑥∗(𝑎" + 𝑥∗")
(𝑎" + 𝑥∗")"

N − 𝜆 −𝑅!
𝑥∗"

𝑎" + 𝑥∗"

𝑏𝑅!𝑦∗ M
2𝑥∗) − 2𝑥∗(𝑎" + 𝑥∗")

(𝑎" + 𝑥∗")"
N −𝜇 + 𝑏

𝑅!𝑥∗"

𝑎" + 𝑥∗"
− 𝜆

⎠

⎟
⎞

(26) 

Solving the equation in (26) will give 

𝜆 =
−𝜇 + 𝑥∗ + 𝑥∗" R

𝑏𝑅!
𝑎" + 𝑥∗"

− 1
𝐾S ±B𝑝

2
(4.27) 

with 

𝑝 = *+!%∗
#

,#-%∗#
D𝑏𝑅!𝑥∗" − 2𝜇 + 2𝑥 &1 −

%
.
*E + 𝑥∗" D1 −

/"%
.
+ %∗#

.#
E − 2𝜇𝑥(1 − %

.
) 

 
3.1 Solution for Nonlinear Ordinary Differential Equations 
 
By taking these values, the nonlinear ordinary differential equations presumably become as below. 

 
Table 2 : Values for zooplankton phytoplankton model [18] 

 
Parameter Description Value Unit 
𝑟 Maximum growth rate 0.3 𝑑/0 
𝑅! Maximum specific predation rate 0.7 𝑑/0 

𝑎 How quickly maximum specific predation is 
attained as prey densities increase 

2.0 - 

𝑏 Ratio of biomass consumed to biomass of 
new herbivores produced 

0.02 - 

𝜇 Rate of removal of zooplankton by death 
and predation 

0.001-
0.035 

𝑑/0 

𝐾 Carrying capacity 108 𝜇𝑔𝑁𝑙/0 
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𝑑𝑥
𝑑𝑡 = 𝑥" −

𝑥)

108 − 0.7
𝑥"

4 + 𝑥" 𝑦
(28)	

𝑑𝑦
𝑑𝑡 = −0.001𝑦 +

0.014𝑥"

4 + 𝑥" 𝑦 (29) 

The critical points become (0,0), (108,0), and 𝐸(0.5547,3.3111), each with their own set of expected 
eigenvalues and eigenvectors. The eigenvectors are used to create phase portraits for the equilibrium 
points, which show the direction and magnitude of the solutions. Analysis of the phase portraits tell the 
locations, types of equilibria and the general shapes of the solutions near those equilibria.  

 

The linearization at the equilibrium solution (0,0) is given by 𝐷𝐹(0,0), &𝑢
1

𝑣1* = &−0.001 0
0 0.3* &

𝑢
𝑣*. 

The eigenvalues for this system, then are 𝜆0 = −0.001 and 𝜆" = 0.3 and the eigenvectors are &0 1
1 0*. One 

eigenvalue is positive and the other is negative. 
 
At the point (108,0), the system can be analysed in a similar fashion. The linearized system is 

&u
1

v1* = &−0.3 0
0 0.013* &

u
v*’ for which the eigenvalues are 𝜆0 = −0.3 and 𝜆" = 0.013 and the eigenvectors 

are &1 −0.9129
0 0.4083 *. 

 
At the point (0.5447,3.3111), the system can be analysed in a similar fashion. The linearized system 

is &u
1

v1* = &0.4655 0
0 −0.0012* &

u
v*’ for which the eigenvalues are 𝜆0 = 0.4655 and 𝜆" = −0.0012 with  

& 0.9997 0.1068
−0.0238 0.9943* as the eigenvectors. 

 
3. Results and discussion 

 
The eigenvectors for each set of equilibrium points are used to plot the phase portrait. The phase portrait 
depicted in Figure 4.1 shows the phase portrait for equilibrium solution (0,0). The system has two 

eigenvectors &01* and &10*. Only trajectories along &10* are stable trajectories, while the other trajectories 

at start are tangent to &10* and later are tangent to &01*. This equilibrium point is unstable and referred to 

as a saddle point. 
 

 
Figure 1 Phase Portrait for equilibrium point (0,0) 
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 The equilibrium point (108,0) is an unstable node and referred to as source point. The system has 

two eigenvectors &−0.30 * and & 0
0.013*. The phase portrait has trajectories that are tangent to the slow 

eigenvector &−0.30 * for near origin, and parallel to the fast eigenvector & 0
0.013* for far from origin. 

 

 
Figure 2 Phase portrait for equilibrium point (108,0) 

 

The equilibrium point (0.5547,3.3111) has two eigenvectors which are & 0.9997−0.0238* and &0.10680.9943*. 

The trajectories are all along the initial conditions and they are outward the origin. 
 

 
Figure 3 Phase portrait for equilibrium point (0.5547, 3.3111) 

 
Conclusion 
 
The objectives of this project have been achieved. The mathematical model of zooplankton phytoplankton 
relationship has been formulated by using nonlinear ordinary differential equations. 

 
The two-dimensional nonlinear ordinary differential equations are used to develop a mathematical 

model for the interaction between zooplankton and phytoplankton. By using the linearization method on 
the nonlinear ordinary differential equations, equilibrium points, eigenvalues and eigenvectors are 
obtained. The eigenvectors for each set of equilibrium points are used to plot the phase portraits of the 
mathematical model of the nonlinear zooplankton phytoplankton model system. The phase portraits have 
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been constructed by using Matlab-Simulink platform which is used to analyze the dynamical behaviors of 
the mathematical model. From the result obtained from the previous chapter, it can be seen that the 
nonlinear ordinary differential equations of the zooplankton phytoplankton model are unstable. 
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