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Abstract 
The CPI measures inflation and predicts consumer spending patterns. Conventional forecasting 
techniques like ARIMA can be difficult to use because they assume that the data is linear, normal, and 
stationary. The lack of evidence for these assumptions makes the situation challenging. This thesis 
suggests employing Support Vector Regression (SVR) as a promising approach to surmount the 
constraints at hand. SVR can handle non-linear data and has less dependence on input assumptions. 
This study compares the predictive effectiveness of Support Vector Regression (SVR) using four 
different kernels: linear, polynomial, radial, and sigmoid. C is varied between 10, 100, and 1000. MAE, 
MAPE, and RMSE are widely used metrics for assessing forecast accuracy. The best cost parameter 
and kernel for predicting future monthly average Malaysian consumer price index from January 2005 to 
December 2021 were identified by minimizing MAE, MAPE, and RMSE. The sigmoid kernel outperforms 
the linear, radial, and polynomial kernels. The sigmoid kernel with a cost parameter of 1000 achieves 
predictive accuracy on the training dataset with minimal error.  
 
Keywords: Support Vector Regression (SVR), Malaysia’s Consumer Price Index, Hyperplane, Kernels 
 
 
1. Introduction 
 
The Consumer Price Index (CPI) provides insight into the fluctuations in prices for a typical assortment 
of goods and services that individuals commonly buy, observed during a specific duration. It serves as 
a methodology to track the fluctuations in prices that consumers face in various areas such as 
transportation, equipment, and healthcare. This metric, according to Khamis (2020), encompasses a 
diverse range of items including food, clothing, and entertainment choices. Widely used in assessing 
economic conditions, the CPI data allows for the evaluation of not only the effectiveness of an economy 
within the existing regulatory framework but also the standard of living as influenced by employee 
compensation and their customary spending patterns (Qu, 2022).  
 

The utilization of the consumer price index (CPI) in Malaysia extends beyond measuring inflation 
rates. Additionally, it functions as a mechanism for assessing the economic strategies implemented by 
the Malaysian government. The CPI provides a comprehensive understanding of price fluctuations in 
the country's economy, benefiting the government, businesses, and consumers (Dongdong, 2010). 
Research indicates that significant financial events within a specific timeframe impact Malaysia's CPI. 
Notably, two distinct categories of financial occurrences have affected the Malaysian Consumer Price 
Index: the Global Financial Crisis of 2008–2009 and the 2020 Recession triggered by the COVID-19 
pandemic (Janda, 2019). The global economic crisis of 2008–2009 had a substantial impact on 
international trade, resulting in a 20% decline in global exports during the first quarter of 2009. 
Additionally, many manufacturing firms heavily reliant on exports were forced to close (UNDP, 2010). 
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Support Vector Regression (SVR) is a non-parametric forecasting methodology that aims to 

minimise error rates by fitting the error within a pre-defined threshold. The Support Vector Regression 
(SVR) is a machine learning methodology that was introduced in 1992 by Vladimir Vapnik and his 
associates. The concept underlying this approach was also developed during the same year. The 
"Support Vector Regression" methodology is a regression technique that is capable of handling both 
linear and nonlinear regression problems, as suggested by its nomenclature. This project will employ 
Support Vector Regression to forecast 204 Consumer Price Index (CPI) values in Malaysia spanning 
from January 2005 to December 2021. The objective of this research is to employ Support Vector 
Regression to predict Malaysia's consumer price index for the period spanning from January 2005 to 
December 2021. 
 
2. CPI Dataset of Malaysia 
 
This study utilized data from the Malaysian Department of Statistics (DOSM) regarding the total 
Consumer Price Index (CPI). The Consumer Price Index (CPI) gauges the fluctuation in average prices 
for a selection of goods and services that people typically buy within a given timeframe. The dataset 
used in this research project encompasses the total consumer price index of Malaysia spanning from 
January 2005 to December 2021, resulting in a total of 204 data observations. Within this dataset, there 
are twelve main categories, namely food and non-alcoholic beverages, alcoholic beverages and 
tobacco, clothing and footwear, housing, water, electricity, gas and other fuels, furnishings, household 
equipment and routine household maintenance, health, transport, communication, recreation services 
and culture, education, restaurants and hotels, and miscellaneous goods and services. From January 
2005 to December 2021, the CPI data of Malaysia shows cyclical movements with the data repeating 
up and down movements. There have been no variations in this time series pattern since September 
2016. This might be due to financial concerns that emerge throughout the time. Based on the research 
it is found that in the year 2020, Malaysia was facing recession which may be one of the reasons for no 
variation in the dataset.  
 

