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Abstract 

A mathematical model, 𝑃𝐻𝑇𝑄, was developed in this project to study alcohol consumption patterns and 

strategies to combat addiction. The model focuses on four groups: non-drinkers 𝑃(𝑡), heavy drinkers 

𝐻(𝑡), drinkers in treatment 𝑇(𝑡), and the alcohol quitters 𝑄(𝑡). The impact of various factors on alcohol 

consumption was analysed through mathematical analysis and numerical simulations. The model's well-

posedness was demonstrated by investigating positivity solutions and invariant regions. The dynamic 

behaviour and basic reproduction number (𝑅₀) were calculated, indicating stability conditions. When 𝑅₀ <

1, the alcohol-free equilibrium point (𝐸₀) is asymptotically stable, while 𝑅₀ > 1 leads to the existence of 

an endemic equilibrium (𝐸∗) that is asymptotically stable according to the Routh-Hurwitz criterion. 

MATLAB simulations were conducted to validate the analytical results. In conclusion, this mathematical 

model provides valuable insights into the dynamics and factors influencing alcohol consumption. To 

address the alcoholism epidemic, it is recommended to reduce interactions between non-drinkers and 

heavy drinkers and increase the number of individuals entering treatment.  

Keywords: Alcohol consumption; Existence and uniqueness; Basic reproduction number; Stability 

analysis; Routh-Hurwitz 

 
Introduction 

Alcoholism is a widespread problem causing significant health and social issues globally. Alcohol misuse 

leads to physical, psychological, and economic consequences, including accidents and chronic 

diseases. Alcohol-related deaths account for a significant percentage of global mortality. Prevention and 

treatment methods, such as rehabilitation, have been developed to address alcohol-related problems. 

Mathematical modelling has been used to study the dynamics of alcoholism and its transmission in 

communities. 

Preventing alcoholism involves reducing stress, limiting alcohol consumption, imposing taxes on 

alcohol, raising awareness, and providing treatment options. Treatment approaches include cautious 

cessation, medication, and psychological support. Mathematical models have been used to explore the 

impact of alcohol on disease transmission and to find strategies for combating addiction. 

Khajji et al. (2020) developed the 𝑃𝑀𝐻𝑇𝑟𝑇𝑝𝑄 model to analyse the influence of addiction 

treatment centres on different groups of drinkers. Their findings emphasized the importance of 

educational programs and treatment facilities in assisting vulnerable individuals. Chinnadurai (2020) 

used eigenvalue methods and the Routh Hurwitz criteria to analyse the stability of equilibrium states in 

relation to alcoholism. However, understanding their proof may be challenging due to differences in 

matrix elements compared to the mathematical model. 

Overall, mathematical modelling provides valuable insights into alcoholism dynamics, aiding in 

prevention and treatment efforts. The remaining sections of the paper are structured as follows. Section 

2 presents the formulation of the mathematical model and derives fundamental properties by analyzing 

the equilibrium point. Stability analysis of the model is covered in Section 3. Section 4 discusses the 

issue of parameter sensitivity. Numerical simulations of the model are presented in Section 5, where 

parameter estimation takes place. Finally, Section 6 concludes the paper. 
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Model Formulation and Description 

In this paper, we formulate a mathematical model for the dynamics of alcoholism and divide the 

population in four compartments: Non-drinkers 𝑃(𝑡), Heavy drinkers 𝐻(𝑡), Drinkers in treatment 𝑇(𝑡) 

and Alcohol quitters 𝑄(𝑡). The mathematical model diagram is as in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Compartmental diagram of drinkers’ class 

 

The governing nonlinear system of differential equations represent the model are given by 

 

𝑑𝑃(𝑡)

𝑑𝑡
= 𝑏 − 𝛽1𝑃(𝑡)𝐻(𝑡) − 𝜇𝑃(𝑡) + 𝛽3𝑄(𝑡) 

       
𝑑𝐻(𝑡)

