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Abstract  

The one-dimensional heat equation is explored numerically in this project by applying the Method of 

Lines (MOL) with the iterative Euler's approach. The primary goals are to use the MOL technique to 

solve the heat equation, evaluate the findings' accuracy by comparing them to the exact solution, and 

simulate the computational processes using MATLAB software. The MOL method utilizes second-order 

central finite differences to discretize the equation into an ordinary differential equation. Based on 

stability requirements, the solutions, and errors for various time step sizes, 𝑡  are evaluated using 

MATLAB. The results demonstrate that the MOL solution has smaller errors at 𝑡 =  1 but is marginally 

lower than the analytical solution. Notably, the MOL solution closely resembles the analytical solution 

at 𝑡 =  0.2. The accuracy of the numerical solution is improved by reducing the time step size 𝑡. The 

one-dimensional heat equation is numerically solved using the method lines approach in this work, 

which emphasizes stability and accuracy to generate results that closely resemble the analytical results. 

Keywords: Heat equation; Method of lines (MOL); Partial Differential Equations; Euler’s method; 

Ordinary Differential Equations (ODE) 

  

Introduction  

Partial differential equations (PDEs) involve derivatives of an unknown function with respect to multiple 

variables. They can be classified as hyperbolic, parabolic, or elliptic. Solving PDEs requires appropriate 

boundary and initial conditions. The heat equation, a parabolic PDE, describes temperature distribution 

over time. It can be solved analytically or numerically, with methods like the method of lines (MOL) and 

Euler's method. Numerical simulations are commonly implemented using software such as MATLAB. 

The heat equation finds applications in various scientific fields, and its solution accuracy can be 

evaluated by comparing with the exact solution. This research focuses on solving the one-dimensional 

heat equation using the MOL with Euler's method and analysing the results.             

 The focus of the study is to solve one-dimensional heat equation using method of lines by applying 

Euler’s method, examine the accuracy of results obtained using numerical by comparing the exact 

solution and to stimulate the numerical computational of heat equation in MATLAB software.  This paper 

is arranged as follows. In section 2 will be explained about partial differential equations, difference 

method, method of lines, system of ODE using Euler’s method and one-dimensional heat equation and 

following with section 3 will present about the solving of the method of lines using Euler’s method as 

well as stability criteria. Then the experimental analysis and the results obtained are discussed in 

section 4. Lastly section 5 contains conclusions and suggestions for future research work.  

 

2.     Literature Review 

 

2.1. Partial Differential Equations (PDE) 

Partial differential equations (PDEs) are mathematical equations that involve partial derivatives of a 

function with multiple independent variables. They can be categorized into three basic types: parabolic, 

hyperbolic, and elliptic. Parabolic PDEs, such as the heat diffusion equation, use first-order temporal 

derivatives and second-order spatial derivatives. Hyperbolic PDEs, like wave transformations and 

vibrations, involve second-order derivatives with opposite signs in time and space. Elliptic PDEs, such 

as the Laplace equation, describe steady-state problems with second-order derivatives. Subani et al., 
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(2020) provides insights into these classifications. PDEs require appropriate boundary conditions to 

define behaviour at the domain boundary and initial conditions to determine the solution at the starting 

 

point or initial state. These conditions are crucial for establishing well-posed problems with unique 

solutions. 

 

2.2     Difference Formula 

Analytical solutions of partial differential equations provide us with closed-form expressions that depict 

the variation of the dependent variables in the domain. The values at discrete points in the domain 

known as grid points are provided by the numerical solutions, which are based on finite differences. A 

partial derivative will be replaced by an appropriate algebraic different quotient in a finite difference 

calculation. The majority of finite-difference derivative representations are built on Taylor's series 

expansions. Difference formulas can be obtained by extending the function in a Taylor series around 

the desired point and truncating at a specific order. For many derivatives, including higher-order 

derivatives, these formulas can be generated. Consider Figure 2.1 which shows a section of a discrete 

grid in the 𝑥𝑦-plane. Assume that the spacing of the grid points in the x-direction is uniform and given 

by ∆x and the spacing of the grid points in the y-direction is uniform and given by ∆y. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1        Finite Difference Grid 