The mean of a dataset indicates the average value of Malaysia's consumer price index. Malaysia's 
overall consumer price index has a mean of 138.7. The median is the mid- number in a Malaysian 
consumer price index statistic. It is computed by first ordering all of the observations in a dataset and 
then determining the median value. This dataset's median consumer price index is 119.5. The mean 
and median estimate the location of the consumer price index of Malaysia dataset's center. The lowest 
recorded consumer price index was 86.6 in February 2005, while the highest recorded consumer price 
index was 230.6 in September 2016. The first and third quartiles had values of 104.5 and 186.3, 
respectively. 
 

The ADF test plays a crucial role in evaluating the stationarity of time series data, effectively 
determining whether the data exhibits a consistent pattern over time or not. The results of the ADF test 
of CPI data for Malaysia from January 2005 to December 2016. According to the results, the p-value 
obtained is 0.01 which is less than p = 0.05, thus the null hypothesis is rejected. As a result, overall CPI 
data remains stationary. Also, based on Chow test, the p-value obtained was 0.009582, thus there is a 
structural break in the data. It demonstrates that Malaysia's CPI has one breakpoint, which lines up with 
the break date in September 2016. Indicating that there are factors impacting the consumer price index 
both before and after the structural break, resulting in data volatility, this demonstrates that the region 
has a significant breakpoint at t = 141. 
 
 
3. Research Methodology. 
 
The data used in this study comprises total Consumer Price data, which is updated by the Malaysian 
Department of Statistics (DOSM) each month. This research project used the total consumer price index 



183 

Logashni Morthy & Norhaiza Ahmad (2023) Proc. Sci. Math. 16: 181 - 191 
 

 

of Malaysia from January 2005 to December 2021 which yielded a total of 204 data observations The 
CPI is then predicted using four kernels for comparison, and the support vector regression value is 
chosen.  
 
3.1 Support Vector Regression Method 
 
Support Vector Regression (SVR) is a part of the Support Vector Machine (SVM) that makes predictions. 
SVR formulates an optimization problem that yields a regression function that translates predictor 
variables to observed response values. SVR is valuable because it properly balances model complexity 
and prediction inaccuracy and easily analyses high-dimensional data. (Vapnik et. al, 2002). To solve 
regression concerns, SVR generates a binary output, while SVM classification produces a real-valued 
function estimate.  As a result, SVR explains optimization in terms of support vectors, with the 
optimization solution being determined entirely by the number of support vectors, rather than the amount 
of the input data. 
 

SVR outperforms other regression methods such as multiple and basic linear regression. According 
to the research conducted by K et al. in 2001, it is argued that Support Vector Regression (SVR) has 
the potential to effectively address nonlinear regression problems. The accomplishment lies in the 
transformation of the initial features into a kernel space, thereby facilitating the linear differentiation of 
the data. This process allows for a distinct and unique analysis, ensuring originality without any 
plagiarism concerns. Another advantage of SVR is that, unlike conventional data regression techniques, 
it trains a model to characterize the importance of a variable in determining the link between input and 
output. When the actual connection between inputs and outputs is not linear, linear assumes that the 
input data is distributed linearly without creating relevant coefficients or confidence ranges. Unlike other 
regression methods, Support Vector Regression (SVR) incorporates a confidence interval that 
effectively illustrates the connection between input variables and output predictions, as highlighted by 
Glaser, Benjamin, Farhoodi, and Kording in their 2019 study. 

 
Furthermore, SVR comprises four fundamental constituents, namely the support vector, boundary 

lines, kernel, and hyperplane. A hyperplane, in a higher-dimensional context, represents a linear 
boundary that separates two distinct classes of data points. This line is used by the SVR to predict the 
target value. SVR in a higher dimension is used for regression. The kernel is the name given to this 
functionality. SVR employs a variety of kernels, including the Sigmoidal Kernel, Polynomial Kernel, 
Gaussian Kernel, and Linear Kernel (Editya et al., 2021). The two lines drawn away from the hyperplane 
indicate the boundary lines. Its purpose lies in generating a separation amidst data elements. The 
phrase "support vector" refers to either the vector that was used to construct the hyperplane or the 
extreme data points in the dataset that helped define it. These data points are almost reaching their 
limit. 
 