𝑑𝑡
= 𝛽1𝑃(𝑡)𝐻(𝑡) − (𝛽2 + 𝜇 + 𝛿1 + 𝛼)𝐻(𝑡)      

𝑑𝑇(𝑡)

𝑑𝑡
= 𝛼𝐻(𝑡) − (𝜇 + 𝛿2 + 𝛾)𝑇(𝑡)               

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛾𝑇(𝑡) + 𝛽2𝐻(𝑡) − (𝛽3 + 𝜇)𝑄(𝑡)     

 

where 𝑃(0) ≥ 0, 𝐻(0) ≥ 0, 𝑇(0) ≥ 0 and 𝑄(0) ≥ 0 are the given initial states. 

The model variables and their descriptions are tabulated in Table 1 and the model parameters, and their 

description are tabulated in Table 2.  

 

Table 1: Model variables and their description at any time 

Variables Description of the variables 

𝑷(𝒕) Non-Drinker population at time 

𝑯(𝒕) Heavy Drinker population at time 

𝑻(𝒕) Drinkers in Treatment population at time 

𝑸(𝒕) Alcohol quitter population at time 

 

Table 2: Model parameters and their description 

Parameters Description of parameters 

𝒃 Birth rate 

𝝁 
The natural death rate which refers to 

any death rate not caused by alcohol 

𝜶 
Proportion of drinkers entering 

treatment compartment 

𝜷𝟏 The rate of recruitment to alcoholism 
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due to encounter between non-

drinkers and heavy drinkers 

𝜷𝟐 
The rate of recruitment from heavy to 

drinkers in treatment 

𝜷𝟑 
The rate at which recovered drinkers’ 

relapse to non-drinkers 

𝜹𝟏 
Drinking induced death rate of heavy 

drinkers 

𝜹𝟐 
Drinking induced death rate of 

drinkers in treatment 

𝜸 
The rate of recovered drinkers from 

treatment 

 

Positivity Solution of the Model 

To show that the model system is to be epidemiologically meaningful and well posed, it is needed to 

prove that all the state variables are non-negative. 

Assume that all the state variables are continuous. Then from the model system of the first 

equation we have: 

𝒅𝑷(𝒕)

𝒅𝒕
= 𝒃 − 𝜷𝟏𝑷(𝒕)𝑯(𝒕) + 𝜷𝟑𝑸(𝒕) − 𝝁𝑷(𝒕), 

 

𝒅𝑷(𝒕)

𝒅𝒕
≥ −𝜷𝟏𝑷(𝒕)𝑯(𝒕) − 𝝁𝑷(𝒕), 

 

𝒅𝑷(𝒕)

𝒅𝒕
≥ −𝝁𝑷(𝒕), 

 

∫
𝒅𝑷(𝒕)

𝑷(𝒕)
≥ ∫ − 𝝁𝒅𝒕, 

 

𝑷(𝒕) ≥ ⅇ−𝝁𝒕+𝒄, 

 

𝑷(𝒕) ≥ 𝑨ⅇ−𝝁𝒕, 
 

where constant 𝐴 = ⅇ𝐶 . 
Assuming initial value of 𝑃(𝑡) is 𝑃(0) = 𝑃0, 

 
𝑷(𝒕) ≥ 𝑷𝟎ⅇ

−𝝁𝒕 ≥ 𝟎. 
 

Similarly, 

 

𝐻(𝑡) ≥ 𝐻0ⅇ
−(𝛽2+𝜇+𝛿1+𝛼)𝑡 ≥ 0, 

𝑇(𝑡) ≥ 𝑇0ⅇ
−(𝜇+𝛿2+𝛾)𝑡 ≥ 0, 

𝑄(𝑡) ≥ 𝑄0ⅇ
−(𝛽3+𝜇)𝑡 ≥ 0. 

It has been showed that the solution 𝑃(𝑡), 𝐻(𝑡), 𝑇(𝑡), 𝑄(𝑡) of the 𝑃𝐻𝑇𝑄 model are positive for all 𝑡 ≥ 0. 