 

Based on Figure 1, the grid points are identified by an index 𝑖 which runs in the 𝑥 – direction and index 

𝑗 which runs in the  𝑦 – direction. Therefore, the (𝑖, 𝑗) mean index for point C in Figure 1, then the point 

to the right of C is labelled as (𝑖 + 1, 𝑗), the point to the left is (𝑖 − 1, 𝑗), the point directly above s (𝑖, 𝑗 +

1) and the point directly below is (𝑖, 𝑗 − 1). The finite difference method can be expressed by three ways 

in 𝑥 direction. They are: 

(
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
=

{
 
 

 
 
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑥
+ 𝑂(∆𝑥)

𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

∆𝑥
+ 𝑂(∆𝑥)

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1

2∆𝑥
+ 𝑂(∆𝑥)2

 

 

In the above equation, 𝑂(∆𝑥) and 𝑂(∆𝑥)2 stand in for the truncation error. The more accurate findings 

will be attained the higher the order of the truncation error. In addition, the difference calculation itself 

includes an approximation that causes truncation error. It indicates a difference between the precise 

derivative and the approximative derivative. 

 

2.3     Method of Lines (MOL) 

The Method of Lines (MOL), as described by Hamdi et al., (2007), approximates partial differential 

equations (PDEs) by replacing the spatial derivatives with algebraic approximations. This transforms 

the PDE into a system of ordinary differential equations (ODEs) with only the time variable as the 

independent variable. Various techniques, such as finite element, finite volume, spectral, or meshless 

methods, can be employed to discretize the spatial dimensions in MOL, as mentioned by Kazem et al. 

(2017). Integration methods like Euler, Runge-Kutta, Adams-Bashforth, or Backward Difference 

Formula (BDF) can then be used to numerically solve the ODE system and approximate the original 

Forward difference 

Backward difference 

Central difference 

(2.1) 
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PDE. MOL has been extensively utilized in various fields, including conservation laws, dispersive wave 

equations, biomedical sciences, and parabolic equations, as discussed in studies by Ahmad et al. 

(2001), Koto (2004), Kazem et al. (2017), Bratsos et al., (2007), Shakeri et al. (2008), and Hamdi et al. 

(2005). 

 

 

 

 

 

 

2.4 System of Ordinary Differential Equation (ODE) Using Euler’s Method 

          A system of ordinary differential equations consists of multiple ODEs that depend on the same 

independent variable. The variables in the system represent the unknown functions to be solved. 

Consider a system of n first-order differential equations needs be written as: 

 

 

 

 

 

 

 

where  𝑡  is the independent variable (often representing time) and 𝑥1, 𝑥2, … 𝑥𝑛  are the dependent 

variables. Then,  𝑥1(𝑎) = 𝑠1 , 𝑥2(𝑎) = 𝑠2, . . ., 𝑥𝑛(𝑎) = 𝑠𝑛 are the initial and boundary conditions. This 

form can be written in vector notation. 

{
        𝑋′ = 𝐹(𝑡 , 𝑋)

 𝑋(𝑎) = 𝑆,
 

 

Therefore, we can define the following 𝑛 component vectors as, 

 

 

 

 

 

 

The Euler’s method formula can be taken from the Taylor series method of order m which is  

𝑿(𝑡 + ℎ) = 𝑿 + ℎ𝑿′ +
ℎ2

2
𝑿′′ +⋯+

ℎ𝑚

𝑚!
𝑿(𝑚) 

Since we only need first order of Euler’s method, therefore, 

 

𝑿(𝑡 + ℎ) = 𝑿 + ℎ𝑿′ 

 

where, 𝑿 = 𝑿(𝑡), 𝑿′ = 𝑿′(𝑡) and ℎ is the step size. 