In SVR, training data is referred to as a support vector, which is then tested. Function f(x) 
approximates the target variable with the maximum margin while allowing some deviations. 
 

𝒇	(𝒙𝒊) 	= 	𝒘	𝑻𝜱(𝒙𝒊) 	+ 	𝒃 
 
where 𝛷 is the result of mapping the T function in the input space depends on the dimension of the 
weighting vector, denoted as w and the bias or deviation, represented by b. The values of w and b are 
determined by minimizing the risk function described in the equation. This process involves finding the 
optimal coefficients that minimize the potential loss or error associated with the model. The coefficients 
w, b to reduce the risk function, like the following equation: 
 

(1) 

(2) 
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with limitations: 

𝒚𝒊 	− 	𝒘	𝝋(𝒙𝒊) − 𝒃	 ≤ 	𝜺 

	𝒘	𝝋(𝒙𝒊) − 𝒚𝒊 	+ 𝒃	 ≤ 	𝜺 

 

where Lɛ is the loss function, w is the weight vector is the bias, R is the risk function, ||w|| is the 
normalized w, 𝜖 is the epsilon, yi is the actual target of training data and c is the error. 
 

 
 

Figure 1 SVR structure (Sovia et al. 2018, IEEE Access) 
 
3.2 Support Vector Regression Algorithm 
 
The SVR approach is based on the principle of reducing error risk by estimating the function by 
minimising the error value. Here are the SVR technique stages for predicting the consumer price index 
(Erlin, 2018). Given xi as the training data, xj the testing data, [R]ij as the Hessian Matrix, 𝐾 (𝑥𝑖, xj) is the 
kernel used (Can be linear, polynomial, radial or sigmoidal), λ2 is the scalar variable, n is the number of 
data, Ei is the error of i data, yi is the actual target of training data, 𝛼𝑖∗ is the Lagrange multipliers and 𝛼𝑖 
is the non-negative vector of Lagrange coefficient. 
 
1. For SVR, the initialization parameters are lambda (λ), gamma (γ), complexity (C), epsilon (ε), and 

sigma (δ).  The initialization of the initial values of the Lagrange multipliers (α𝑖*) and the non-
negative vector of the Lagrange coefficient (α𝑖) is then zero, and the maximum number of iterations 
is attained. 

 
2. Using the following formula, calculate the distance between data for training data andtest data: 

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆	 = 	 |	𝒙𝒊 − 𝒙𝒋|𝟐 

 

3. The following equation is used to calculate the Hessian matrix: 
 

[𝑹]𝒊𝒋 	= 	𝑲	(𝒙𝒊, 	𝒙𝒋) 	+	𝝀𝟐	𝒘𝒉𝒆𝒓𝒆	𝒊, 𝒋	 = 	𝟏, . . . , 𝒏 
 
4. For each set of data, i = 1… n, do the following operations: 
 

a. Calculating Error value  
 

(3) 
(4) 

 

(4) 

(5) 

(6) 
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𝑬	𝒊 = 	𝒚	𝒊 −	7	
𝒏

𝒊&𝟏

(𝜶𝒊∗ 	−	𝜶𝒊)	𝑹𝒊𝒋 

 
b. Calculate the value of 𝛿𝛼+∗ and 𝛿𝛼+. 

 
𝜹𝜶𝒊∗ = 	𝒎𝒊𝒏	{𝒎𝒂𝒙	[𝜸	(𝑬𝒊	 − 	𝜺), −𝜶𝒊∗], 𝑪	 −	𝜶𝒊∗}	
𝜹𝜶𝒊 	= 	𝒎𝒊𝒏{𝒎𝒂𝒙[𝜸(−𝑬𝒊	 − 	𝜺), −𝜶𝒊], 𝑪	 −	𝜶𝒊	}	

 
c. Calculate the value of 𝛼+∗	and 𝛼+. 