 

Invariant Region 

The model under consideration monitors populations as such, we assume that all the variables and 

parameters of the model are positive for all 𝑡 ≥ 0. To show that the solution of the 𝑃𝐻𝑇𝑄 model is 

bounded, it is needed to prove that the total population size 𝑁(𝑡) is bounded. 

𝑵(𝒕) = 𝑷(𝒕) + 𝑯(𝒕) + 𝑻(𝒕) + 𝑸(𝒕) . 

Differentiating both sides with respect to time 𝒕 gives  

𝒅𝑵

𝒅𝒕
=
𝒅𝑷(𝒕)

𝒅𝒕
+
𝒅𝑴(𝒕)

𝒅𝒕
+
𝒅𝑯(𝒕)

𝒅𝒕
+
𝒅𝑻(𝒕)

𝒅𝒕
+
𝒅𝑸(𝒕)

𝒅𝒕
 , 
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𝒅𝑵

𝒅𝒕
= 𝒃 − 𝝁𝑵 − 𝜹𝑯. 

Ignore death due to alcohol, which is the last term in the above equation, 

𝒅𝑵

𝒅𝒕
≤ 𝒃 − 𝝁𝑵. 

Using separation of variables and taking integration on both sides, 

𝒃 − 𝝁𝑵 ≥ 𝑨ⅇ−𝝁𝒕. 

By applying the initial condition 𝑵(𝟎) = 𝑵𝟎 

 

𝑵 ≤
𝒃

𝝁
− (
𝒃 − 𝝁𝑵𝟎

𝝁
)ⅇ−𝝁𝒕. 

 

At 𝒕 → ∞ 

𝑵 ≤
𝒃

𝝁
 

which implies that 𝟎 ≤ 𝑵 ≤
𝒃

𝝁
 . Thus, the feasible solution set of the model system enter and remain in 

the region for all time 𝒕, 

𝜴 = {(𝑷,𝑯, 𝑻, 𝑸) ∈ ℝ𝒕
𝟒; 𝑷 + 𝑯 + 𝑻 + 𝑸 ≤

𝒃

𝝁
}. 

 

Therefore, the 𝑷𝑯𝑻𝑸 model is well posed epidemiologically so it is sufficient to study the dynamics of 

the model system in the domain Ω. 

 

Alcohol-Free Equilibrium 

Let 𝑬𝟎 = (𝑷
∗, 𝑯∗, 𝑻∗, 𝑸∗) represent alcoholic free equilibrium from model 𝑷𝑯𝑻𝑸. Drinker population 

achieved only in heavy drinkers and drinkers in treatment compartment, hence 𝑯∗ = 𝑻∗ = 𝟎. To obtain 

equilibrium point, setting 0 in the model system, then alcohol free equilibrium point will be: 

𝒃 − 𝜷𝟑𝑸
∗ − 𝝁𝑷∗ = 𝟎 

−(𝜷𝟑 + 𝝁)𝑸
∗ = 𝟎. 

Hence, we have 

𝑸∗ = 𝟎,           𝒃 − 𝝁𝑷∗ = 𝟎 

                                    𝑷∗ =
𝒃

𝝁
 .         

Therefore, an alcoholic free equilibrium point, 𝑬𝟎 is 

𝑬𝟎 = (𝑷
∗, 𝑯∗, 𝑻∗, 𝑸∗) = (

𝒃

𝝁
, 𝟎, 𝟎, 𝟎) . 

 

Basic Reproduction Number 

The basic reproduction number, 𝑹𝟎 measures the average number of heavy drinkers generated when a 

single heavy drinker in a susceptible population. The value of  𝑹𝟎 will indicate whether the epidemic could 

occur or not. We obtain the basic reproduction number, 𝑹𝟎 of the system by Next-Generation Matrix 

Method. The next generation matrix compromises two matrices 𝑭 and 𝑽, whose elements in matrix 

constitute the new infections that will arise and the transfer of infections from one compartment to another 

respectively.  