          

2.5 One-Dimensional Heat Equation 

The heat equation is a fundamental tool utilized in various scientific fields, as highlighted by Mamun et 

al. (2018). It is considered the standard parabolic partial differential equation in mathematics and finds 

applications in fields such as physics, engineering, probability theory, and financial mathematics. The 

Fokker-Planck equation connects the study of Brownian motion to the heat equation, while in financial 

mathematics, it is employed to solve the Black-Scholes partial differential equation. Additionally, the 

heat equation is crucial for investigating thermal phenomena, including heat transport in solid objects, 

fluid behaviour, temperature distribution in electronic devices, phase change, and solidification. 

Understanding the heat equation enables researchers to predict and optimize temperature profiles and 

heat transfer rates in various systems (Mamun et al., 2018). 

(2.2) 

(2.4) 

given 
(2.3) 

(2.5) 

(2.6) 
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Despite claims by Subani et al. (2020) that the heat equation propagates energy at an unlimited 

speed, which is impossible, the validity of the heat equation as a model for temperature evolution 

remains strong for classical applications in engineering and physics. Kazem et al. (2017) and Mamun 

et al. (2018) emphasize that the heat equation, a parabolic partial differential equation, describes how 

heat or temperature variation is distributed throughout regions over time. It captures the diffusive 

process where heat spreads and evens out within a system, governing the flow of thermal energy from 

regions of higher temperature to lower temperature until reaching an equilibrium state. Derived from the 

principles of conservation of energy and Fourier's law of heat conduction, the heat equation is also 

known as the diffusion equation. The standard form of the one-dimensional heat equation provides 

insights into how temperature distribution changes over time in a system due to heat conduction (Kazem 

et al., 2017; Mamun et al., 2018). The standard form of the one-dimensional heat equation is described 

how the temperature distribution within a system change over time due to heat conduction:  

 

𝜕𝑢

𝜕𝑡
− 𝐾

𝜕2𝑢

𝜕𝑥2
= 0        ,    𝑎 ≤ 𝑥 ≤ 𝑏  ,   𝑡 ≥ 0 

 

 

 

 

where, the temperature distribution, 𝑢(𝑥, 𝑡), is represented as a function of position (𝑥) and time (𝑡) by 

the partial differential equation provided. The equation illustrates how the temperature changes over 

time in a one-dimensional domain that is enclosed by the boundaries of 𝑎 and 𝑏. The term 
𝜕𝑢

𝜕𝑡
 represents 

the rate of change of temperature with respect to time, while 
𝜕2𝑢

𝜕𝑥2
  represents the curvature of the 

temperature distribution with respect to position. The material properties are defined by the coefficient 

𝐾, sometimes referred to as thermal diffusivity, which also controls how heat diffuses inside the system. 

According to the equation, the second derivative of temperature with respect to position and the 

proportionality constant, 𝐾, determine the rate of change of temperature over time. 

 

3.     Methodology 

 

3.1 Discretization of Linear Equation into Finite Difference Form 

One-dimensional heat equation as stated in equation (2.2) can be solved by using MOL. The first step 

is to discretize the linear equation into algebraic form by using central finite difference. The derivative 

in (2.2) can be computed by finite difference scheme which is second order central finite difference. 

 

3.1.1 Derivation of First Order Derivative with Second Order Solution 

The Finite difference method is used to replace the partial derivative with a suitable algebraic different 

quotient. The most common finite representations of derivatives are based on Taylor’s series 

expansions. The equation (3.1) below is Taylor’s series expansion at point (𝑖, 𝑗) based on Figure 2.1: 

 

𝑢𝑖+1,𝑗 = 𝑢𝑖,𝑗 + (
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
∆𝑥 + (

𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

(∆𝑥)2

2!
+ ⋯ 

 

The finite difference expansion in equation (3.1) comes from the information in the right of grid point 

(𝑖, 𝑗), based on Figure 2.1 by using 𝑢𝑖+1,𝑗 and 𝑢𝑖,𝑗. As a result, the finite difference in equation (3.1) is 

called forward difference method. According to Figure 2.1, information from the left of grid point (𝑖, 𝑗) is 

applied to construct the backward finite difference using 𝑢𝑖−1,𝑗  and 𝑢𝑖,𝑗 as written in equation (3.2). 