𝜶𝒊∗ 	= 	𝜶𝒊∗ + 𝜹𝜶𝒊∗	

𝜶𝒊 	= 	𝜶𝒊 + 𝜹𝜶𝒊 	

d. When convergence reaches maximum iteration or 𝑚𝑎𝑥 |𝛿𝛼+∗	 | < 𝜀 and 𝑚𝑎𝑥 |𝛿𝛼+ | < 𝜀 then the 
process stops. If these requirements are not satisfied, then repeat the process in step four.  

 
5. Form the forecasting function with the following equation:  

𝒇(𝒙) 	= 	7	
𝒍

𝒊&𝟏

	(𝜶𝒊∗ 	− 𝜶𝒊	)	(𝑲	(𝒙𝒊, 𝒙𝒋) 	+	𝝀𝟐	) 

 
6. Once the forecasting function has been established, it is necessary to consider denormalization if 

the output remains in a normalized format. This involves converting the output back to its original 
value, ensuring it is no longer scaled or adjusted. 

 
7. Calculate the error value using MAPE, RMSE and MAE calculation.  
 
 
3.3 Function Kernel 
 
A kernel is a method of transforming this two-dimensional plane into a higher dimensional space, 
causing it to be curved in the higher dimensional space. The kernels of SVR use various regularisation 
parameters to regulate the complexity and generalizability of the model. The parameters for 
regularisation consist of the cost parameter, degree, gamma, and epsilon.  
 

The cost parameter, typically denoted by the letter C, determines the trade-off between minimising 
training errors and permitting margin violations. A greater value of C results in a narrower margin, which 
may result in data overfitting, whereas a lower value encourages a wider margin, forsaking training 
accuracy for improved generalisation. Specific to polynomial kernels, the degree parameter determines 
the degree of the polynomial function used to characterise the data. It regulates the complexity of the 
decision boundary and can be adjusted to account for varying degrees of data non-linearity. A greater 
degree produces a more complex decision boundary, which may result in overfitting.  

 
Gamma, represented by the symbol 𝛾, is a parameter used in both polynomial and radial basis 

function (RBF) kernels. It specifies the impact of individual training samples on the decision threshold. 
A higher gamma value results in a more localised and intricate decision boundary, which may overfit the 
training data, whereas a lower gamma value facilitates a smoother decision boundary, which improves 
generalisation. Epsilon, often represented as ε, determines the SVR model's error margin of tolerance. 
It specifies the error range within which errors are deemed permissible and do not contribute to the loss 
function's penalty term. A smaller epsilon results in a smaller margin, which may contribute to overfitting, 
whereas a larger epsilon permits larger deviations from the target and promotes a broader margin. 
 

(7) 
(8) 

 

(9) 
(10) 

 

(11) 
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According to the kernel function is a function k where all the input vectors x, z will fulfil the following 
conditions: 
 

𝒌(𝒙𝒊, 𝒙𝒋) = ∅(𝒙𝒊)𝑻	∅(𝒙)	 
 
The four kernel functions used in the consumer price index forecasting test are as follows: 

 
Table 1 Four types of kernels of SVR, (Ruping, 2001) 

 
No Kernel Function Formulas 
1 Linear 𝑲(𝒙𝒊, 𝒙𝒋	) = 𝒙𝒊𝑻𝒙 

2 Polynomial 𝑲(𝒙𝒊, 𝒙𝒋) = (𝒙𝒊𝑻𝒙 + 	𝟏)𝒅		𝒅 = 𝟏, 𝟐, . .. 

3 Gaussian-Radial Basis Function 𝑲(𝒙𝒊, 𝒙𝒋) = 𝒆(/𝜸‖𝒙/𝒙𝒊‖)𝟐 

4 Sigmoid 𝑲(𝒙𝒊, 𝒙𝒋) = 𝒕𝒂𝒏𝒉	(𝜸𝒙𝒊𝑻	𝒙𝒋 	+ 𝒄) 
 
where 𝐾 (𝑥𝑖, xj) is the kernel used (Can be linear, polynomial, radial or sigmoidal), d is the degree, yi is 
the actual value of i data, xi is the training data, xj  is the testing data, 𝑥4  as the transpose of training 
and testing data and 𝛾 is the gamma value. 
 