1. 𝒇𝒊 be the rate of new infections in compartment 𝒊. 

2. 𝒗𝒊 be the rate transfer of individuals in and out of compartment 𝒊. 

From the model system, the infected compartments to be  

       
𝒅𝑯(𝒕)

𝒅𝒕
= 𝜷𝟏𝑷(𝒕)𝑯(𝒕) − (𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶)𝑯(𝒕) 

 

 
𝒅𝑻(𝒕)

𝒅𝒕
= 𝜶𝑯(𝒕) − (𝝁 + 𝜹𝟐 + 𝜸)𝑻(𝒕) . 

Define 𝒇𝒊 and 𝒗𝒊 as 
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𝒇𝒊 = (
𝜷𝟏𝑷(𝒕)𝑯(𝒕)

𝟎
), 

 

 𝒗𝒊 = (
(𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶)𝑯(𝒕)

−𝜶𝑯(𝒕) + (𝝁 + 𝜹𝟐 + 𝜸)𝑻(𝒕)
). 

 

Evaluate 𝑭 and 𝑽  

𝑭 =
𝝏𝒇𝒊
𝝏𝒙𝒋

(𝑬𝟎) = (
𝜷𝟏𝑷

∗ 𝟎
𝟎 𝟎

) = (𝜷𝟏
𝒃

𝝁
𝟎

𝟎 𝟎

), 

 

𝑽 =
𝝏𝑽𝒊
𝝏𝒙𝒋

(𝑬𝟎) = (
𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶 𝟎

−𝜶 𝝁 + 𝜹𝟐 + 𝜸
). 

Next generation matrix 𝑭𝑽−𝟏  

𝑽−𝟏 =
𝟏

(𝜷𝟐 + 𝝁 + 𝝈𝟏 + 𝜸)(𝜹𝟐 + 𝝁 + 𝜸)
(
𝝁 + 𝜹𝟐 + 𝜸 𝟎

𝜶 𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶
) 

 

=

(

 

𝟏

𝜷𝟏 + 𝝁 + 𝜹𝟏 + 𝜸
𝟎

𝜶

(𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜸)(𝜹𝟐 + 𝝁 + 𝜸)

𝟏

𝜹𝟐 + 𝝁 + 𝜸)

  

 

𝑭𝑽−𝟏 = (𝜷𝟏
𝒃

𝝁
𝟎

𝟎 𝟎

)

(

 

𝟏

𝜷𝟏 + 𝝁 + 𝜹𝟏 + 𝜸
𝟎

𝜶

(𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜸)(𝜹𝟐 + 𝝁 + 𝜸)

𝟏

𝜹𝟐 + 𝝁 + 𝜸)

  

 

= (

𝒃𝜷𝟏
𝝁(𝜷𝟏 + 𝝁 + 𝜹𝟏 + 𝜸)

𝟎

𝟎 𝟎

). 

The eigenvalue of the next generation matrix is 

𝝀𝟏 =
𝒃𝜷𝟏

𝝁(𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶)
 ,    𝝀𝟐 = 𝟎. 

Then the basic reproduction number, 𝑹𝟎 which is the maximum eigenvalue of the matrix is  

𝑹𝟎 =
𝒃𝜷𝟏

𝝁(𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶)
 . 

 

Endemic Equilibrium Point 

Endemic equilibrium achieved when alcoholism persists in the population in which we already showed 

the positivity solution of the model (𝑷(𝒕) ≥ 𝟎,𝑯(𝒕) ≥ 𝟎, 𝑻(𝒕) ≥ 𝟎,𝑸(𝒕) ≥ 𝟎). It can be obtained by 

equating each of the model systems to zero. That is  

 

𝒅𝑷

𝒅𝒕
=
𝒅𝑯

𝒅𝒕
=
𝒅𝑻

𝒅𝒕
=
𝒅𝑸

𝒅𝒕
= 𝟎. 