 

𝑢𝑖−1,𝑗 = 𝑢𝑖,𝑗 − (
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
∆𝑥 + (

𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

(∆𝑥)2

2!
− ⋯ 

 

(2.7) 

(3.1) 

(3.2) 
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The first order accuracy is insufficient for the majority of applications in real problems. Therefore, the 

central difference form is generated by simply subtracted the equation (3.1) and equation (3.2): 

 

𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗 = 2(
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
∆𝑥 + ⋯ 

This equation (3.3) can be simplified into: 

 

(
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
= 
𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2∆𝑥
+ 𝑂(∆𝑥)2 

where, 𝑂(∆𝑥)2 is represent truncation error. Hence equation (3.4) is called second order solutions of 

central finite difference. 

 

 

3.1.2 Derivation of Second order Derivative with Second Order Solutions 

The central finite difference form is generated by simply added equation of (3.1) and (3.2): 

𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 = 2𝑢𝑖,𝑗 + (
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

(∆𝑥)2 +⋯ 

This equation (3.5) can be simplified into: 

 

(
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

= 
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
+ 𝑂(∆𝑥)2 

 

The term 𝑂(∆𝑥)2  in equation (3.6) is represent truncation error. Therefore, equation (3.6) is called 

second order solutions of central finite difference. 

 

 

 

3.2 Discretization of One-Dimensional Heat Equation using MOL 

In MOL, the spatial derivative, 
𝜕2𝑢

𝜕𝑥2
  stated in (2.2) must be discretized using finite difference formula. In 

section 3.2, second order solutions of central finite difference are derived. Thus, the result is substituted 

into equation (2.2) which produce the following equations: 

 

𝜕𝑢𝑖
𝜕𝑡

= 𝐾 (
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

(∆𝑥)2
) = 0  , 𝑖 = 1,2,3, …𝑁.  

 

Let ∆𝑥 = ℎ, thus we can write (3.7) as  

 

𝜕𝑢𝑖
𝜕𝑡

= 𝐾 (
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

ℎ2
) = 0  , 𝑖 = 1,2,3, …𝑁.  

 

Based on the equation (3.8), the system of difference equations of one independent variable 𝑡 is formed. 

This system will be solved by using iterative method which is Euler’s method. 

 

3.3 The Euler’s Method 

The Euler’s method is used to solve the linear ODE produced in equation (3.8). The Euler’s method is 

a basic numerical method for solving ODEs. The Euler’s method formula is given by: 

 

𝑈𝑘+1 = 𝑈𝑘 + ∆𝑡 𝐹(𝑈𝑘) 

 

where 𝐹(𝑈𝑘) is the expression at right hand side of the equation (3.8) and 

 

∆𝑡 =  
(𝑡𝑛 − 𝑡0)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒
 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

 
  (3.7)    

  (3.8)    

  (3.10)     

 
   (3.8)    

  (3.9)    
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3.4       Stability Criteria 

 

3.4.1 Courant-Friedrichs-Lewy (CFL) condition 

The Courant-Friedrichs-Lewy (CFL) condition is a rule used in numerical methods for solving equations 

that change over time. It prevents numerical errors and instability by making sure that the time step size 

used in the calculations is small enough. The condition says that the time step should be shorter than 

the time it takes for information to travel across a small distance in the problem being solved. This 

distance is determined by the grid spacing and the properties of the material. By following the CFL 

condition, we ensure that our numerical solution remains stable and accurate. In this study, Euler 

method is used to numerically solve the resulting ODE system, the CFL condition can be expressed as:  

 

∆𝑡 =
∆𝑥

2 ∝
 

where 𝛥𝑥 is the grid spacing in the x direction, α is the thermal diffusivity of the material, and 𝛥𝑡 is the 

time step. 