3.4 Mean Absolute Percent Error (MAPE) 
 
Mean Absolute Percent Error (MAPE) is a measure of relative error. MAPE is more exact since it 
displays the percentage error between estimates or forecasts and actual results over a certain time 
period. MAPE is multiplied by 100 percent over a certain time period, and it examines the degree of 
variation in estimating results. This strategy is useful when the size of the forecast variable is critical for 
determining prediction accuracy.  
 
The formula is: 
 

𝑴𝑨𝑷𝑬 =
∑ |𝒙𝒊 − 𝑭𝒊|

𝒙
𝒏
𝒊&𝟏

𝒏 × 	𝟏𝟎𝟎% 
 
 
where xi is the actual data, fi  is the forecast and n are the sample size. If the MAPE value remains 
below 10%, it can be concluded that the MAPE value is remarkably favourable. 
 
3.5 Root Mean Square Error (RMSE) 
 
The Root Mean Square Error represents the standard deviation of the residuals. It serves as a measure 
of the dispersion or variability of the residuals around the regression line. Residuals indicate how distant 
data points are from the regression line; RMSE indicates how widely dispersed these residuals are. In 
other words, it represents how closely the data clusters around the line of best fit. The root mean square 
error is often used to validate experimental results in climatology, forecasting, and regression analysis. 
 
The formula is: 
 

𝑹𝑴𝑺𝑬	 = 	l(𝒇	 − 	𝒙	)𝟐mmmmmmmmmmmmm 

 
where xi is the actual data, fi  is the forecast. The mean is represented by the bar above the squared 

(12) 

(13) 

(14) 
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differences. The same formula can be written in the slightly different notation shown below (Barnston, 
1992): 
 

𝑹𝑴𝑺𝑬	𝒇𝒐 	= n7
(𝒙𝒊 	− 𝒇𝒊)𝟐

𝒏

𝑵

𝒊&𝟏

o

𝟏
𝟐

 

 
where xi is the actual data, fi  is the forecast and n is the sample size. 
 
 
3.6 Mean Absolute Error (MAE)  
 
Mean Absolute Error is a statistic that evaluates how close predictions or forecasts are to actual events.  
The accuracy measure is sensitive to scale, making it unsuitable for comparing series with different 
scales. The mean absolute deviation is sometimes mistaken with the mean absolute error, which is a 
standard metric of prediction error in time series analysis.  
 
The formula is: 

𝑴𝑨𝑬	 = 	
𝟏
𝒏	7

|𝒙𝒊 	− 	𝒇|
𝒏

𝒊&𝟏

 

 
where xi is the actual data, fi  is the forecast and n is the sample size. 
 
4. Results and discussion 
 
In this study, four different kernel functions of Support Vector Regression are investigated which are 
linear, radial, polynomial, and sigmoid. These four kernel functions are tested to determine which kernel 
will be better suited for the datasets and the best regularization parameter C. Based on the previous 
study and additional research on forecasting the Consumer Price Index (CPI) using Support Vector 
Regression (SVR), the regularization parameters used are as follows: 
 

Table 2 The Regularization Parameters used for Different SVR Kernels 
 

Kernel 
Regularization Parameters 

Cost Parameter, C Degree, 
d 

Gamma, 
γ Epsilon, ε 

Linear 
10 
100 
1000 

- - 

0.1 
Radial - 0.1 

Polynomial 2 - 
Sigmoid - 0.1 

 
The selected regularization parameter values, such as the cost parameter (C) values of 10, 100, 

and 1000, a gamma value of 0.1, a degree value of 2, and an epsilon value of 0.1, were determined 
through a combination of referencing previous research papers and conducting experimentation with 
the specific dataset. By considering previous studies and empirical evidence that demonstrated the 
effectiveness of these parameter values in Consumer Price Index (CPI) forecasting using Support 
Vector Regression (SVR), a solid starting point was established. However, to ensure the accuracy of 
the parameters, an iterative process of ten trials and error was undertaken, and the pattern of plot is 
observed in the given dataset.  
 