By simple calculations we obtained 

𝑷∗ =
𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶

𝜷𝟏
=

𝒃

𝝁𝑹𝟎
 

 

𝑯∗ =
𝝁𝑹𝟎 − 𝝁

𝜷𝟏
=
𝑩𝟏𝒃 − 𝝁(𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶)

𝜷𝟏(𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶)
 

 

𝑻∗ =
𝜶𝑯∗

(𝜹𝟐 + 𝝁 + 𝜸)
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𝑸∗ =
𝜸𝑻∗ + 𝜷𝟐𝑯

∗

𝜷𝟑 + 𝝁
. 

 

Stability of Alcohol-Free Equilibrium 

To determine the stability of the model at an alcohol-free point, we will consider the Jacobian matrix of 

the 𝑷𝑯𝑻𝑸 model at alcohol free equilibrium, 𝑬𝟎. 

 

𝑱(𝑬) = (

−𝜷𝟏𝑯− 𝝁 −𝜷𝟏𝑷 𝟎 𝜷𝟑
𝟎 𝜷𝟏𝑷 − (𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶) 𝟎 𝟎

𝟎 𝜶 −(𝜹𝟐 + 𝝁 + 𝜸) 𝟎

𝟎 𝜷𝟐 𝜸 −(𝜷𝟑 + 𝝁)

) 

 

𝑱(𝑬𝟎) =

(

 
 
 
 
−𝝁 −𝜷𝟏

𝒃

𝝁
𝟎 𝜷𝟑

𝟎 𝜷𝟏
𝒃

𝝁
− (𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶) 𝟎 𝟎

𝟎 𝜶 −(𝜹𝟐 + 𝝁 + 𝜸) 𝟎

𝟎 𝜷𝟐 𝜸 −(𝜷𝟑 + 𝝁))

 
 
 
 

 

where 𝑷∗ =
𝒃

𝝁
. 

By using eigenvalue method, 

Let 𝒈 = 𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶 , 𝒉 = 𝜹𝟐 + 𝝁 + 𝜸 

|𝑱(𝑬𝟎)| =

|

|
−𝝁 − 𝝀 −𝜷𝟏

𝒃

𝝁
𝟎 𝜷𝟑

𝟎 𝜷𝟏
𝒃

𝝁
− 𝒈 − 𝝀 𝟎 𝟎

𝟎 𝜶 −𝒉 − 𝝀 𝟎
𝟎 𝜷𝟐 𝜸 −(𝜷𝟑 + 𝝁) − 𝝀

|

|

= 𝟎 

(−𝜇 − 𝜆) (𝛽1
𝑏

𝜇
− 𝑔 − 𝜆) (−ℎ − 𝜆)(−(𝜇 + 𝛽3) − 𝜆) = 0 

−𝜇 − 𝜆 = 0
𝜆1 = −𝑢

 ,

𝛽1
𝑏

𝜇
− 𝑎 − 𝜆 = 0

𝜆2 = 𝛽1
𝑏

𝜇
− 𝑎

 ,    
−𝑏 − 𝜆 = 0
𝜆3 = −𝑏

  ,     
−(𝜇 + 𝛽3) − 𝜆 = 0

𝜆4 = −(𝜇 + 𝛽3)
. 

Here, 𝜆1, 𝜆3, 𝜆4 are clearly real and negative. Alcohol free equilibrium, 𝐸0 is stable if 𝜆2 < 0. So,  

𝛽1𝑏

𝜇
− 𝑔 < 0 

𝑏𝛽1
𝜇(𝛽2 + 𝜇 + 𝛿2 + 𝛼)

< 1 

𝑅0 < 1. 

Hence, the model system is asymptotically stable at alcohol free equilibrium, 𝐸0 = (
𝑏

𝜇
, 0,0,0) if 𝑅0 < 1.  

 

Stability of Endemic Equilibrium Point 

To investigate the stability of endemic equilibrium, consider the Jacobian matrix of the model system at 

endemic equilibrium, 𝑬∗. 