 

3.5 Performance 

 

a) Relative Error, RE: 

The relative error is a measure of the difference between the numerical solution and the exact solution, 

expressed as a percentage or a decimal. It quantifies the accuracy of the numerical method by 

comparing it to the known exact solution. The formula for calculating the relative error is: 

 

𝑅𝐸 =  |
𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑢𝑒𝑥𝑎𝑐𝑡

𝑢𝑒𝑥𝑎𝑐𝑡
| × 100% 

 

b) Euclidean Norm (𝑳𝟐Norm):  

The Euclidean norm, also known as the 𝐿2 norm, is a measure of the magnitude or length of a vector. 

In the context of comparing numerical solutions, the Euclidean norm is used to compute the difference 

between the numerical solution and the exact solution. It provides a measure of the overall error or 

discrepancy between the two solutions. The formula for calculating the Euclidean norm is: 

 

 

𝐿2 = √∑(𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑢𝑒𝑥𝑎𝑐𝑡)
2 

 

c) Maximum norm (𝑳∞ norm): 

The Maximum norm is also known as the infinity norm or supremum norm, is the absolute difference is 

taken at each data point, and the maximum value is selected. In other words, it represents the largest 

value among the entries of data. The formula for calculating Maximum norm is: 

 

𝐿∞ = max (|𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑢𝑒𝑥𝑎𝑐𝑡|) 

  

4.     Result and Discussions 

 

4.1 Experimental Setting 

Let consider, the thermal diffusivity 𝐾 = 0.5 with the initial condition 𝑢(𝑥, 0) = sin 𝜋𝑥 where the interval 

of 𝑥 is assumed as 0 ≤ 𝑥 ≤ 1 and the interval of 𝑡 is assumed as 0 ≤ 𝑡 ≤ 1 and the Dirichlet boundary 

conditions are 𝑢(0, 𝑡) = 0  and 𝑢(1, 𝑡) = 0. This experiment is conducted using MATLAB to get the 

numerical solutions while Microsoft Excel is used for diagram illustration. By taking the spatial grid size, 

𝑁 =  20 and the temporal grid size,  𝑇 = 400, therefore the step size, ∆𝑥 =
𝑏−𝑎

𝑁
=

1−0

20
= 0.05 and the 

step size  ∆𝑡 =
𝑐−𝑑

𝑇
=

1−0

400
= 0.0025. 

 

(3.12) 

(3.13) 

(3.14) 

(3.11) 
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4.2 Comparison between MOL and Analytical Solution at various time 

 

 
Figure 2              Comparison between MOL and Analytical Solution at 𝑡 = 0.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

0
.5

0

0
.5

5

0
.6

0

0
.6

5

0
.7

0

0
.7

5

0
.8

0

0
.8

5

0
.9

0

0
.9

5

1
.0

0

u
(x

,t
)

Value of x
MOL Analytical



Nannthini Kumaragurubaran, Shazirawati Mohd Puzi (2023) Proc. Sci. Math. 15: 150-160 
 
 

 

157 

 
Figure 3            Comparison between MOL and Analytical Solution at 𝑡 = 1 

 

 
Table 1: Absolute error at various time, 𝑡 

 
 