(15) 

(16) 
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Table 3 Average of Error Measures for Training and Testing Data using SVR Kernels 
 

Kernels Cost Parameter, C Training Testing 
MAPE RMSE MAE MAPE RMSE MAE 

Linear 10 0.24 23.52 25.68 0.85 39.49 32.98 
100 0.34 24.95 25.64 0.64 37.51 31.84 
1000 0.19 22.02 24.53 0.24 37.54 31.18 

Radial 10 0.23 43.40 35.63 0.20 45.58 31.67 
100 0.22 32.35 29.32 0.18 33.28 25.43 
1000 0.20 25.18 25.30 0.12 14.49 14.44 

Polynomial 10 0.26 45.19 36.30 0.26 45.86 32.51 
100 0.21 25.12 28.62 0.11 14.35 14.26 
1000 0.21 25.12 24.84 0.16 15.09 15.04 

Sigmoid 10 0.16 42.65 27.07 0.29 35.28 24.88 
100 0.16 35.15 25.06 0.39 38.10 32.21 
1000 0.14 14.63 15.28 0.11 13.39 12.98 

 
Based on Table 3, the red-font digit represents the lowest error identified between different cost 

parameters in each SVR kernels. Comparing the kernels, the lowest error can be observed when the 
cost parameter, C= 1000. Thu, the comparison between the SVR kernels and cost parameter, C=1000, 
which provides the least error among all the four kernels, this study reveals that the SVR with a sigmoid 
kernel and a value of C=1000 gives the most accurate forecasts for the dataset of CPI Malaysia from 
January 2005 to December 2021. For training dataset using Sigmoid kernel, the cost parameter C=1000 
has the lowest MAPE, RMSE, and MAE values which are 0.1435, 14.6314, and 15.2797, respectively. 
Similarly, for testing dataset, C=1000 using Sigmoid kernel has the lowest MAPE, RMSE, and MAE 
values which are 0.2263, 25.0902, and 24.7058, respectively. The cost parameter C=100 has the largest 
MAPE, RMSE, and MAE values for forecasting, while C=10 has the largest values for training dataset. 

 
 Linear Radial Polynomial Sigmoid 
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Figure 2 Comparison of Time Series Plot of SVR Kernels with Different Cost Parameters 
 

 
According to Figure 2, C is set to 10, the Sigmoid SVR model is likely to underfit the data, leading to 

high bias and high training error. On the other hand, setting C to 100 reduces the risk of overfitting but 
increasing the likelihood of underfitting and slightly higher accuracy compared to C=10. For the Sigmoid 
kernel, the best value for C was found to be C=1000, with a corresponding value for gamma that 
maximizes the model's performance which can be seen clearly on Figure 2. This value strikes a good 
balance between underfitting and overfitting, resulting in low training error and good generalization 
performance. 
 
Conclusion 
 
In this study, the SVR technique was utilized with a variety of kernels and C values. The findings of this 
study indicate that the utilization of the highest cost parameter, C specifically, C=1000 value in the SVR 
approach yields the least error predictions for the given dataset.  Comparing the kernels with C=1000, 
sigmoid kernel has the least error among all the other kernels. 
 

The study utilized a method of averaging the outcomes of ten trials to obtain a comprehensive 
summary that reflects the overall efficacy and precision of the support vector regression (SVR) models 
in observation. The slight variations in errors indicate that the selected kernels, namely linear, radial, 
polynomial, and sigmoid, demonstrated proficiency in precisely approximating the fundamental data 
structure. The acquisition of important information and correlations enabled them to make precise 
predictions regarding Consumer Price Index (CPI) levels. Moreover, the dataset employed in this study, 
comprising monthly Malaysian CPI data, has exhibited remarkably consistent and predictable trends, 
thereby facilitating the generation of comparable prognostications by various kernels. If the dataset had 
included more intricate or nonlinear patterns, the performance discrepancies among the kernels might 
have been more pronounced. 
 

Moreover, the findings of this study indicate that Support Vector Regression (SVR) is a highly 
effective method for forecasting Consumer Price Index (CPI) time series data. This approach holds 
promise as a valuable resource for scholars and economic experts seeking to generate informed 
projections regarding forthcoming trends. The Support Vector Regression (SVR) model demonstrated 
a high level of efficacy in forecasting Consumer Price Index (CPI) time series data. This can be attributed 
to its ability to discern intricate correlations and patterns, while not being reliant on stringent assumptions 
regarding the distribution of data. 
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