𝑱(𝑬∗) = (

−𝜷𝟏𝑯
∗ − 𝝁 −𝜷𝟏𝑷

∗ 𝟎 𝜷𝟑
𝟎 𝜷𝟏𝑷

∗ − (𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶) 𝟎 𝟎

𝟎 𝜶 −(𝜹𝟐 + 𝝁 + 𝜸) 𝟎

𝟎 𝜷𝟐 𝜸 −(𝜷𝟑 + 𝝁)

) 

where 

𝑷∗ =
𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶

𝜷𝟏
 

𝑯∗ =
𝑩𝟏𝒃 − 𝝁(𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶)

𝜷𝟏(𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶)
 . 
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From the Jacobian matrix, we obtained the polynomial equation of the point which is  

𝝀𝟒 + 𝒂𝟏𝝀
𝟑 + 𝒂𝟐𝝀

𝟐 + 𝒂𝟑𝝀 + 𝒂𝟒 = 𝟎 

where 

𝒂𝟏 = (𝜹𝟐 + 𝒖 + 𝜸 + 𝜷𝟑 + 𝝁) + (𝜷𝟏𝑯
∗ + 𝝁 − 𝜷𝟏𝒃 + 𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶) 

𝒂𝟐 = (𝜹𝟐 + 𝝁 + 𝜸)(𝜷𝟑 + 𝝁) + (𝜷𝟏𝑯
∗ + 𝝁 − 𝜷𝟏𝒃 + 𝜷𝟐 + 𝜹𝟏 + 𝝁 + 𝜶)(𝜹𝟐 + 𝟐𝝁 + 𝜷𝟑 + 𝜸)

− (𝜷𝟏𝑯+ 𝝁)(𝜷𝟏𝑷
∗ − 𝜷𝟐 − 𝝁 − 𝜹𝟏 − 𝜶) 

𝒂𝟑 = (𝜷𝟏𝑯
∗ + 𝝁 − 𝜷𝟏𝑷

∗ + 𝜷𝟐 + 𝝁 + 𝜹𝟏 + 𝜶)(𝜹𝟐 + 𝝁 + 𝜸)(𝜷𝟑 + 𝝁)

− (𝜷𝟏𝑯
∗ + 𝝁)(𝜷𝟏𝑷

∗ − 𝜷𝟐 − 𝜹𝟏 − 𝜶 − 𝝁)(𝜹𝟐 + 𝟐𝝁 + 𝜷𝟑 + 𝜸) 

𝒂𝟒 = −(𝜷𝟏𝑯
∗ + 𝝁)(𝜷𝟏𝑷

∗ − 𝜷𝟐 − 𝝁 − 𝜹𝟏 − 𝜶)(𝜹𝟐 + 𝝁 + 𝜸)(𝜷𝟑 + 𝝁). 

 

Routh-Hurwitz criterion is applied to analyse the stability of the system at endemic equilibrium. The 

Hurwitz matrix evaluated at the characteristic equation is as follows 

𝑯 = [

𝒂𝟏 𝒂𝟑
𝟏 𝒂𝟐

𝟎 𝟎
𝒂𝟒 𝟎

𝟎 𝒂𝟏
𝟎 𝟏

𝒂𝟑 𝟎
𝒂𝟐 𝒂𝟒

]. 

According to Routh-Hurwitz criteria, since it is a fourth order characteristic equations, there are four 

conditions for the system to be stable. 

1. 𝐝𝐞𝐭(𝑯𝟏) = 𝒂𝟏 > 𝟎 

2. 𝐝𝐞𝐭(𝑯𝟐) = 𝒂𝟏𝒂𝟐 − 𝒂𝟑 > 𝟎 

3. 𝐝𝐞𝐭(𝑯𝟑) = 𝒂𝟑(𝐝𝐞𝐭(𝑯𝟐)) − 𝒂𝟏
𝟐𝒂𝟒 > 𝟎 

4. 𝒅ⅇ𝒕(𝑯𝟒) = 𝒂𝟒(𝒅ⅇ𝒕(𝑯𝟑)) > 𝟎. 