Based on the Table 1 and Figure 2 and 3, the mean absolute error at 𝑡 = 0.2 is 0.00091947 

while 𝑡 = 1  is 0.00008799 which indicates that it has 1 × 10−4  and 1 × 10−5  error value respectively. 
Other than that, at 𝑡 = 0.2 the MOL solution is closely matched to the analytical solution which means 

that the MOL method accurately captures the behavior of the system at the time point while at 𝑡 = 1, 
the MOL solution is lower than the analytical solution, indicating a small deviation, however the absolute 
error is decreasing. This means that although the MOL solution may not exactly match with the 
analytical solution at 𝑡 = 1 but it is getting closer to it. From those observations, we can conclude that 

the MOL method shows good agreement with the analytical solution at 𝑡 = 0.1 and exhibits a decreasing 
absolute error as time progress. Based on the graph, it clearly shows that the numerical curve looks 
like the analytical curve. Therefore, MOL is a suitable method to solve one-dimensional heat equation. 

 
 
4.3 Effect of Step Size of 𝒕 to MOL Solutions 

Several experiments have been conducted to obtain the numerical and analytical results for different 

value of step size 𝑡. There are three values of step size are used which are, 

 

                                        ∆𝑡 = 0.002,   ∆𝑡 = 0.0015,    and  ∆𝑡 = 0.001 

 

The step size of 𝑥 is fixed at ∆𝑥 = 0.05. Then, the analytical, numerical solutions, 𝐿2 norm and 

𝐿∞ norm are generated using MATLAB. 
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4.3.1 Comparison of MOL and Analytical Solutions in various ∆𝒕 what 𝒕 = 𝟎. 𝟔 

 

 
Figure 4           Comparison of Numerical and Analytical when ∆𝑡 = 0.002 

 

 
 Figure 5          Comparison of Numerical and Analytical when ∆𝑡 = 0.0015 

 

 

 

 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5 1

u
(x

,t
)

Value of x

MOL Analytical

0

0.01

0.02

0.03

0.04

0.05

0.06

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5 1

u
(x

,t
)

Value of x
MOL



Nannthini Kumaragurubaran, Shazirawati Mohd Puzi (2023) Proc. Sci. Math. 15: 150-160 
 
 

 

159 

 

 

 

 

 

 

 

 
 Figure 6         Comparison of Numerical and Analytical when ∆𝑡 = 0.001 

 

 

 

Table 2         𝐿2 and 𝐿∞ for various ∆𝑡 

∆𝑡 𝐿2 𝐿∞ 

0.002 0.00044700 0.00106300 

0.0015 0.00025500 0.00060600 

0.001 0.00006400 0.00015100 

 

Based on the tables and figures above, the purpose of comparison of MOL and analytical solutions is 

to provide the accuracy of both simulations in MATLAB. According to the Table 2 shows the error is 

decreasing when ∆𝑡 is getting smaller. In terms of graph representations in Figure 4 – Figure 6 indicates 

that when the ∆𝑡 getting smaller at 𝑡 = 0.6, the MOL solution will getting closer to the analytical solution 

and finally it will converge to the analytical solution. Therefore, we conclude that the smaller the time 

step size of 𝑡, the more accurate solution will be generated.   

A drawback we will face when working with simulations that is need a lot of processing. For 

instance, by decreasing the time step size (∆t) to achieve higher accuracy comes at the cost of 

increased computational resources. This means that smaller time step sizes may require longer 

computation times and more memory usage, especially for complex systems or larger problem 

domains. 

 

Conclusion 

This research focused on studying partial differential equations (PDEs), specifically the one-

dimensional heat equation, which has applications in various linear problems. The objective was to 

develop a numerical method using the method of lines (MOL) to solve the heat equation. The study 
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assessed the stability and accuracy of the MOL by comparing numerical and analytical solutions and 

analysing the effect of time step size. The results showed that the MOL was effective, with small 

absolute errors and improved stability with smaller time step sizes. Future research recommendations 

include exploring other linearization methods, extending the study to higher dimensions, investigating 

nonlinear heat equations, exploring different boundary conditions, and using alternative software like 

C++ or Python. Overall, the research achieved its objectives and provided insights into solving the heat 

equation using the MOL. 
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