Thus, we can show that the endemic equilibrium, 𝑬∗ of the model system is asymptotically stable if and 

only if these four conditions are satisfied. 

 

Sensitivity Analysis of Basic Reproduction Number, 𝑹𝟎 

Sensitivity analysis is a technique for determining the effect of changes in input parameters or 

assumptions on the output or outcomes of a mathematical or computer model. Let  

𝜞𝒎
𝑹𝟎 =

𝒎

𝑹𝟎

𝝏𝑹𝟎
𝝏𝒎

 , 

denote the sensitivity index of 𝑹𝟎 =
𝒃𝑩𝟏

𝝁(𝜷𝟐+𝝁+𝜹𝟏+𝜶)
 with respect to the parameter 𝒎. We obtain  

𝜞𝜷𝟏
𝑹𝟎 = 𝟏 > 𝟎, 

 

𝜞𝝁
𝑹𝟎 =

−(𝜷𝟐 + 𝟐𝝁 + 𝜹𝟏 + 𝜶)

𝒃𝑩𝟏(𝜷𝟐 + 𝜹𝟏 + 𝜶 + 𝝁)
≤ 𝟎, 

 

𝜞𝜹𝟏
𝑹𝟎 =

−𝜶

𝒃𝑩𝟏(𝜷𝟐 + 𝜹𝟏 + 𝜶 + 𝝁)
≤ 𝟎, 

 

𝜞𝜶
𝑹𝟎 =

−𝜷𝟐
𝒃𝑩𝟏(𝜷𝟐 + 𝜹𝟏 + 𝜶 + 𝝁)

≤ 𝟎 . 

The basic reproduction number (𝑹𝟎) is influenced by various factors as follows: 

1. 𝜷𝟏: 𝑹𝟎 increases proportionally with an increase in 𝜷𝟏 and decreases proportionally with a 

decrease in β₁. 

2 𝝁, 𝜹𝟏, 𝜷𝟐 and 𝜶: 𝑹𝟎decreases with an increase in these parameters, as they exhibit an inverse 

relationship with R₀. However, increasing 𝝁, 𝜹𝟏 and 𝜷𝟐 is not feasible. 

Considering the sensitivity of  𝑹𝟎, efforts should focus on reducing the rate of recruitment to 

alcoholism through encounters between non-drinkers and heavy drinkers (𝜷𝟏) and increasing the 

proportion of drinkers entering treatment (𝜶). Reducing 𝜷𝟏 is particularly important since  𝑹𝟎 is highly 

responsive to changes in this parameter. 
 

Numerical simulation of 𝑷𝑯𝑻𝑸 model 

All parameter values are utilized, and the outcomes are visually depicted in a time-series diagram to 
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facilitate the observation of the behavior of each equilibrium point derived from the 𝑷𝑯𝑻𝑸 model. The 

resulting graph is further discussed to elucidate the process of obtaining each equilibrium point based 

on the provided parameter values. 

The numerical simulation of the model is performed by adopting the value of parameters used by 

Satana and Kassaye (2022) in Table 3. 

 

Table 3: Value of parameters at alcohol-free equilibrium point 

Parameters Value 

𝒃 0.4 

𝝁 0.25 

𝜶 0.7 

𝜷𝟏 0.7 

𝜷𝟐 0.2 

𝜷𝟑 0.1 

𝜹𝟏 0.35 

𝜹𝟐 0.03 

𝜸 0.09 

 

It is important to emphasize that the equilibrium point can be achieved by considering the basic 

reproduction number 𝑹𝟎 derived with the parameter values substituted as shown in Table 3. 𝑹𝟎 =

𝟎. 𝟕𝟒𝟔𝟔𝟕 indicating that the epidemic is in alcohol-free phase. 

As per the analysis, when 𝑅0  <  1, the model system is asymptotically stable, indicating the 

asymptotic stability of the alcohol-free equilibrium 𝐸0. This numerical verification is depicted in Figure 2 

and initial condition of each compartment are 𝑃(0) = 50, 𝐻(0) = 30, 𝑇(0) = 20, 𝑄(0) = 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Time-series analysis on alcohol-free equilibrium point. 

 

Effect of contact rate 𝛃𝟏 on Heavy Drinker 

In the context of this study, the graph presented regarding the impact of contact rate 𝛽1 on heavy drinkers, 

(𝐻). The simulation involved various values of 𝛽1 while keeping the other parameters constant. According 

to Figure 3, a higher 𝛽1 leads to an elevated likelihood of individuals being heavy drinkers, increasing 

exposure between people. As a result, the community must decrease the contact rate in order to minimize 

the number of individuals who consume alcohol within the population. 
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. 

 

 

 

 

 

 

 

 

 

 

effect of β1 on heavy Figure 3 The 

drinkers 

 

rate 𝜸 on drinker in Effect of recovered 

treatment 

In this study, we investigate the 

outcomes of simulations about the impact of the recovery rate, 𝛾 on heavy drinkers currently participating 

in treatment, 𝑇(𝑡). It is clear from Figure 4 that the number of people who are in the treatment category 

decreases as the recovery rate of treatment, 𝛾 increases. This indicates that when a person falls into the 

treatment category, society must increase treatment approaches to support their recovery. Therefore, 

we can successfully eliminate the scourge of alcoholism from the community if we increase the recovery 

rate, 𝛾 for those undergoing treatment and facilitate their transfer into the group of alcohol quitters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Effect of γ on drinkers in treatment 

 

Endemic Equilibrium Point  

When considering the scenario in which 𝑅0 > 1, it is discovered that the reproduction number of the 

endemic equilibrium, as derived from the information presented in Table 4 by Satana and Kassaye 

(2022) is 𝑅0 =  1.74545 > 1. 

This finding provides compelling evidence that within the population, there coexist individuals 

who abstain from drinking, heavy drinkers, individuals undergoing treatment for drinking, and those who 

have successfully recovered. This coexistence serves as a clear indication of the presence of an alcohol 

abuse problem within the community. Moreover, individuals struggling with drinking issues consistently 

demonstrate a propensity to convert more non-drinkers into heavy drinkers, thus destabilizing the 

equilibrium of a non-drinking state. Figure 5 furnishes numerical evidence that substantiates the 

existence of this phenomenon. 

 

Table 4: Value of parameters at endemic equilibrium point 
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Parameters Value 

𝒃 0.8 

𝝁 0.25 

𝜶 0.5 

𝜷𝟏 0.8 

𝜷𝟐 0.6 

𝜷𝟑 0.01 

𝜹𝟏 0.3 

𝜹𝟐 0.03 

𝜸 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Time-series analysis at endemic equilibrium point 

 

Conclusion 

This study examines the transmission of infectious diseases through alcohol consumption using the 𝑷𝑯𝑻𝑸 

Model. The model consists of four compartments representing different groups of individuals. The aim is 

to understand the dynamics and reduce the number of alcohol consumers. Equilibrium points and the 

basic reproduction number are determined using mathematical methods. The stability analysis indicates 

that the alcohol-free equilibrium and endemic equilibrium are stable when the reproduction number  𝑹𝟎 <

𝟏. The sensitivity analysis identifies 𝜷𝟏 as a significant factor, suggesting that reducing 𝜷𝟏 is important in 

combating the alcoholism epidemic. Numerical simulations using MATLAB validate the mathematical 

findings. The results highlight the importance of minimizing contact between non-drinkers and heavy 

drinkers and maximizing the number of individuals seeking treatment to control the alcoholism epidemic. 

Mathematical models emphasize treatment's importance in reducing alcohol consumption. Continuous 

evaluation and monitoring are crucial for intervention success. Mathematical models provide valuable 

insights into outcomes. Regular monitoring of alcohol consumption, treatment results, and intervention 

impact enables evidence-based decisions. Future research should collect real-world data, use context-

specific values, and explore additional contributing factors to control and prevent alcoholism. 
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